
Mining Maximal Frequent Patterns in Molecular Data with
 Look-ahead Pruning

Arpit Gattani
gattani@cc.usu.edu

Abstract

Mining maximal frequent patterns in large database is now a well attended problem in

data mining field. In this paper we present an algorithm which mines maximal

frequent substructures in a molecular data. The algorithm uses bottom-up depth first

search approach to scan data and find maximal frequent substructures. Algorithm

works on the concept of look-ahead pruning to restrict the candidate generation and

unnecessary scans of database. This algorithm also uses the concepts of dynamic

reordering of candidates and support lower bound to efficiently find even the long

patterns in molecular data. Initial results on anti HIV-1 data show that this algorithm

works better than the simple Apriori algorithm in finding long frequent patterns.

Keywords

Frequent substructures, maximal frequent substructures, dynamic reordering, look-

ahead pruning.

1. Introduction

Mining frequent patterns in databases is the most fundamental process in Data

Mining. Many advanced data mining tasks like association rules mining and

clustering requires frequent patterns to process. Since the introduction of Apriori

algorithm [1] most of the algorithms proposed after were the versions of Apriori.

Apriori works on the simple rule of generating all the candidates for frequent itemset

at a level and then pursue with it till we either find its superset as frequent or

infrequent. So it necessarily generates all the 2n candidates where n is the length of

frequent pattern. Apriori and its variant works well for smaller data and frequent

itemsets. But as the size of frequent itemsets increases, it becomes very inefficient to

mine even moderate size itemsets. Many new approaches are recently proposed [2, 5,

6, 7, 8, 11] to find long patterns in large databases.

This paper proposes an algorithm which efficiently mines the maximal frequent

substructures in molecular data. Mining frequent molecular fragments can useful in

biological and pharmaceutical world. Some of its uses are to help in making more

efficient drugs and identifying mutations in the disease causing microbes. Though our

algorithm is a level vise algorithm, its efficiency is because of the reason that it

restricts the generation of candidates by not expanding all the candidates and pruning

all the generated candidates efficiently by look-ahead strategy. This algorithm works

on bottom up depth first search on a lexicographical ordered tree. Also it make use of

the dynamic reordering of the candidates [5] and generation of dynamic support lower

bound [5] to mine maximal frequent substructure faster. Depth first approach is

considered as more memory bound approach but the reason for the efficient working

of this algorithm is that we now have the memory in the order of gigabytes. So the

only concern we are left with is to limit the CPU time in our algorithm.

In this paper, we used a sample of anti HIV-1 data available on http://dtp.nic.nih.gov .

Molecular structures are used in SMILES format. SMILES representation is used as it

is very simple and easy to use and at the same time keep the compounds

representation complete.

1.1 Related works

There are basically two types of strategies proposed to mine maximal frequent

patterns in databases. First are the kinds of algorithms which produce a frequent

itemset of length k in kth pass and strictly not before [1, 9]. These algorithms suffer

with the high complexity levels in candidate generation. MOLFEA [9] is one of the

algorithms which find frequent molecular substructures in anti HIV-1 database with

defined constraints. Though it finds the accurate frequent substructures, it generates a

lot of candidates at each level and also doesn’t take the pruning information of

previous step to next step. Simple Apriori has been tried to modify by Park at al. [11],

by using hashing to store candidates and thus allowing them to be identified quicker.

But again it doesn’t generate the frequent pattern before considering all the subsets.

Another type of algorithm deals with the graph based methods. It represents each

frequent itemset at a level as a node of the graph and generates the subsequent

superset of that node. FP Tree structure [8] was the proposed to find the frequent

patterns in large databases without candidate generation. Lately many algorithms are

proposed to find maximal frequent patterns which are based on Lattice and Tree

methods. MaxClique and MaxEclate [12] are two such Lattice based methods which

works in bottom up fashion to find frequent patterns and uses vertical database

representation. These strategies have takes into account the look-ahead property but

have drawback like inefficient initialization. Max-Miner and Pincer-Search [5, 10] are

two most talked about strategies. Though both works on same strategy of finding the

maximal frequent patterns with limited candidate generation and look-ahead pruning,

Max-Miner takes into account the depth first search while Pincer Search works on

breadth firs search with top down pruning.

