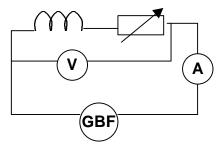

Ce TP a pour but d'étudier le comportement d'une bobine en régime sinusoïdal, afin de la modéliser.

I Etude théorique

1- On considère une bobine d'inductance L et de résistance interne r mise en série avec une résistance R.

En utilisant le modèle série de la bobine, déterminez l'impédance Z et la phase ϕ du dipôle ci-dessus.

- 2- D'après les expressions précédentes, quelles sont les allures des courbes donnant les variations de Z et de $1/\tan(\varphi)$ en fonction de R?
- 3- Maintenant, la résistance interne est négligée et la bobine est modélisée par une inductance pure L en parallèle avec une capacité C. Déterminez le modèle du dipôle cidessous:

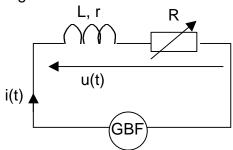

Déterminez l'impédance Z et la phase ϕ du dipôle ci-dessus. Représentez l'allure de Z et ϕ sur un graphe.

Il Etude expérimentale

II.1 Etude à fréquence fixe

II.1.1 Variation de l'impédance Z en fonction de R

Le montage est le suivant:



Les indications données par le voltmètre et l'ampèremètre servent à calculer l'impédance Z

- 1- Réglez le GBF afin qu'il fournisse une tension sinusoïdale 1V (efficace),100Hz
- 2- Mesurer les valeurs du courant I pour R variant de 0 à 2000 Ω .
- 3- Calculer pour chaque mesure l'impédance totale Z du circuit.
- 4- Tracer sur le Document Réponse1 la courbe Z=f(R).

II.1.2 Variation du déphasage en fonction de R

Le montage est:

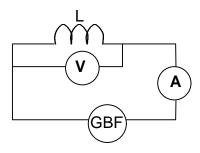
- 1- Sur votre compte-rendu représenter le schéma ci dessus en y indiquant le câblage de l'oscilloscope permettant d'observer u(t) et i(t).
- 2- Expliciter rapidement la méthode utilisée pour mesurer le déphasage φ entre u et i.
- 3- Les réglages du générateur sont les mêmes que précédemment. Mesurer les valeurs du déphasage pour R variant de 0 à 2000Ω .
- 4- Tracer sur le <u>Document Réponse1</u> la courbe φ =f(R).

II.1.3 Exploitation des résultats

<u>Utilisation de la courbe de déphasage:</u>

- 1- Déterminer la valeur maximale ϕ_{max} de ϕ pour $R{\rightarrow}~0.$
- 2- Comparer cette valeur à la valeur théorique du déphasage entre tension et courant pour une bobine réelle. Que pouvez vous dire de la valeur de r?
- 3- D'après l'étude théorique, tan(φ) varie en 1/R. Si le modèle adopté est bon, le tracé de 1/tan(φ) en fonction de R doit donner une droite. Pour vérifier cela, tracer 1/tan(φ) en fonction de R (sur la même figure que le déphasage).
- 4- Quelle est la forme de la courbe obtenue?
- 5- A l'aide de cette courbe et de l'expression de $1/\tan(\phi)$ déterminer les valeurs de L et r.
- 6- Les valeurs trouvées confirment-elles la question 2?

Utilisation de la courbe d'impédance:

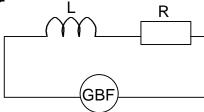

- 1- Quelle est l'allure de la courbe Z(R)? Est-ce conforme avec l'expression de Z trouvée au cours de l'étude théorique?
- 2- Tracer la courbe Z^2 (R^2). Quelle est son allure?
- 3- Déterminer l'équation de cette courbe et en déduire la valeur de L . Évaluer r á l'aide de la courbe Z(R).

Calculer les erreurs relatives entre les valeurs de L mesurées et la valeur indiquée sur la boîte.

