

Appunti di LISP

Antonio Di Stefano

�Introduzione.

Questo documento costituisce un veloce riferimento alla sintassi del linguaggio LISP ed a molte altre informazione che spesso sono necessarie quando si programma in questo linguaggio. Sono anche forniti alcuni esempi di implementazione di algoritmi molto diffusi e utili. Questo documento non è assolutamente completo ed esauriente su molti aspetti del linguaggio, ma è una specie di “appunto veloce e generico” che ho compilato in occasione del compito di Intelligenza Artificale... :-).

Alcuni dei codici contenuti sono stati reperiti da diverse fonti ed appartengono ai rispettivi proprietari, altri li ho scritti io.

Tra le fonti principali è il caso di citare:

LISP Programming Tutorial Notes

di Lau Sau Ming

da cui è stato tratto molto del testo presentato.

Spero che possa esservi utile quanto lo è stato a me.

Palermo 26/11/2001

Antonio Di Stefano

ragazzoionico@tin.it

P.S. Mi scuso per il mix di italiano ed inglese :-))

�Introduction to LISP Primitives

Procedures that come with LISP are called PRIMITIVES.

Thus the following are all LISP primitives.

Primitive name Action

============== ======

+ Adds numbers.

- Subtracts numbers.

* Multiplies numbers.

/ Divides numbers.

MAX Finds the largest number.

MIN Finds the smallest number.

For example,

* (+ 1 2 3)

6 ;LISP returns 6 because 1+2+3=6

Some More Examples

* (MAX 3 6 9 1 6 9 5)

9

* (MIN 3 6 9 1 6 9 5)

1

* (+ (- 5 3) (/ 12 6))

4.0

* (* (MAX 3 4 5) (MIN 3 4 5))

15

*

List Selectors

These are the basic list selectors:

Selector Purpose

======== =======

FIRST Return 1st element of the list.

REST Return list after removing the first element.

LAST Return list after removing all but

 one element.

BUTLAST Return list after removing the last n

 elements of a list, with the 2nd argument

 determing the exact number.

NTHCDR Return list after removing the first

 n elements of a list, with the 1st argument

 determining the exact number.

LENGTH Return the number of top-level elements

 in a list.

�For example,

* (setf mylist '(fast computers are nice))

(FAST COMPUTERS ARE NICE)

* (first mylist)

FAST

* (rest mylist)

(COMPUTERS ARE NICE)

* (last mylist)

(NICE)

* (butlast mylist 2)

(FAST COMPUTERS)

* (nthcdr 2 mylist)

(ARE NICE)

* (length mylist)

4

*

��Exercises:

1. (first '(p h w)) P

2. (rest '(b k p h)) (K P H)

3. (first '((a b) (c d))) (A B)

4. (rest '((a b) (c d))) ((C D))

5. (first (rest '((a b) (c d)))) (C D)

6. (rest (first '((a b) (c d)))) (B)

7. (rest (first (rest '((a b) (c d))))) (D)

8. (first (rest (first '((a b) (c d))))) B

9. (rest '(c)) NIL

10. (first ()) NIL

11. (rest ()) NIL

12. (nthcdr 2 '(a b c)) (C)

13. (butlast '(a b c)) (A B)

14. (last '(a b c)) (C)

15. (last '((a b) (c d))) ((C D))

16. (nthcdr 50 '(a b c)) NIL

17. (butlast '(a b c) 50) NIL

18. (last ()) NIL

[How to get the last element of a list ?]

* (first (last '(a b c)))

C

�

List Constructors --- CONStruct

Takes an expression and a list and returns a new list whose 1st element is the expression and whose remaining elements are those of the old list.

For example,

 +-----+

 | |

 | v

* (CONS 'A '(B C))

(A B C)

Assuming L's value is (A B) and

M's value is ((L M) (X Y)), then:

 +---------+

 | |

* (CONS L M) | v

((A B) (L M) (X Y)) (A B) ((L M) (X Y))

* (cons L L)

((A B) A B)

* (cons '(a) '(b c))

((A) B C)

List Constructors --- APPEND

Combines the elements of all lists supplied as arguments.

For example,

* (APPEND '(A B C) '(X Y Z))

 | | | | | |

 | | | | | |

 v v v v v v

 (A B C X Y Z)

Compare the result with what you would get with CONS:

* (CONS '(A B C) '(X Y Z))

((A B C) X Y Z)

APPEND makes a list out of all the elements in its arguments.

CONS adds its first argument to its second argument, a list.

Another example,

* (cons '(a b c) '())

((A B C))

* (append '(a b c) '())

(A B C)

* (append '(a b c) '(()))

(A B C NIL)

�List Constructors --- LIST

Make a list out of its arguments. Each ``argument value'' becomes an element of the new list.

For example,

* (LIST 'A 'B 'C)

(A B C)

* (list 'a 'b '(c d))

(A B (C D))

ASSUMING PI's value is 3.14,

* (list 2 PI 3)

(2 3.14 3)

* (list 2 'PI 3)

(2 PI 3)

Another example,

* (setf obstacles (list 'one 'two))

(ONE TWO)

* obstacles

(ONE TWO)

List Constructors --- REVERSE

Reverse the order of the top-level elements of a list.

For example,

* (REVERSE '(A B C))

(C B A)

Note, however, that REVERSE does not turn the individual elements of a list around when those elements are lists:

For example,

* (REVERSE '((A B) (L M) (X Y)))

((X Y) (L M) (A B))

�Exercises:

1. (cons '(a b c)'()) ((A B C))

2. (append '(a b c)'()) (A B C)

3. (list '(a b c)'()) ((A B C) NIL)

Assume L's value is (A B C), M's value is

(X Y Z)

4. (list L M) ((A B C)(X Y Z))

5. (list 'L M) (L (X Y Z))

6. (list L 'M) ((A B C) M)

7. (append L M) (A B C X Y Z)

8. * (setf M (cons 'this (setf L '(is a list))))

 (THIS IS A LIST)

 * L

 (IS A LIST)

 * M

 (THIS IS A LIST)

 * (cons L L)

 ((IS A LIST) IS A LIST)

 * (list L L)

 ((IS A LIST) (IS A LIST))

 * (append L L)

 (IS A LIST IS A LIST)

9. (reverse '(a b c)) (C B A)

10. (reverse '((a) (b) (c))) ((C) (B) (A))

11. (reverse '((a b c))) ((A B C))

�

List Constructors --- Stack-like

�> (setq a nil)

NIL

> (push 4 a)

(4)

> (push 5 a)

(5 4)

> (pop a)

5

> a

(4)

> (pop a)

4

> (pop a)

NIL

> a

NIL�

Procedure Definition and Binding --- DEFUN

LISP encourages you to create small, easily debugged procedures.

