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Abstract 

Mining maximal frequent patterns in large database is now a well attended problem in 

data mining field. In this paper we present an algorithm which mines maximal 

frequent substructures in a molecular data. The algorithm uses bottom-up depth first 

search approach to scan data and find maximal frequent substructures. Algorithm 

works on the concept of look-ahead pruning to restrict the candidate generation and 

unnecessary scans of database. This algorithm also uses the concepts of dynamic 

reordering of candidates and support lower bound to efficiently find even the long 

patterns in molecular data. Initial results on anti HIV-1 data show that this algorithm 

works better than the simple Apriori algorithm in finding long frequent patterns. 
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1. Introduction 

Mining frequent patterns in databases is the most fundamental process in Data 

Mining. Many advanced data mining tasks like association rules mining and 

clustering requires frequent patterns to process. Since the introduction of Apriori 

algorithm [1] most of the algorithms proposed after were the versions of Apriori. 

Apriori works on the simple rule of generating all the candidates for frequent itemset 

at a level and then pursue with it till we either find its superset as frequent or 

infrequent. So it necessarily generates all the 2n candidates where n is the length of 

frequent pattern. Apriori and its variant works well for smaller data and frequent 



itemsets. But as the size of frequent itemsets increases, it becomes very inefficient to 

mine even moderate size itemsets. Many new approaches are recently proposed [2, 5, 

6, 7, 8, 11] to find long patterns in large databases.  

This paper proposes an algorithm which efficiently mines the maximal frequent 

substructures in molecular data. Mining frequent molecular fragments can useful in 

biological and pharmaceutical world. Some of its uses are to help in making more 

efficient drugs and identifying mutations in the disease causing microbes. Though our 

algorithm is a level vise algorithm, its efficiency is because of the reason that it 

restricts the generation of candidates by not expanding all the candidates and pruning 

all the generated candidates efficiently by look-ahead strategy. This algorithm works 

on bottom up depth first search on a lexicographical ordered tree. Also it make use of 

the dynamic reordering of the candidates [5] and generation of dynamic support lower 

bound [5] to mine maximal frequent substructure faster. Depth first approach is 

considered as more memory bound approach but the reason for the efficient working 

of this algorithm is that we now have the memory in the order of gigabytes. So the 

only concern we are left with is to limit the CPU time in our algorithm.  

In this paper, we used a sample of anti HIV-1 data available on http://dtp.nic.nih.gov . 

Molecular structures are used in SMILES format. SMILES representation is used as it 

is very simple and easy to use and at the same time keep the compounds 

representation complete.   

1.1 Related works 

There are basically two types of strategies proposed to mine maximal frequent 

patterns in databases. First are the kinds of algorithms which produce a frequent 

itemset of length k in kth pass and strictly not before [1, 9].  These algorithms suffer 

with the high complexity levels in candidate generation. MOLFEA [9] is one of the 



algorithms which find frequent molecular substructures in anti HIV-1 database with 

defined constraints. Though it finds the accurate frequent substructures, it generates a 

lot of candidates at each level and also doesn’t take the pruning information of 

previous step to next step. Simple Apriori has been tried to modify by Park at al. [11], 

by using hashing to store candidates and thus allowing them to be identified quicker. 

But again it doesn’t generate the frequent pattern before considering all the subsets.  

Another type of algorithm deals with the graph based methods. It represents each 

frequent itemset at a level as a node of the graph and generates the subsequent 

superset of that node. FP Tree structure [8] was the proposed to find the frequent 

patterns in large databases without candidate generation. Lately many algorithms are 

proposed to find maximal frequent patterns which are based on Lattice and Tree 

methods. MaxClique and MaxEclate [12] are two such Lattice based methods which 

works in bottom up fashion to find frequent patterns and uses vertical database 

representation. These strategies have takes into account the look-ahead property but 

have drawback like inefficient initialization. Max-Miner and Pincer-Search [5, 10] are 

two most talked about strategies.  Though both works on same strategy of finding the 

maximal frequent patterns with limited candidate generation and look-ahead pruning, 

Max-Miner takes into account the depth first search while Pincer Search works on 

breadth firs search with top down pruning.  

This paper is organized as follows: 

In section 2 we described mining frequent pattern problem and maximal frequent 

patterns. Section 3 explains the SMILES representation of chemical compounds. In 

section 4 we described the lexicographical representation of data and discussed the 

benefits of reordering of candidates in tree. In section 5 we explained the algorithm 



with example. In section 6 and 7 we described the implementation details of the 

algorithm and the results on anti viral screen data.  

2. Mining Frequent Substructure  

A substructure is defined as a subset of a molecular structure. From data mining 

perspective it is same as the itemset in transactional data or the pattern in any serial 

data. In this paper we have used the words substructure, itemsets, and patterns 

interchangeably. In a given dataset, a pattern is called frequent if it appears more 

times than a user defined support value. Association rules are found by a simple         

L => R form where each L and R represents a frequent pattern in the database which 

satisfies the minimum support and minimum confidence value.  