II.2 Etude de l'impédance et du déphasage en fonction de la fréquence

II.2.1 Etude de l'impédance Z(f)

Le montage utilisé pour cette étude est:



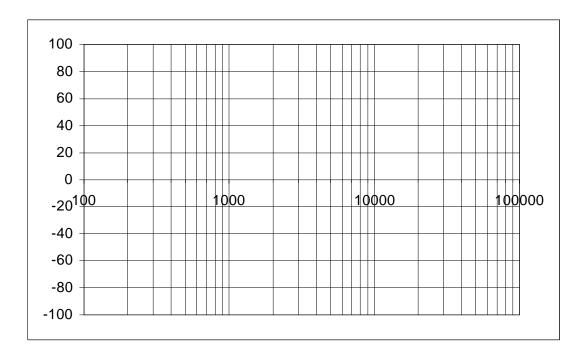
Le générateur délivre une tension efficace de 1V.

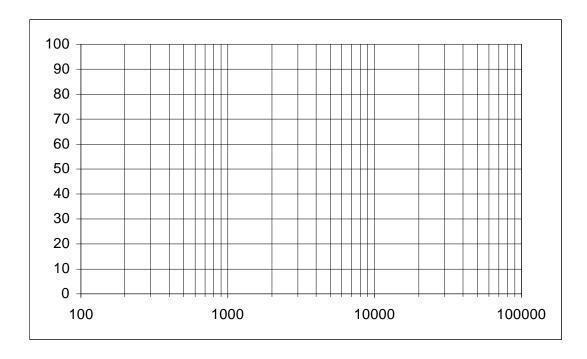
- 1- Pour une fréquence variant de 100Hz à quelques dizaines de kHz, déterminer l'impédance Z de la bobine.
- 2- Tracer sur le <u>Document Réponse2</u> la courbe Z(f).

II.2.2 Etude du déphasage j (f)

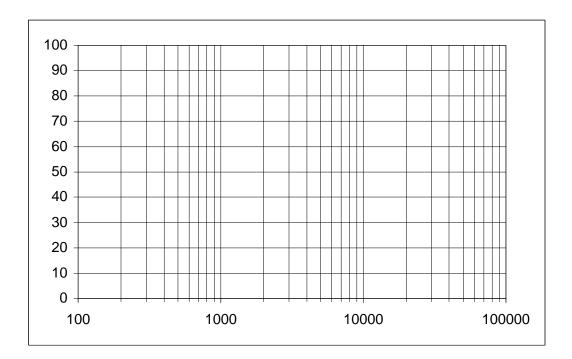
Le montage est:

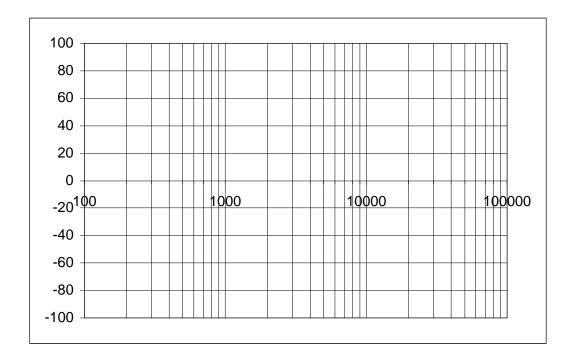
Modèle équivalent d'une bobine


T STI2


- 1- Préciser les branchements de l'oscilloscope permettant de visualiser la tension aux bornes de la bobine ainsi que le courant qui la traverse.
- 2- Tracer sur le <u>Document Réponse2</u> la courbe φ(f).

II.2.3 Exploitation des résultats


- 1- Pourquoi les mesures précédentes mettent elles en évidence un comportement capacitif de la bobine?
- 2- Evaluez la valeur de cette capacité.
 <u>Attention</u> à la capacité d'entrée de l'oscilloscope!!


Document Réponse 1

Document Réponse 2