DEFUN: DEfine FUNction

 (defun <function name>

 (<parameters>)

 <forms>)

The DEFUN function establishes a function definition as its side-effect.

The value returned by DEFUN is the function name.

For example,

Suppose you want to make a new list out of the first and last elements of an old list.

* (DEFUN BOTH-ENDS ;Procedure's name is BOTH-ENDS.

 (L) ;The parameter is L.

 (CONS (FIRST L) (LAST L)) ;The form.

) ;End the DEFUN primitive

BOTH-ENDS ;LISP returns the function name

* (BOTH-ENDS '(A B C D E))

(A E)

* (BOTH-ENDS '(START L M N FINISH))

(START FINISH)

When calling a function, the value returned by that function is the value of the last form in its body.

For example,

* (defun cons-tail (tail alist) ;fcn name, parameters

 (setf count (+ count 1)) ;first form

 (append alist (list tail))) ;last form

CONS-TAIL

* (cons-tail 'pear '(apple orange))

(APPLE ORANGE PEAR)

Virtual 'fences' between variables inside and outside a function.

PARAMETER VARIABLES bindings are established when a function is entered. They are isolated from other variable bindings outside the function.

For example,

* (setf L '(a b c))

(A B C)

* (defun both-ends (L)

 (cons (first L)(last L)))

BOTH-ENDS

* (both-ends '(d e f))

(D F)

* L

(A B C)

NON-PARAMETER variables are not isolated from variables outside the function.

For example,

* (setf count 0)

0

* (defun cons-tail (tail alist)

 (setf count (+ count 1))

 (append alist (list tail)))

CONS-TAIL

* (cons-tail 'a '(b c))

(B C A)

* count

1

Procedure Definition and Binding --- LET

 (LET ((<parameter 1> <initial value 1>)

 (<parameter 2> <initial value 2>)

 ...

 (<parameter m> <initial value m>))

 <form 1>

 <form 2>

 ... <form n>)

The LET function binds parameters (and assigns values to them) and defines the scope in which these parameters and their corresponding values are valid.

For example,

* (LET ((X 3) (Y 5))

 (* X Y))

15

The 'parameter' bindings within LET form are also isolated from the outside by a virtual 'fence', just like the local variables in a procedure of Pascal. Again, the non-parameter variables within a LET form is not isolated.

Whenever a LET form appears in a function, the virtual fence of the LET form occurs within the virtual fence of the function.

 +---Function's Virtual Fence---------+

 | |

 | +--LET's Virutal Fence------+ |

 | | | |

 | +---------------------------+ |

 +------------------------------------+

For example,

* (defun test1 ()

 (setf acc 0)

 (let ((x 1) (y 2))

 (setf acc (+ x y))))

...

* (defun test2 ()

 (setf acc 0)

 (let ((x 1) (y 2) (acc 0))

 (setf acc (+ x y))))

...

* (test1) * (test 2)

3 3

* acc * acc

3 0

Note carefully that all initial-value forms are evaluated before the new parameter values are assigned.

 These forms are ALL evaluated,

 |

 |

(LET ((<parameter 1> <value 1>)

 ...

 (<parameter n> <value n>))

 |

 +----- before ANY of these parameters are set.

 <form 1> ... <form n>)

We say that the LET parameter values are computed in PARALLEL.

* (setf x 'outside)

...

* (let ((x 'inside) (y x))

 (list x y))

(INSIDE OUTSIDE)

LET*

LET* binds parameter sequentially so that a parameter bound earlier can be used to evaluate the value of a parameter bound later.

For example,

* (setf x 'outside)

...

* (let* ((x 'inside) (y x))

 (list x y))

(INSIDE INSIDE)

�If the symbol x already has a global value, stranger happenings will result:

> (setq x 7)

7

> (let ((x 1)

 (y (+ x 1)))

 y)

8

The let* special form is just like let except that it allows values to reference variables defined earlier in the let*. For example,

> (setq x 7)

7

> (let* ((x 1)

 (y (+ x 1)))

 y)

2

Equality Predicates

EQUAL Are the 2 arguments the same expr (list or atom)?

EQL Are the 2 arguments the same symbol or number?

EQ Are the 2 arguments the same symbol?

= Are the 2 arguments the same number?

�

For example,

* (setf abc-list '(a b c)

 one 1 two 2 plus '+ minus '-)

-

* (equal abc-list '(a b c))

T

* (equal one 2)

NIL

* (equal abc-list one)

NIL

* (equal plus minus)

NIL

* (eql plus '+)

T

* (eq minus -1)

ERROR <---- "EQ" expects symbols

* (= one 'a)

ERROR <---- "=" expects numbers

* (eql 4 4.0)

NIL

* (eql 4 4)

T

* (= 4 4.0)

T�

Membership Predicate

The MEMBER predicate test to see if its 1st argument is an (top level) element of its 2nd argument.

MEMBER returns what is left in the list when the matching symbol is encountered.

MEMBER returns NIL if the 1st argument is not a top level element of the 2nd element.

For example,

* (setf sentence '(tell me about your mother please))

(tell me about your mother please)

* (member 'mother sentence)

(MOTHER PLEASE) <--- a more informative return value

 instead of just a "T".

* (member 'father sentence)

NIL

* (MEMBER 'MOTHER '((FATHER SON) (MOTHER DAUGHTER)))

NIL

MEMBER normally tests things with a predicate that works with symbols only. If the first argument to MEMBER is not a symbol, you must modify slightly what you write; otherwise MEMBER won't work as you expect.

* (SETF PAIRS '((FATHER SON) (MOTHER DAUGHTER)))

((FATHER SON) (MOTHER DAUGHTER))

* (member '(father son) pairs)

NIL

* (MEMBER '(FATHER SON) PAIRS :TEST 'EQUAL)

T

Data Types Predicates

ATOM Is it an atom?

NUMBERP Is it a number?

SYMBOLP Is it a symbol?

LISTP Is it a list?

�For example,

* (atom 'pi)

T

* (atom pi)

T

* (numberp 'pi)

NIL

* (numberp pi)

T

* (symbolp 'pi)

T

* (symbolp pi)

NIL

* (atom nil)

T

* (atom ())

T

* (symbolp nil)

T

* (symbolp ())

T

* (listp nil)

T

* (listp ())

T

�

Empty-List Predicates

NULL Is the argument an empty list ?

ENDP Is the argument, which must be a list,

 an empty list ?