2.1. Maximal Frequent Substructure 

A frequent substructure, S can be said as maximal frequent substructure if there exist 

no superset of S which is frequent. In simple words maximal frequent substructure 

can be defined as the longest sequences of molecules which are frequent. Mining 

maximal frequent substructure limits the generation of redundant association rules and 

hence makes the rule generation more interesting and logical. Also it allows the 

frequent substructure mining process less complex by allowing candidate pruning at 

early stages.  

3. SMILES Representation of Molecules 

SMILES, Simplified Molecular Input Line Entry System, is a simple yet strong 

language to represent molecular structures. It gives a fairly understandable formats to 

even very complicated structures. A chemical compound representation in SMILES 

follows following notations: 

• SMILES represent compounds in string format. Every element is represented 

by its typical chemical symbol, like C, N, O, H, Cl etc.  



• Notation for single bond is ‘-‘, for double bond is ‘=’, for triple bond id ‘#’ 

and for aromatic bond is ‘:’. 

• Aromatic elements are represented in lower case. Like aromatic carbon in 

benzene ring is shown as ‘c’. 

• In most general cases hydrogen atoms, single and aromatic bonds are not 

written.  

• A cyclic structure can be represented by marking the first and the last element 

of the ring with same number.  

• Elements inside the brackets denote the side-structures. 

Figure below shows the complete representation of a compound in SMILES format. 

         O 
           

Nc1ccc(O)cc1     ≡ 

        
             N 
       H H   
   

Figure 1: An example of SMILES representation of chemical compound.  

4. Lexicographical Representation of Molecular Data.  

This section explains the representation of the molecular data in lexicographical tree 

[3] format. Motive behind representing data in lexicographically ordered tree is that it 

helps in depth first searching of substructures. Each node of the tree consists of the 

frequent substructure. The root of the tree is NULL node. All children of root node 

are the frequent candidate at first level. This means all the single element in the data 

which are identified as frequent. The order of the nodes at a level is defined as i ≤L j, 

where i is a node occurs before j in the tree.   

4.1. Dynamic Node Ordering 



Dynamic reordering [5] of the nodes at each level depends on the frequency of that 

node in previous level. Nodes are arranged in the order of the least frequent node first. 

This is done in order to find maximal frequent substructure early in our search. This 

happens because our search follows two basic principles of frequent pattern mining: 

• Supersets of all infrequent itemsets are infrequent. 

• Subsets of all frequent itemsets are frequent.  

So we tried to find all the superset of less frequent substructures first as they generate 

maximal frequent substructures early and they restrict the expanding of frequent 

nodes.  

5. Algorithm 

This section shows the working of the algorithm to find maximal frequent 

substructures in molecular data. The lexicographically sorted tree is traversed in depth 

first order. To be more specific, our algorithm searches as follows: 

To start with we have a frequent substructure set as empty. Minimum support is 

provided by the user and candidate set is also empty. After this data scan is done to 

find frequent substructure. Each frequent substructure is now a candidate and kept in 

candidate set. Then all candidates in candidate set are arranged in order of least 

frequent candidate first. Then we pick the first candidate in candidate set and expand 

it by adding next item to it. An item can be any one of these, an element, a bond, a 

number for cyclic elements or a bracket.  

So if value of node a node Ni at ith level is {c:c:c-O=} and its extensions are              

Ei = {H, O, C} than the successors of Ni are Ni + { i : i  ∈ Ei }.  Figure 3 shows the 

expansion of tree. After expanding a node, pruning phase starts. Pruning can be done 

in three ways. First, all those nodes in the tree which are not frequent can be pruned. 

 



 

        

  
 

 
 

 

 

 

 

Figure 3: Expansion of the tree for compounds C:O-O=H-S, 

C:O-O=H-O, S-C:O-O=H-S-C-H. 

This is simple support based pruning. Second, all the nodes from the tree can be 

pruned if during previous levels we have found any of the superset of that node as 

frequent. But this type of pruning becomes inefficient when there exist long similar 

substructures which differ only at the end. Third type of pruning is actually the 

restriction phase in our algorithm. It deals with all the substructures which are found 

as infrequent. We need not to expand it as we know that none of its superset would be 

frequent. Pseudo code for the algorithm is described below in figure 4.   

5.1. Example 

In this example we consider the same compounds shown in figure 1. Let support is 

defined as 50%. This means a substructure has to be in at least 50% of the compounds 

to be said as frequent. To make this less complex we haven’t considered bonds, 

brackets and ring numbers to be the part of the expanding node. We start with 

scanning data for the candidates consisting of single atom. Figure 4.1 shows the 

structure of the tree after level 1. All the nodes are then arranged in order of least 
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O-O=H

C:O-O=H

S 

H-S 

Null

S-C 



support value lower than defined support. Node N is pruned after this step as it occurs 

only once in the database. 

