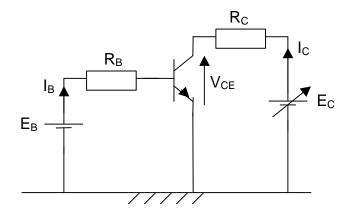

Ce TP a pour but de tracer les caractéristiques I_B , V_{BE} et I_C , V_{CE} d'un transistor bipolaire.

Caractéristique I_B,V_{BE}

Le schéma du montage utilisé est:



E = 0.8 V R_B: Boîtes AOIP x10K, x100K et x1M ou équivalent

- 1- Quelle est la relation entre E, R_B, I_B et V_{BE}?
- 2- Comment doit on choisir la résistance R_B afin que I_B < $10\mu A$?
- 3- Faire varier la résistance R_B et tracer la courbe $I_B = f(V_{BE})$

II Caractéristiques I_C,V_{CE}

Le schéma du montage utilisé est:

Caractéristiques d'un transistor bipolaire Polarisation, amplificateur émetteur commun

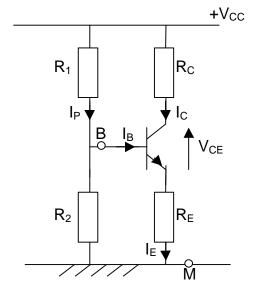
1 STI2

$$E_{B} = 15V$$

4- Choisir les valeurs de R_B permettant d'avoir un courant de base I_B égale aux différentes valeurs suivantes:

$$I_B = 5\mu A$$
, $I_B = 10\mu A$, $I_B = 15\mu A$, $I_B = 20\mu A$.

Pour $I_B = 5\mu A$ et $I_B = 10\mu A$, prendre $R_C = 1k\Omega$.


Pour $I_B = 15 \mu A$ et $I_B = 20 \mu A$, prendre $R_C = 330 \Omega$.

- 5- En faisant varier E_C de 0 à 15V, relever les caractéristiques $I_C(V_{CE})$ pour les valeurs de I_B précédentes. (Avant de commencer, mesurer I_B à l'aide d'un ampèremètre). Que peut-on dire de l'allure des courbes?
- 6- Définir l'amplification en courant β . Déterminer le gain β du transistor. Comparer aux données du constructeur.

III Polarisation du transistor

On utilise un transistor bipolaire "petits signaux" NPN de référence BC 547.

Le schéma est le suivant:

On notera I_{C0} et V_{CE0} les coordonnées du point de polarisation.

7- Redessiner le schéma ci-dessus en faisant apparaître le modèle de Thévenin du dipôle BM (V_{CC} , R_1 , R_2) qui alimente la base du transistor.

- 8- A l'aide du schéma de la question précédente, donner l'équation de la <u>droite</u> <u>d'attaque</u>, c'est à dire l'équation liant V_{CC} , R_1 , R_2 et I_B .
- 9- Donner l'équation de la <u>droite de charge</u>, c'est à dire l'équation liant V_{CC} , V_{CE} , R_C , R_E et I_C .
- 10- Vous aller choisir les valeurs suivantes:

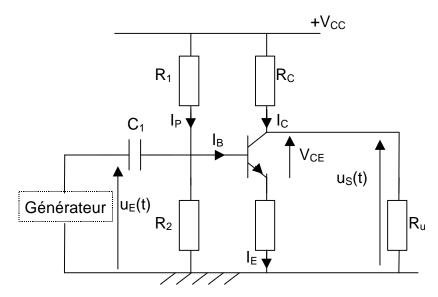
$$V_{CC} = 15V, R_C = 2.2k\Omega + 330\Omega, R_E = 1.2k\Omega, R_1 = 300k\Omega, R_2 = 75k\Omega.$$

Tracer la droite d'attaque dans le graphe IB, VBE.

Tracer la droite de charge dans le graphe I_C, V_{CE}.

Déterminer graphiquement le point de polarisation.

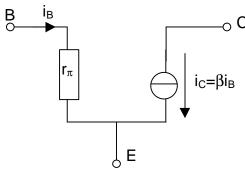
11- Réaliser le montage.


Mesurer les valeurs de I_{B0}, V_{CE0}, I_{C0} et I_P.

Retrouver la valeur de β .

Le point de polarisation est-il placé au milieu de la droite de charge statique?

IV Etude en régime dynamique


Le montage est complété de la façon suivante:

 $R_u = 33k\Omega$

Le générateur peut être modélisé par un générateur parfait e_g en série avec une résistance r_q .

- 12- Quel est le rôle du condensateur C₁.
- 13- A l'aide du schéma équivalent du transistor donné ci dessous, dessiner <u>le schéma</u> <u>équivalent petits signaux</u> de l'amplificateur. En déduire l'expression théorique du gain en tension A_V du montage.

- 14- Le générateur délivre un signal u_E(t) sinusoïdal.
 - Mesurer le gain en amplification du signal, V_S/V_E
 - Quelle est l'amplitude maximale admissible pour le signal $u_{\text{E}}(t)$ si on ne veut pas que le signal de sortie $u_{\text{S}}(t)$ soit saturé?