For Example,

* (null ())

T

* (endp nil)

T

* (null '(a b c))

NIL

* (endp '(a b c))

NIL

* (null 'a-symbol)

NIL

* (endp 'a-symbol)

ERROR <--- a-symbol is not a list

Number Predicates

NUMBERP Is it a number?

ZEROP Is it zero?

PLUSP Is it positive?

MINUSP Is it negative?

EVENP Is it even?

ODDP Is it odd?

> Are they in descending order?

< Are they in ascending order?

�

For example,

* (setf zero 0 one 1 two 2 three 3 four 4)

...

* (setf digits (list one two three four))

...

* (numberp 4)

T

* (numberp four)

T

* (numberp 'four)

NIL

* (numberp digits)

NIL

* (numberp 'digits)

NIL

* (zerop zero)

T

* (zerop 'zero)

ERROR <------ zerop expects a number

* (zerop four)

NIL

Further examples,

* (plusp one)

T

* (plusp (- one))

NIL

* (plusp zero)

NIL

* (evenp (* 9 5 3 2 1))

T

* (evenp (* 10 8 6 4 2))

T

* (> four two)

T

* (> two four)

NIL

* (> three two one)

T

* (> three one two)

NIL

* (> 'four 'two)

ERROR <------ not numbers�

Combining Predicates --- AND

AND returns NIL if any of its argument evaluates to NIL.

The arguments are evaluated from left-to-right, if any evaluates to NIL, none of the remaining is evaluated, and the value returned is NIL.

If all arguments evaluate to non-NIL values, the value returned by the AND from is the value of the last argument.

It takes any number of arguments.

For example,

* (setf pets '(dog cat))

...

* (and (member 'dog pets) (member 'tiger pets))

NIL

* (and (member 'dog pets) (member 'cat pets))

(CAT)

Things are not that simple, however, because AND may not evaluate all their arguments.

* (setf result NIL pi 3.14)

3.14

* (AND (LISTP PI) (SETF RESULT 'SET-IN-FIRST-AND))

NIL ;Returns NIL because PI is not a list.

* RESULT

NIL

* (AND (NUMBERP PI) (SETF RESULT 'SET-IN-SECOND-AND))

SET-IN-SECOND-AND

* RESULT

SET-IN-SECOND-AND

Combining Predicates --- OR

OR returns NIL if all of its arguments evaluates to NIL.

The arguments are evaluated from left to right, if any evaluates to non-NIL, none of the remaining is evaluated, and the value returned is that non-NIL value.

If all arguments evaluates to NIL, the value returned by OR is NIL.

It takes any number of arguments.

For example,

* (setf pets '(dog cat))

...

* (or (member 'dingo pets) (member 'tiger pets))

NIL

* (or (member 'dog pets) (member 'cat pets))

(DOG CAT)

Things are not that simple, however, because OR may not evaluate all their arguments.

* (setf result NIL pi 3.14)

3.14

* (OR (NUMBERP PI) (SETF RESULT 'SET-IN-FIRST-OR))

T

* RESULT

NIL

* (OR (LISTP PI) (SETF RESULT 'SET-IN-SECOND-OR))

SET-IN-SECOND-OR

* RESULT -(SET-IN-SECOND-OR

Combining Predicates --- NOT

NOT just turns non-NIL to NIL and NIL to T

For example,

* (not 'dog)

NIL

* (setf pets '(dog cat))

(DOG CAT)

* (not (member 'dog pets))

NIL

* (not (member 'tiger pets))

T

Simple Branching Primitives --- IF

 (IF <test> <then form> <else form>)

IF returns the value of its <then form> when <test> evaluates to T or ANYTHING other than NIL; otherwise, IF returns the value of its <else form>.

For example,

Assuming TRIGGER'S value is T.

* (IF TRIGGER 'ITS-TRUE 'ITS-FALSE)

ITS-TRUE

Now assume TRIGGER's value is NIL:

* (IF TRIGGER 'ITS-TRUE 'ITS-FALSE)

ITS-FALSE

Another example,

* (setf day-or-date 'monday)

...

* (if (symbolp day-or-date) 'day 'date)

DAY

* (setf day-or-date 9)

...

* (if (symbolp day-or-date) 'day 'date)

DATE

If there's no <else-form> and if <test> evaluates to NIL, NIL will be returned.

Simple Branching Primitives --- WHEN

 (WHEN <test> <then form>)

WHEN returns the value of <then form> when <test> evaluates to ANYTHING other than NIL. Said another way, WHEN triggers on non-NIL.

For example,

* (WHEN T 'ITS-TRUE)

ITS-TRUE

When WHEN's first argument evaluates to NIL, WHEN returns nil:

* (WHEN NIL 'ITS-TRUE)

NIL

Another Example,

* (setf high 98 temperature 102)

...

* (when (> temperature high) (setf high temperature))

102

* high

102

Simple Branching Primitives --- UNLESS

 (UNLESS <test> <else form>)

UNLESS returns the value of <else form> when <test> evaluates to NIL. Said another way, UNLESS triggers on seeing NIL.

For example,

* (UNLESS NIL 'ITS-FALSE)

ITS-FALSE

When UNLESS's first argument evaluates to non-NIL, UNLESS returns NIL:

* (UNLESS NIL 'ITS-FALSE)

* (UNLESS T 'ITS-FALSE)

NIL

Another example,

* (setf high 98 temperature 102)

...

* (unless (< temperature high) (setf high temperature))

102

* high

102

General Branching Primitives --- COND

 (COND (<test 1> <consequent 1-1> <consequent 1-2> ...)

 (<test 2) <consequent 2-1> <consequent 2-2> ...)

 ...

 ...

 (<test m> <consequent m-1> <consequent m-2> ...))

The symbol COND is followed by clauses. Each clause contains a test and zero or more forms called consequent.

COND moves through the clauses, evaluating the test forms, until a test form evaluates to non-NIL. This clause is "triggered" and its consequent forms are evaluated.

The value returned by COND is the value of the last consequent form in the triggered clause.

If all test forms are NIL, the value returned by COND is also NIL.

For example,

* (cond ((= N 0) (setf answer '(value is zero)))

 ((> N 1) (setf answer '(value is positive)))

 (T (setf answer '(value is negative))))

The last clause in the above example is called a T-triggered clause.

With a T-triggered clause, the final clause is used when none of the others are triggered.

General Branching Primitives --- CASE

 (CASE <key form>

 (<key 1> <consequent 1-1> <consequent 1-2> ...)

 (<key 2> <consequent 2-1> <consequent 2-2> ...)

 ...

 ...