Miner (database D, candidateset C, support S, frequentitemset FSS) 

Sup = minSup; 

 k = 1; 

Ck-1 = { i | i ∈ dataset }; 

FSS0 = NULL; 

while Ck != empty 

read the database and count the frequency of each i ∈ Ck; 

Ck = all i in Ck-1 having count ≥ minSup; 

arrange all i in Ck in increasing order of count, i.e. candidate with least 

count first; 

generate new Sup = genSup (); 

expand the first candidate in table. Let it be ‘a’; 

generate all of the supersets of a; 

prune all those supersets of a, which contain any infrequent item; 

candidates in Ck whose superset has been found frequent while 

expanding a, were not expanded; 

repeat till Ck != NULL; 
 

Figure 4: Pseudo code for mining algorithm. 

At level two, node S is expanded. Since the child of S is infrequent, it is pruned and 

not expanded further. Then next node in order is picked up and expanded. H-S, H-O 

and O=H are the children of H. Here couple of things is to be pointed. We have taken 

the canonical structure of a compound in to account by expanding the node in both 

directions. So any canonical structure will occur only once in our frequent fragment 

set at the end. Second, since we have expanded H with O=, we won’t expand O node 

with the same suffix. This allows us to restrict our expansion and hence candidate 

generation. Here we keep H-S, O=H in our frequent substructure set and prunes the 

other children. We have got our first maximal pattern as there is no expansion  



 

 

 

 

  

Figure 4.1: Search tree for level one. 
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Figure 4.2:  Search tree at level two. S is expanded and node S-C is pruned as it is infrequent. H is 

expanded to H-S, H-O and O=H. H-O is pruned. H-S is kept in FSS.  
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Figure 4.3: Complete expansion of the tree. Node C and O were not expanded as all the possible 

substructures were found in previous node’s expansion.  
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possible with H-S. Then we expand O=H with its successors, getting C:O-O=H as the 

maximal frequent substructure. Now since we have expanded all the possible 

substructure in our database, we need not to go to any other node left to expand. This 

allows us to stop at the point we have mined all the possible substructures in the 

database.  

6. Implementation 

Data structure used to implement the lexicographical tree is priority stack with locator 

pattern. Reason behind using a stack is that it allows quick search of the node to be 

expanded and hence allows the depth first search to be more efficient. Also the 

reordering of nodes according to their respective count is efficient with priority queue 

implementation. A count array is maintained to store the count of each candidate in 

queue. Algorithm was implemented in C.  

The data set was taken from the 43576 compounds from the Development 

Therapeutics Program’s AIDS anti viral screen database. We have conducted the 

experiments on a sample of 300 compounds from this database. Sample compounds 

were taken irrespective of their classified nature of confirmed active (CA), confirmed 

moderately active (CM), confirmed inactive (CI). So the results were not very much 

accurate in terms of the usefulness.  

7. Results 

Results of initial implementation of the algorithm are given below in table 1 and table 

2. Table 1 show the occurrence of single atom in number of compounds. Results 

shows that C atom occurs most in 100% of elements followed by O, N and S atom. 

We have not included bonds, brackets and numbers in our results as frequent item. 

Table 2 shows the 6 most frequent maximal substructures. Since the implementation 

is done on a sample data of 300 compounds from about 50000 compounds, results do 



not stand with much usefulness from real world prospective. Initial support value was 

kept 10% for finding frequent substructure and for maximal frequent substructures 

lower bound was defined as 2%. The reason we have kept lower bound for support so 

low is that the data we have used is very skewed and only 1.3% of the whole data is 

supposed to be active.  

 

 

 

 

 

Table 1:  Shows the frequency of individual atoms in the database. Frequency is defined with the 

occurrence of the atom in number of compounds. 

 

Maximal Frequent Substructure  Frequency 

S(Sc1ccc 3% 

[N+](=O)([O-])c1ccc 3% 

C(=O0(c1ccc 2.33% 

C(=NNC( 2.33% 

C(Occcc)O 2% 

 

Table 2:  Maximal frequent substructures found in the sample data consisting of 300 compounds 

from DTP AIDS anti viral screen database.   

8. Conclusions 

In this paper we tried to develop an algorithm to find maximal frequent substructure 

in molecular data with use of depth first traversal and concept like intelligent pruning. 

Atom Frequency 

C 100% 

O 91% 

N 68% 

S 53% 



The depth first search strategy helps in mining long patterns early in search and thus 

helps in restricting our search to few node expansions. We have also applied the 

concept of dynamic reordering of candidates at each level which helps us in pruning 

infrequent patterns efficiently.  

Present algorithm can be enhanced by using better counting technique to count the 

frequency of candidates. Counting techniques like Bitvector can improve the 

performance of algorithm.  Future work can also focus on modifying the algorithm 

according to different data sources like genetic data, transaction data and other 

chemical data.  
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