This paper is organized as follows:

In section 2 we described mining frequent pattern problem and maximal frequent

patterns. Section 3 explains the SMILES representation of chemical compounds. In

section 4 we described the lexicographical representation of data and discussed the

benefits of reordering of candidates in tree. In section 5 we explained the algorithm

with example. In section 6 and 7 we described the implementation details of the

algorithm and the results on anti viral screen data.

2. Mining Frequent Substructure

A substructure is defined as a subset of a molecular structure. From data mining

perspective it is same as the itemset in transactional data or the pattern in any serial

data. In this paper we have used the words substructure, itemsets, and patterns

interchangeably. In a given dataset, a pattern is called frequent if it appears more

times than a user defined support value. Association rules are found by a simple

L => R form where each L and R represents a frequent pattern in the database which

satisfies the minimum support and minimum confidence value.

2.1. Maximal Frequent Substructure

A frequent substructure, S can be said as maximal frequent substructure if there exist

no superset of S which is frequent. In simple words maximal frequent substructure

can be defined as the longest sequences of molecules which are frequent. Mining

maximal frequent substructure limits the generation of redundant association rules and

hence makes the rule generation more interesting and logical. Also it allows the

frequent substructure mining process less complex by allowing candidate pruning at

early stages.

3. SMILES Representation of Molecules

SMILES, Simplified Molecular Input Line Entry System, is a simple yet strong

language to represent molecular structures. It gives a fairly understandable formats to

even very complicated structures. A chemical compound representation in SMILES

follows following notations:

• SMILES represent compounds in string format. Every element is represented

by its typical chemical symbol, like C, N, O, H, Cl etc.

• Notation for single bond is ‘-‘, for double bond is ‘=’, for triple bond id ‘#’

and for aromatic bond is ‘:’.

• Aromatic elements are represented in lower case. Like aromatic carbon in

benzene ring is shown as ‘c’.

• In most general cases hydrogen atoms, single and aromatic bonds are not

written.

• A cyclic structure can be represented by marking the first and the last element

of the ring with same number.

• Elements inside the brackets denote the side-structures.

Figure below shows the complete representation of a compound in SMILES format.

 O

Nc1ccc(O)cc1 ≡

 N
 H H

Figure 1: An example of SMILES representation of chemical compound.

4. Lexicographical Representation of Molecular Data.

This section explains the representation of the molecular data in lexicographical tree

[3] format. Motive behind representing data in lexicographically ordered tree is that it

helps in depth first searching of substructures. Each node of the tree consists of the

frequent substructure. The root of the tree is NULL node. All children of root node

are the frequent candidate at first level. This means all the single element in the data

which are identified as frequent. The order of the nodes at a level is defined as i ≤L j,

where i is a node occurs before j in the tree.

4.1. Dynamic Node Ordering

Dynamic reordering [5] of the nodes at each level depends on the frequency of that

node in previous level. Nodes are arranged in the order of the least frequent node first.

This is done in order to find maximal frequent substructure early in our search. This

happens because our search follows two basic principles of frequent pattern mining:

• Supersets of all infrequent itemsets are infrequent.

• Subsets of all frequent itemsets are frequent.

So we tried to find all the superset of less frequent substructures first as they generate

maximal frequent substructures early and they restrict the expanding of frequent

nodes.

5. Algorithm

This section shows the working of the algorithm to find maximal frequent

substructures in molecular data. The lexicographically sorted tree is traversed in depth

first order. To be more specific, our algorithm searches as follows:

To start with we have a frequent substructure set as empty. Minimum support is

provided by the user and candidate set is also empty. After this data scan is done to

find frequent substructure. Each frequent substructure is now a candidate and kept in

candidate set. Then all candidates in candidate set are arranged in order of least

frequent candidate first. Then we pick the first candidate in candidate set and expand

it by adding next item to it. An item can be any one of these, an element, a bond, a

number for cyclic elements or a bracket.

So if value of node a node Ni at ith level is {c:c:c-O=} and its extensions are

Ei = {H, O, C} than the successors of Ni are Ni + { i : i ∈ Ei }. Figure 3 shows the

expansion of tree. After expanding a node, pruning phase starts. Pruning can be done

in three ways. First, all those nodes in the tree which are not frequent can be pruned.