 (<key m> <consequent m-1> <consequent m-2) ...))

CASE checks the <key form> against the <key> in each clause using "EQL" until a matching is found. The corresponding clause is then triggered and all its consequent are evaluated.

The value returned by CASE is the value of the last consequent form in the triggered clause.

If no matching occurs, the value returned by CASE is NIL.

For example,

* (setf thing 'point r 1)

...

* (case thing

 (circle (* pi r))

 (sphere (* 4 pi r r)

 (otherwise 0))

0

The last clause in the above example is called a Catch-all clause.

With a Catch-all clause, the final clause is used when none of the others are triggered.

If the <key> in a clause is a list, not an atom, CASE checks the <key form> against the <key> list using MEMBER

For example,

* (setf thing 'ball r 1)

...

* (case thing

 ((circle wheel) (* pi r r))

 ((sphere ball) (* 4 pi r r))

 (otherwise 0))

12.566

Repeating by Recursion

Many LISP procedures work by repeating a particular action over and over until a certain condition is met. There are several ways that this is arranged:

 +--- Recursion

To repeat -----| +--- Using DO

 +--- Iteration ----|

 +--- Using MAPCAR

An example for recursion:

(DEFUN COUNT-ELEMENTS (L)

 (IF (ENDP L) 0

 (+ 1 (COUNT-ELEMENTS (REST L)))))

The definition of COUNT-ELEMENTS involves a form using COUNT-ELEMENTS itself. Such procedures are said to be RECURSIVE.

Many recursive procedures solve problems by breaking up a list, working on its pieces, and combining the results of working on those pieces. One particularly nice example is COUNT-ATOMS:

For example,

(DEFUN COUNT-ATOMS (E)

 (COND ((AND (LISTP E) (ENDP E)) 0)

 ((ATOM E) 1)

 (T (+ (COUNT-ATOMS (FIRST E))

 (COUNT-ATOMS (REST E))))))

Definizione di fattoriale:

(defun fatt (n)

 (if (= n 0) 1

 (* n (fatt (- n 1)))))

Repeating by Iteration --- DOTIMES

(dotimes (<count parameter> <upper-bound form> <result form>)

 <body>)

When DOTIMES is entered, the <upper-bound form> is evaluated, producing a number of n. The <count parameter> is then assigned from 0 to n-1, one after another. For each value, the body is executed once.

On exit, the <count parameter>'s binding is eliminated and the <result form> is evaluated as the return value of DOTIMES.

	* (setf result 1)

	1

	* (dotimes (count 5 result)

		 (setf result (* (+ 1 count) result)))

	120

Repeating by Iteration --- DOLIST

(dolist (<element parameter> <list form> <result form>)

 <body>)

When DOLIST is entered, the <list form> is evaluated, producing a list of elements. The elements in the list are then assigned, one after another, to the element parameter. For each value, the body is executed once.

On exit, the element parameter's binding is eliminated and the <result form> is evaluated as the return value of DOLIST.

For example,

* (LET ((foo '(a b (c d))) (bar '()))

 (DOLIST (ele foo bar)

	 (SETF bar (CONS ele bar))))

((C D) B A)

*

Whenever a (RETURN <expression>) is encountered in DOTIMES or DOLIST, computation will be terminated immediatedly. The <expression> is evaluated as the return value of the terminated DOTIMES and DOLIST form.

Repeating by Iteration --- DO

DO expressions have the following parts:

A list of parameter specifications, each of which creates, sets, and resets one of the DO form's parameters:

(<parameter> <initial value> <reset form>)

A test and return clause that determines when to stop the iteration and specifies the DO form's value once stopped:

(<trigger> <side effect forms, if any> <value form>)

A body that consists of DO's subforms, which are evaluated over and over until the DO is stopped:

<body form>

The syntax of DO:

 (DO ((<parameter 1> <initial value 1> <update form 1>)

 (<parameter 2> <initial value 2> <update form 2>)

 ...

 (<parameter n> <initial value n> <update form n>))

 (<test form> <result form>)

 <body form>)

For example,

* (DO ((L '(THIS IS A LIST) (REST L))

 (RESULT NIL))

 ((NULL L) RESULT)

 (SETF RESULT (CONS (FIRST L) RESULT)))

(LIST A IS THIS)

* (defun do-exp (m n)

 (do ((result 1)

 (exponent n (- exponent 1)))

 ((zerop exponent) result)

 (setf result (* m result))))

On entering the DO, the list of parameters are all bound to its corresponding value (again, a virtual fence exists to isolate these parameters from the variables outside DO).

The parameter specifications can include update forms. The parameters are updated accordingly in each pass.

The 2nd part of DO is the termination test and the result form. The test is attempted before each pass, including the 1st one. The <result form> is evaluated as the return value of DO only when the test succeeds.

There may be zero or more <result forms> after the <test form>. They are all evaluated when the test succeeds. However, only the last one gives the return value of the DO. If there is none, the return value is NIL.

Whenever (RETURN <expression>) is encountered, DO is terminated immediately. <expresion> is evaluated as the return value of the terminated DO.

All initializations and updates are done in parallel, i.e. all initial forms are evaluated before bindings and all update forms are evaluted before assignments.

For example,

* (defun do-exp (m n)

 (do ((result m (* m result))

 (exponent n (- exponent 1))

 (counter (- exponent 1) (- exponent 1)))

 ((zerop counter) result)))

Errors occurs because EXPONENT is not bound to any value yet when it is used to evaluate the initial form of COUNTER.

DO* like LET* binds values sequentially.

Repeating by Iteration --- LOOP

	(loop <body>)

The body is evaluated over and over until a (RETURN <expression>) is encountered. Again the <expression> is evaluated as the return value of the terminated LOOP.

Esempio:

(loop (if (< i 10) (setf i (+ i 1)) (return i)))

* 10

(somma i primi 10 numeri)

Se si fosse messo solo (return), la funzione ritornava NIL, ma i valeva 10 lo stesso...

Iterazione: esempi

The simplest iteration construct in LISP is loop: a loop construct repeatedly executes its body until it hits a return special form. For example,

> (setq a 4)

4

> (loop

 (setq a (+ a 1))

 (when (> a 7) (return a)))

8

> (loop

 (setq a (- a 1))

 (when (< a 3) (return)))

NIL

The next simplest is dolist: dolist binds a variable to the elements of a list in order and stops when it hits the end of the list.

> (dolist (x '(a b c)) (print x))

A

B

C

NIL

Dolist always returns nil. Note that the value of x in the above example was never nil: the NIL below the C was the value that dolist returned, printed by the read-eval-print loop.

The most complicated iteration primitive is called do. A do statement looks like this:

> (do ((x 1 (+ x 1))

 (y 1 (* y 2)))

 ((> x 5) y)

 (print y)

 (print 'working))		[continua a pagina seguente...]

�1

WORKING

2

WORKING

4

WORKING

8

WORKING

16

WORKING

32

�The first part of a do specifies what variables to bind, what their initial values are, and how to update them. The second part specifies a termination condition and a return value. The last part is the body. A do form binds its variables to their initial values like a let, then checks the termination condition. As long as the condition is false, it executes the body repeatedly; when the condition becomes true, it returns the value of the return-value form.

The do* form is to do as let* is to let.

Transformation Primitive --- Funcall, Apply, and Mapcar

Earlier I promised to give some functions which take functions as arguments. Here they are:

> (funcall #'+ 3 4)

7

> (apply #'+ 3 4 '(3 4))

14

> (mapcar #'not '(t nil t nil t nil))

(NIL T NIL T NIL T)

Funcall calls its first argument on its remaining arguments.

Apply is just like funcall, except that its final argument should be a list; the elements of that list are treated as if they were additional arguments to a funcall.

The first argument to mapcar must be a function of one argument; mapcar applies this function to each element of a list and collects the results in another list.

Funcall and apply are chiefly useful when their first argument is a variable. For instance, a search engine could take a heuristic function as a parameter and use funcall or apply to call that function on a state description. The sorting functions described later use funcall to call their comparison functions.

Transformation Primitive --- MAPCAR

(MAPCAR #'<procedure name> <list of things to work on>)

MAPCAR takes two arguments: a procedure name and a list of things to work on. The result is the list of values you would have if you worked on each element in the given list with the given procedure.

For example,

* (MAPCAR #'FIRST '((A B C) (X Y Z)))

(A X)

FIRST's result, working on the first element, (A B C), is A.

FIRST's result, working on the second element, (X Y Z), is X.

All the results of FIRST, made into a list, is (A X).

If the transformation procedure requires more than 1 parameter, there must be a corresponding number of lists.

For example,

* (MAPCAR #'= '(1 2 3) '(3 2 1))

(NIL T NIL)

In other words, the transformation procedure is applied to the FIRST element of each list, then the SECOND element of each list, and so on until no more elements remain in one of the lists.

* (MAPCAR #'list '(a b c) '(1 2) '(x y z))

((A 1 X) (B 2 Y))

Filtering Primitive --- REMOVE-IF, REMOVE-IF-NOT

(remove-if #'<filtering procedure name>

	 <list of elements to be filtered>)

(remove-if-not #'<filetering procedure name>

	 <list of elements to be filtered>)

REMOVE-IF eliminates all elements that satisfy the filtering predicate.

REMOVE-IF-NOT eliminates all elements that do not satisfy the filtering predicate.

For example,

* (REMOVE-IF #'evenp '(1 2 3 4 5))

(1 3 5)

* (REMOVE-IF-NOT #'evenp '(1 2 3 4 5))

(2 4)

Counting Prmitive - COUNT-IF

(count-if #'<filtering procedure>

 <list of elements to be counted>)

COUNT-IF provides a way to count the number of elements in a list which satisfy a given condition.

For example,

* (count-if #'evenp '(1 2 3 4 5))

2

Finding Primitive --- FIND-IF

(find-if #'<test procedure>

 <list of elements to be tested>)

FIND-IF finds the first element in the list which satisfy the testing predicate.

For example,

* (find-if #'evenp '(1 2 3 4 5 6))

2

Printing

Some functions can cause output. The simplest one is print, which prints its argument and then returns it.

> (print 3)

3

3

The first 3 above was printed, the second was returned.

If you want more complicated output, you will need to use format. Here's an example:

> (format t "An atom: ~S~%and a list: ~S~%and an integer: ~D~%"

 nil (list 5) 6)

An atom: NIL

and a list: (5)

and an integer: 6

The first argument to format is either t, nil, or a stream. T specifies output to the terminal. Nil means not to print anything but to return a string containing the output instead. Streams are general places for output to go: they can specify a file, or the terminal, or another program. This handout will not describe streams in any further detail.

The second argument is a formatting template, which is a string optionally containing formatting directives.

All remaining arguments may be referred to by the formatting directives. LISP will replace the directives with some appropriate characters based on the arguments to which they refer and then print the resulting string.

Format always returns nil unless its first argument is nil, in which case it prints nothing and returns a string.

There are three different directives in the above example: ~S, ~D, and ~%. The first one accepts any LISP object and is replaced by a printed representation of that object (the same representation which is produced by print). The second one accepts only integers. The third one doesn't refer to an argument; it is always replaced by a carriage return.

Another useful directive is ~~, which is replaced by a single ~.

Refer to a LISP manual for (many, many) additional formatting directives.

Arrays

The function make-array makes an array. The aref function accesses its elements. All elements of an array are initially set to nil. For example:

> (make-array '(3 3))

#2a((NIL NIL NIL) (NIL NIL NIL) (NIL NIL NIL))

> (aref * 1 1)

NIL

> (make-array 4) ;1D arrays don't need the extra parens

#(NIL NIL NIL NIL)

Array indices always start at 0.

Structures

LISP structures are analogous to C structs or Pascal records. Here is an example:

> (defstruct foo

 bar

 baaz

 quux) -(FOO

This example defines a data type called foo which is a structure containing 3 fields. It also defines 4 functions which operate on this data type: make-foo, foo-bar, foo-baaz, and foo-quux. The first one makes a new object of type foo; the others access the fields of an object of type foo. Here is how to use these functions:

> (make-foo)

#s(FOO :BAR NIL :BAAZ NIL :QUUX NIL)

> (make-foo :baaz 3)

#s(FOO :BAR NIL :BAAZ 3 :QUUX NIL)

> (foo-bar *)

NIL

> (foo-baaz **)

3

The make-foo function can take a keyword argument for each of the fields a structure of type foo can have. The field access functions each take one argument, a structure of type foo, and return the appropriate field.

Setf

Certain forms in LISP naturally define a memory location. For example, if the value of x is a structure of type foo, then (foo-bar x) defines the bar field of the value of x. Or, if the value of y is a one- dimensional array, (aref y 2) defines the third element of y.

The setf special form uses its first argument to define a place in memory, evaluates its second argument, and stores the resulting value in the resulting memory location.