Figure 3: Expansion of the tree for compounds C:O-O=H-S,

C:O-O=H-O, S-C:O-O=H-S-C-H.

This is simple support based pruning. Second, all the nodes from the tree can be

pruned if during previous levels we have found any of the superset of that node as

frequent. But this type of pruning becomes inefficient when there exist long similar

substructures which differ only at the end. Third type of pruning is actually the

restriction phase in our algorithm. It deals with all the substructures which are found

as infrequent. We need not to expand it as we know that none of its superset would be

frequent. Pseudo code for the algorithm is described below in figure 4.

5.1. Example

In this example we consider the same compounds shown in figure 1. Let support is

defined as 50%. This means a substructure has to be in at least 50% of the compounds

to be said as frequent. To make this less complex we haven’t considered bonds,

brackets and ring numbers to be the part of the expanding node. We start with

scanning data for the candidates consisting of single atom. Figure 4.1 shows the

structure of the tree after level 1. All the nodes are then arranged in order of least

O

CH

H-O O=H

O-O=H

C:O-O=H

S

H-S

Null

S-C

support value lower than defined support. Node N is pruned after this step as it occurs

only once in the database.

Miner (database D, candidateset C, support S, frequentitemset FSS)

Sup = minSup;

 k = 1;

Ck-1 = { i | i ∈ dataset };

FSS0 = NULL;

while Ck != empty

read the database and count the frequency of each i ∈ Ck;

Ck = all i in Ck-1 having count ≥ minSup;

arrange all i in Ck in increasing order of count, i.e. candidate with least

count first;

generate new Sup = genSup ();

expand the first candidate in table. Let it be ‘a’;

generate all of the supersets of a;

prune all those supersets of a, which contain any infrequent item;

candidates in Ck whose superset has been found frequent while

expanding a, were not expanded;

repeat till Ck != NULL;

Figure 4: Pseudo code for mining algorithm.

At level two, node S is expanded. Since the child of S is infrequent, it is pruned and

not expanded further. Then next node in order is picked up and expanded. H-S, H-O

and O=H are the children of H. Here couple of things is to be pointed. We have taken

the canonical structure of a compound in to account by expanding the node in both

directions. So any canonical structure will occur only once in our frequent fragment

set at the end. Second, since we have expanded H with O=, we won’t expand O node

with the same suffix. This allows us to restrict our expansion and hence candidate

generation. Here we keep H-S, O=H in our frequent substructure set and prunes the

other children. We have got our first maximal pattern as there is no expansion

Figure 4.1: Search tree for level one.

 MFP

Figure 4.2: Search tree at level two. S is expanded and node S-C is pruned as it is infrequent. H is

expanded to H-S, H-O and O=H. H-O is pruned. H-S is kept in FSS.

 MFP

Figure 4.3: Complete expansion of the tree. Node C and O were not expanded as all the possible

substructures were found in previous node’s expansion.

O
S

$

CHN

H

O=H

$

S

H-S

S-C

C O

H-O

X

X

$

CH

H-S H-O O=H

O-O=H

C:O-O=H

X X

O

possible with H-S. Then we expand O=H with its successors, getting C:O-O=H as the

maximal frequent substructure. Now since we have expanded all the possible

substructure in our database, we need not to go to any other node left to expand. This

allows us to stop at the point we have mined all the possible substructures in the

database.

6. Implementation

Data structure used to implement the lexicographical tree is priority stack with locator

pattern. Reason behind using a stack is that it allows quick search of the node to be

expanded and hence allows the depth first search to be more efficient. Also the

reordering of nodes according to their respective count is efficient with priority queue

implementation. A count array is maintained to store the count of each candidate in

queue. Algorithm was implemented in C.

The data set was taken from the 43576 compounds from the Development

Therapeutics Program’s AIDS anti viral screen database. We have conducted the

experiments on a sample of 300 compounds from this database. Sample compounds

were taken irrespective of their classified nature of confirmed active (CA), confirmed

moderately active (CM), confirmed inactive (CI). So the results were not very much

accurate in terms of the usefulness.

7. Results

Results of initial implementation of the algorithm are given below in table 1 and table

2. Table 1 show the occurrence of single atom in number of compounds. Results

shows that C atom occurs most in 100% of elements followed by O, N and S atom.