For example,

�> (setq a (make-array 3))

#(NIL NIL NIL)

> (aref a 1)

NIL

> (setf (aref a 1) 3)

3

> a

#(NIL 3 NIL)

> (aref a 1)

3

> (defstruct foo bar)

FOO

> (setq a (make-foo))

#s(FOO :BAR NIL)

> (foo-bar a)

NIL

> (setf (foo-bar a) 3)

3

> a

#s(FOO :BAR 3)

> (foo-bar a)

3

�

Setf is the only way to set the fields of a structure or the elements of an array.

Here are some more examples of setf and related functions.

> (setf a (make-array 1)) ;setf on a variable is equivalent to setq

#(NIL)

> (push 5 (aref a 1)) ;push can act like setf

(5)

> (pop (aref a 1)) ;so can pop

5

> (setf (aref a 1) 5)

5

> (incf (aref a 1)) ;incf reads from a place, increments,

6 ;and writes back

> (aref a 1)

6

Non-local Exits

The return special form mentioned in the section on iterations is an example of a nonlocal return. Another example is the return-from form, which returns a value from the surrounding function:

> (defun foo (x)

 (return-from foo 3)

 x)

FOO

> (foo 17)

3

Actually, the return-from form can return from any named block -- it's just that functions are the only blocks which are named by default. You can create a named block with the block special form:

> (block foo

 (return-from foo 7)

 3)

7

The return special form can return from any block named nil. Loops are by default labelled nil, but you can make your own nil-labelled blocks:

> (block nil

 (return 7)

 3)

7

Another form which causes a nonlocal exit is the error form:

> (error "This is an error")

Error: This is an error

The error form applies format to its arguments, then places you in the debugger.

Lambda

If you just want to create a temporary function and don't want to bother giving it a name, lambda is what you need.

> #'(lambda (x) (+ x 3))

(LAMBDA (X) (+ X 3))

> (funcall * 5)

8

The combination of lambda and mapcar can replace many loops. For example, the following two forms are equivalent:

> (do ((x '(1 2 3 4 5) (cdr x))

 (y nil))

 ((null x) (reverse y))

 (push (+ (car x) 2) y))

(3 4 5 6 7)

> (mapcar #'(lambda (x) (+ x 2)) '(1 2 3 4 5))

(3 4 5 6 7)

Sorting and Merging

LISP provides two primitives for sorting: sort and stable-sort.

> (sort '(2 1 5 4 6) #'<)

(1 2 4 5 6)

> (sort '(2 1 5 4 6) #'>)

(6 5 4 2 1)

The first argument to sort is a list; the second is a comparison function. The sort function does not guarantee stability: if there are two elements a and b such that (and (not (< a b)) (not (< b a))), sort may arrange them in either order. The stable-sort function is exactly like sort, except that it guarantees that two equivalent elements appear in the sorted list in the same order that they appeared in the original list.

If you already have two sorted sequences, you can merge them with the merge function. Merge is guaranteed to be stable: if an element in the first sequence is equivalent to one in the second, the element from the first sequence appears first in the output. In the following example, char-lessp considers #\a equivalent to #\A.

> (merge 'string "abc" "ABC" #'char-lessp)

"aAbBcC"

Merge, like concatenate, will work with any type of sequence.

Be careful: sort and merge are allowed to destroy their arguments, so if the original sequences are important to you, make a copy with the copy-list or copy-seq function.

Some Useful List Functions

These functions all manipulate lists.

> (append '(1 2 3) '(4 5 6)) ;concatenate lists

(1 2 3 4 5 6)

> (reverse '(1 2 3)) ;reverse the elements of a list

(3 2 1)

> (member 'a '(b d a c)) ;set membership -- returns the first tail

(A C) ;whose car is the desired element

> (find 'a '(b d a c)) ;another way to do set membership

A

> (find '(a b) '((a d) (a d e) (a b d e) ()) :test #'subsetp)

(A B D E) ;find is more flexible though

> (subsetp '(a b) '(a d e)) ;set containment

NIL

> (intersection '(a b c) '(b)) ;set intersection

(B)

> (union '(a) '(b)) ;set union

(A B)

> (set-difference '(a b) '(a)) ;set difference

(B)

Subsetp, intersection, union, and set-difference all assume that each argument contains no duplicate elements -- (subsetp '(a a) '(a b b)) is allowed to fail, for example.

Member,find, subsetp, intersection, union, and set-difference can all take a :test keyword argument; by default, they all use eql.

Association List

An association list is a list of lists. The first element of each sublist is called a key.

Here is an example of an association list used to record the parents of PATRICK and KAREN:

 First entry Second entry

 -------------------------- -----------------

((PATRICK (ROBERT DOROTHY)) (KAREN (JIM EVE)))

 | |

 | |

 Key 1 Key 2

ASSOC

 (ASSOC <key> <association list>)

For example,

Assocation List:

Parents ==> ((PATRICK (ROBERT DOROTHY)) (KAREN (JIM EVE)))

 * (ASSOC 'PATRICK PARENTS)

 (PATRICK (ROBERT DOROTHY))

 * (ASSOC 'KAREN PARENTS)

 (KAREN (JIM EVE))

Storing a property value

 (SETF (GET <symbol> <property name>) <property value>)

For example,

* (setf (get 'patrick 'parent) '(albert dora))

(ALBERT DORA)

* (get 'patrick 'parent)

(ALBERT DORA)

Retrieving a property value

 (GET <symbol> <property name>)

For example,

* (get 'patrick 'parent)

(ROBERT DOROTHY)

* (get 'patrick 'grandparent)

NIL ;;because no such property exists

Removing a property value

 (REMPROP <symbol> <property name>)

For example,

 * (remprop 'patrick 'spouse)

 T

 * (get 'patrick 'spouse)

 NIL

N.B. If a symbol is a property list, only its properties have values. The symbol itself does not have any value:

 * patrick

 ERROR ;; unbound variable

 * (setf albert 'patrick)

 PATRICK

 * (setf albert patrick)

 ERROR

Tabelle Hash

In una tabella hash un'associazione viene memorizzata (con

risoluzione di conflitti) in una slot il cui indice viene ottenuto

tramite una funzione di hashing applicata alla chiave :

(MAKE-HASH-TABLE) Þ table

(GETHASH key table) Þ value o NIL

(SETF (GETHASH key table) value)

MAKE-HASH-TABLE usa EQL per confrontare le chiavi. Specificando

la parola chiave :TEST si possono usare anche EQ e EQUAL.�LISP I/O

LISP - INPUT/OUTPUT

�STREAMS

Le funzioni di I/O hanno un argomento, in genere opzionale, che

specifica la sorgente dell'input (input stream) o la destinazione

dell'output (output stream).

Gli stream possono essere monodirezionali o bidirezionali.

TERMINAL-IO è lo stream bidirezionale associato al terminale.

Viene in genere abbreviato con T.

Se lo stream non viene specificato o viene indicato con NIL, allora

viene usato lo stream *STANDARD-INPUT* oppure *STANDARD-OUTPUT*,

i quali all'inizio coincidono con *TERMINAL-IO*.

Un file viene aperto con la funzione WITH-OPEN-FILE:

(WITH-OPEN-FILE

(variable filename :DIRECTION :INPUT)

{ expression }*)

(WITH-OPEN-FILE

(variable filename :DIRECTION :OUTPUT)

{ expression }*)

variable è la variabile locale che indica lo stream per il file.

WITH-OPEN-FILE si comporta come LET, nel senso che la variabile

locale è associata allo stream solo nel suo corpo.

Il file viene chiuso dopo la valutazione del corpo di WITH-OPEN-FILE.

Il valore restituito da WITH-OPEN-FILE è i l valore dell'ultima

espressione.

Esempio:

(WITH-OPEN-FILE

(BETA "BAZ.DAT" :DIRECTION :OUTPUT)

(DO ((N 1 (+ N 1)))

((> N 10))

(PRINT N BETA)))

FUNZIONI DI INPUT

Le più importanti sono

(READ-CHAR &OPTIONAL input-stream eof-error-p

eof-value recursive-p)

(READ-LINE &OPTIONAL input-stream eof-error-p

eof-value recursive-p)

(READ &OPTIONAL input-stream eof-error-p

eof-value recursive-p)

READ può essere considerata un analizzatore lessicale, poichè

riconosce e legge espressioni simboliche.

Parametri opzionali:

1. input-stream . Sorgente dell'input.

2. eof-error-p. Valore booleano che per difetto è true e indica

se il LISP deve segnalare un errore incontrando un end-of-file.

3. eof-value. Se eof-error-p è false, indica il valore da restituire

in caso di end-of-file.

4. recursive-p. Valore booleano che indica se la funzione di

input può essere ulteriormente chiamata nel corso di

operazioni di read (è normalmente true per le read-macro).

Esempio:

(DEFVAR *END-OF-FILE* (GENSYM)

"A unique EOF marker")

(DEFUN EOF-P (X) (EQ X *END-OF-FILE*))

(DEFUN READ-ALL-CHARS (STREAM)

(LET ((RESULT '()))

(LOOP (LET ((CHAR (READ-CHAR STREAM NIL

END-OF-FILE NIL)))

(IF (EOF-P CHAR)

(RETURN (NREVERSE RESULT)))

(PUSH CHAR RESULT)))))

(DEFUN READ-ALL-LINES (STREAM)

(LET ((RESULT '()))

(LOOP (LET ((LINE (READ-LINE STREAM NIL

END-OF-FILE NIL)))

(IF (EOF-P LINE)

(RETURN (NREVERSE RESULT)))

(PUSH LINE RESULT)))))

(DEFUN READ-ALL-EXPRESSIONS (STREAM)

(LET ((RESULT '()))

(LOOP (LET ((EXP (READ STREAM NIL

END-OF-FILE NIL)))

(IF (EOF-P EXP)

(RETURN (NREVERSE RESULT)))

(PUSH EXP RESULT)))))

Se il file simple.txt contiene le due linee

(Happy (New

Year))

Si ha

(WITH-OPEN-FILE

(A "simple.txt" :DIRECTION :INPUT)

(READ-ALL-CHARS A))

Þ (#\H #\a #\p #\p #\y #\Space #\(#\N #\e

#\w #\Newline . . .) ; lista di 17 caratteri

(WITH-OPEN-FILE

(A "simple.txt" :DIRECTION :INPUT)

(READ-ALL-LINES A))

Þ ("(Happy (New" "Year))") ; lista di 2 stringhe

(WITH-OPEN-FILE

(A "simple.txt" :DIRECTION :INPUT)

(READ-ALL-EXPRESSIONS A))

Þ ((HAPPY (NEW YEAR))) ; lista di 1 s-exp

FUNZIONI DI OUTPUT

Le funzioni di base sono

(PRIN1 object &optional output-stream)

(PRINC object &optional output-stream)

(TERPRI &optional output-stream)

PRIN1 è la funzione inversa di READ, per cui conserva i caratteri di

escape e i doppi apici in modo tale da rendere l'uscita

direttamente leggibile da READ.

PRINC stampa l'oggetto in modo leggibile, togliendo caratteri di

escape e doppi apici.

TERPRI aggiunge un carattere di newline.

Esempi:

(PRIN1 '(A #\b "Cd")) stampa (A #\b "Cd")

(PRINC '(A #\b "Cd")) stampa (A b Cd)

Altre funzioni, definibili da quelle di base, sono:

(PRINT object &optional output-stream)

(PPRINT object &optional output-stream)

(FORMAT output-stream control-string

{ expression }*)

PRINT può essere definita come segue:

(DEFUN PRINT (X &OPTIONAL STREAM)

(TERPRI STREAM)

(PRIN1 X STREAM)

(PRINC #\Space STREAM) X)

Se l'argomento stream viene omesso o ha valore NIL, l'uscita viene

inviata a *STANDARD-OUTPUT*.

Se stream ha valore T, l'uscita viene inviata a *TERMINAL-IO*.

PPRINT è un "pretty-printer".

FORMAT stampa i caratteri dalla control-string all' output-stream,

effettuando operazioni specifiche quando incontra il carattere ~:

~S corrisponde a PRIN1

~A corrisponde a PRINC

~% corrisponde a TERPRI

Esempio:

(FORMAT ALPHA "The value of ~S is ~A.~%" X Y)

è all'incirca equivalente a

(PROGN (PRINC "The value of " ALPHA)

(PRIN1 X ALPHA)

(PRINC " is " ALPHA)

(PRINC Y ALPHA)

(PRINC "." ALPHA)

(TERPRI ALPHA))

In FORMAT, se output-stream è T, allora l'uscita va su *STANDARD-OUTPUT*.

Se output-stream è NIL, l'uscita è scritta su una stringa

che FORMAT crea e restuisce.

Esempio:

(LET ((L '(A (B C) D)))

(FORMAT NIL "The length of ~S is ~S."