We have not included bonds, brackets and numbers in our results as frequent item.

Table 2 shows the 6 most frequent maximal substructures. Since the implementation

is done on a sample data of 300 compounds from about 50000 compounds, results do

not stand with much usefulness from real world prospective. Initial support value was

kept 10% for finding frequent substructure and for maximal frequent substructures

lower bound was defined as 2%. The reason we have kept lower bound for support so

low is that the data we have used is very skewed and only 1.3% of the whole data is

supposed to be active.

Table 1: Shows the frequency of individual atoms in the database. Frequency is defined with the

occurrence of the atom in number of compounds.

Maximal Frequent Substructure Frequency

S(Sc1ccc 3%

[N+](=O)([O-])c1ccc 3%

C(=O0(c1ccc 2.33%

C(=NNC(2.33%

C(Occcc)O 2%

Table 2: Maximal frequent substructures found in the sample data consisting of 300 compounds

from DTP AIDS anti viral screen database.

8. Conclusions

In this paper we tried to develop an algorithm to find maximal frequent substructure

in molecular data with use of depth first traversal and concept like intelligent pruning.

Atom Frequency

C 100%

O 91%

N 68%

S 53%

The depth first search strategy helps in mining long patterns early in search and thus

helps in restricting our search to few node expansions. We have also applied the

concept of dynamic reordering of candidates at each level which helps us in pruning

infrequent patterns efficiently.

Present algorithm can be enhanced by using better counting technique to count the

frequency of candidates. Counting techniques like Bitvector can improve the

performance of algorithm. Future work can also focus on modifying the algorithm

according to different data sources like genetic data, transaction data and other

chemical data.

9. Acknowledgements

We would like to thank Dr. SeungJin Lim for his helpful guidance. Also we would

like to thank Cristoph Helma for providing me with data to perform experiments.

References

[1] R. Agrawal, T. Imielinski, A. Swami. Mining Association Rules between Sets of

Items in Large Databases. In Proc. of the 1993 ACM-SIGMOD Conf. on

Management of Data, 207-216.

[2] R. C. Agrawal, C. C. Aggarwal, and V. V. V. Prasad. Depth first generation of

long patterns. In Knowledge Discovery and Data Mining, pages 108–118, 2000.

[3] R. C. Agrawal, C. C. Aggarwal, V. V. V. Prasad. A Tree Projection Algorithm for

Finding Frequent Itemsets. Journal on Parallel and Distributed Computing.

[4] C. Aggarwal. Towards Long Pattern Generation in Dense Databases.

[5] R. J. Bayardo. Efficiently mining long patterns from databases. In ACM SIGMOD

Conf. Management of Data, 1997.

[6] D. Burdick, M. Calimlim, J. Gehrke. MAFIA: A Maximal Frequent Itemset

Algorithm for Transactional Databases. Proceedings of the ICDE Conference,

2001.

[7] K. Gouda, M. J. Zaki. Efficiently Mining Maximal Frequent Itemsets. Proc. Of the

IEEE Int. Conference on Data Mining, San Jose, 2001

[8] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.

In Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’00),

pages 1–12, Dallas, TX, May 2000.

[9] S. Kramer, L. De Raedt, C. Helma. Molecular feature mining in HIV data. Proc.

7th Int. Conf. on Knowledge Discovery and Data Mining (KDD-2001, San

Francisco, CA), 136-143. ACM Press, New York, NY, USA 2001.

[10] D. I. Lin and Z. M. Kedem. Pincer search: A new algorithm for discovering the

maximum frequent set. In Extending Database Technology, pages 105–119, 1998.

[11] J. S. Park, M. Chen, P. S. Yu. An Effective Hash Based Algorithm for Mining

Association Rules. In Proc. ACM-SOGMOD, Intl. Conf. Management of Data,

May, 1995.

[12] M. J. Zaki, S. Parthasarthy, M. Ogihara, W. Li. New Algorithms for Fast

Discovery of Association Rules. In Proc. Of the Third Int’l Conf. on Knowledge

Discovery and Data Mining, 1997, 283-286.

[13] Q. Zou, W. W. Chu, B. Lu. SmartMiner: A Depth First Algorithm Guided by

Tail Information for Mining Maximal Frequent Itemsets.