L (LENGTH L)))

Þ "The length of (A (B C) D) is 3"

�;;;; Simple Search Algorithms

(defun general-search (problem queuing-fn)

 "Expand nodes according to the specification of PROBLEM until we find

 a solution or run out of nodes to expand. The QUEUING-FN decides which

 nodes to look at first. [p 73]"

 (let ((nodes (make-initial-queue problem queuing-fn))

	node)

 (loop (if (empty-queue? nodes) (RETURN nil))

	 (setq node (remove-front nodes))

	 (if (goal-test problem (node-state node)) (RETURN node))

	 (funcall queuing-fn nodes (expand node problem)))))

(defun breadth-first-search (problem)

 "Search the shallowest nodes in the search tree first. [p 74]"

 (general-search problem #'enqueue-at-end))

(defun depth-first-search (problem)

 "Search the deepest nodes in the search tree first. [p 78]"

 (general-search problem #'enqueue-at-front))

(defun iterative-deepening-search (problem)

 "Do a series of depth-limited searches, increasing depth each time. [p 79]"

 (for depth = 0 to infinity do

 (let ((solution (depth-limited-search problem depth)))

	 (unless (eq solution :cut-off) (RETURN solution)))))

(defun depth-limited-search (problem &optional (limit infinity)

 (node (create-start-node problem)))

 "Search depth-first, but only up to LIMIT branches deep in the tree."

 (cond ((goal-test problem node) node)

 ((>= (node-depth node) limit) :cut-off)

 (t (for each n in (expand node problem) do

		(let ((solution (depth-limited-search problem limit n)))

		 (when solution (RETURN solution)))))))

;;;; Search Algorithms That Use Heuristic Information

(defun best-first-search (problem eval-fn)

 "Search the nodes with the best evaluation first. [p 93]"

 (general-search problem #'(lambda (old-q nodes)

			 (enqueue-by-priority old-q nodes eval-fn))))

(defun greedy-search (problem)

 "Best-first search using H (heuristic distance to goal). [p 93]"

 (best-first-search problem #'node-h-cost))

(defun tree-a*-search (problem)

 "Best-first search using estimated total cost, or (F = G + H). [p 97]"

 (best-first-search problem #'node-f-cost))

(defun uniform-cost-search (problem)

 "Best-first search using the node's depth as its cost. Discussion on [p 75]"

 (best-first-search problem #'node-depth))

;;;; Utility Function

(defun make-initial-queue (problem queuing-fn)

 (let ((q (make-empty-queue)))

 (funcall queuing-fn q (list (create-start-node problem)))

 q))

;;;; The Missionaries and Cannibals Domain

(defstructure (cannibal-problem

	 (:include problem (initial-state (make-cannibal-state))))

"The problem is to move M missionaries and C cannibals...")

(defmethod goal-test ((problem cannibal-problem) state)

 "The goal is to have no missionaries or cannibals left on the first side."

 (= 0 (m1 state) (c1 state)))

(defmethod successors ((problem cannibal-problem) state)

 "Return a list of (action . state) pairs. An action is a triple of the

 form (delta-m delta-c delta-b), where a positive delta means to move from

 side 1 to side 2; negative is the opposite. For example, the action (1 0 1)

 means move one missionary and 1 boat from side 1 to side 2."

 (let ((pairs nil))

 (for each action in '((+1 0 +1) (0 +1 +1) (+2 0 +1) (0 +2 +1) (+1 +1 +1)

			 (-1 0 -1) (0 -1 -1) (-2 0 -1) (0 -2 -1) (-1 -1 -1)) do

	(let ((new-state (take-the-boat state action)))

	 (when (and new-state (not (cannibals-can-eat? new-state)))

	 (push (cons action new-state) pairs))))

 pairs))

(defstruct (cannibal-state (:conc-name nil) (:type list))

 "The state says how many missionaries, cannibals, and boats on each

 side. The components m1,c1,b1 stand for the number of missionaries,

 cannibals and boats, respectively, on the first side of the river.

 The components m2,c2,b2 are for the other side of the river."

 ;; We need to represent both sides (rather than just one as on [p 68])

 ;; because we have generalized from 3+3 people to M+C. Incidently, we

 ;; also generalized from 1 boat to B boats.

 (m1 3) (c1 3) (b1 1) (m2 0) (c2 0) (b2 0))

(defun take-the-boat (state action)

 "Move a certain number of missionaries, cannibals, and boats (if possible)."

 (destructuring-bind (delta-m delta-c delta-b) action

 (if (or (and (= delta-b +1) (> (b1 state) 0))

	 (and (= delta-b -1) (> (b2 state) 0)))

	(let ((new (copy-cannibal-state state)))

	 (decf (m1 new) delta-m) (incf (m2 new) delta-m)

	 (decf (c1 new) delta-c) (incf (c2 new) delta-c)

	 (decf (b1 new) delta-b) (incf (b2 new) delta-b)

	 (if (and (>= (m1 new) 0) (>= (m2 new) 0)

		 (>= (c1 new) 0) (>= (c2 new) 0))

	 new

	 nil))

 nil)))

(defun cannibals-can-eat? (state)

 "The cannibals feast if they outnumber the missionaries on either side."

 (or (> (c1 state) (m1 state) 0)

 (> (c2 state) (m2 state) 0)))

;;;; The N-Queens Puzzle as a Constraint Satisfaction Problem

(defstructure (nqueens-problem (:include CSP-problem)

			 (:constructor create-nqueens-problem))

 (n 8)

 (explicit? nil))

(defun make-nqueens-problem (&rest args &key (n 8) (explicit? nil))

 (apply #'create-nqueens-problem

	 :initial-state (nqueens-initial-state n explicit?)

	 args))

(defun nqueens-initial-state (n &optional (explicit? nil) (complete? nil))

 (let ((s (make-CSP-state

	 :unassigned (mapcar #'(lambda (var)

				 (make-CSP-var :name var

						 :domain (iota n)))

				(iota n))

	 :assigned nil

	 :constraint-fn (if explicit?

			 (let ((constraints (nqueens-constraints n)))

				 #'(lambda (var1 val1 var2 val2)

				 (CSP-explicit-check

				 var1 val1 var2 val2 constraints)))

			 #'nqueens-constraint-fn))))

 (if complete? (CSP-random-completion s) s)))

(defun nqueens-constraints (n)

 (let ((constraints (make-array (list n n))))

 (dotimes (i n constraints)

 (dotimes (j n)

	(unless (= i j)

	 (dotimes (vi n)

	 (dotimes (vj n)

	 (unless (or (= vi vj)

			 (= (abs (- j i)) (abs (- vj vi))))

		(push (cons vi vj)

		 (aref constraints i j))))))))))

(defun nqueens-constraint-fn (var1 val1 var2 val2)

 (not (or (= val1 val2)

	 (= (abs (- var1 var2)) (abs (- val1 val2))))))

		

�PAGINA �

�PAGINA �2�

