
Filtre passe-bas

Le schéma du montage à étudier est le suivant:

Le GBF délivre un signal sinusoïdal de fréquence f variable:

$$u_e(t) = U_e \sqrt{2} \cos(\mathbf{w}t)$$
 U_e et U_s sont les valeurs efficaces $u_s(t) = U_s \sqrt{2} \cos(\mathbf{w}t + \mathbf{j})$

I.1 Préparation

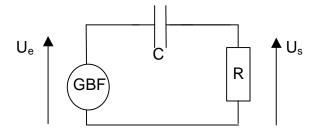
1- Déterminer en fonction des éléments du circuit la fonction de transfert complexe du circuit:

$$\underline{H} = \frac{U_s}{U_e}$$

- 2- Calculer le module H et l'argument φ de cette fonction de transfert.
- 3- Donner les valeurs de H et de ϕ pour $f{\to}$ 0 et $f{\to}$ $\infty.$
- 4- Calculer la fréquence de coupure théorique du filtre ainsi que sa bande passante. Quelle est la valeur du déphasage ϕ pour cette fréquence?
- 5- Tracer l'allure des courbes du module et de l'argument en fonction de la fréquence.

Diagramme de bode Filtre passe-bas // Filtre passe-haut

I.2 Etude expérimentale


- 1- Régler la valeur efficace du signal d'entrée à 5V.
- 2- Pour diverses valeurs de la fréquence, mesurer les valeurs efficaces des signaux d'entrée et de sortie, calculer le rapport U_s/U_e puis le gain en décibel:
- 3- Tracer, sur du papier semi-logarithmique, la courbe GdB en fonction de log(f).

$$G_{db} = 20 * \log \left(\frac{U_s}{U_e} \right)$$

- 4- Déterminer: le gain maximal
 - la fréquence de coupure à -3dB
 - la bande passante du filtre
 - la pente de la courbe dans la partie décroissante (exprimer la pente en dB par décade)
- 5- A l'aide de la méthode des neufs carreaux, tracer la courbe donnant le déphasage φ en fonction de log(f).
- 6- Retrouvez vous les résultats de la question I-1-3?

II Filtre passe-haut

Le schéma du montage à étudier est le suivant:

Le GBF délivre un signal sinusoïdal de fréquence f variable:

$$u_e(t) = U_e \sqrt{2} \cos(\mathbf{w}t)$$
 U_e et U_s sont les valeurs efficaces $u_s(t) = U_s \sqrt{2} \cos(\mathbf{w}t + \mathbf{j})$

II.1 Préparation

1- Déterminer en fonction des éléments du circuit la fonction de transfert complexe du circuit:

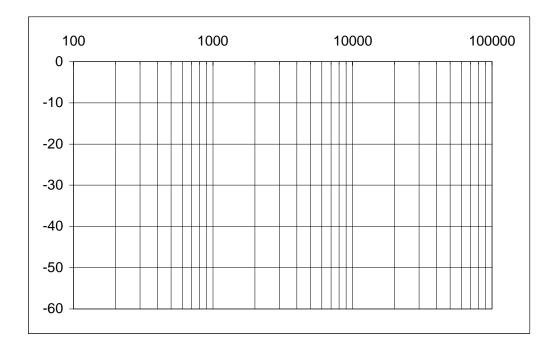
$$\underline{H} = \frac{\underline{U_s}}{\underline{U_e}}$$

- 2- Calculer le module H et l'argument φ de cette fonction de transfert.
- 3- Donner les valeurs de H et de φ pour $f \rightarrow 0$ et $f \rightarrow \infty$.
- 4- Calculer la fréquence de coupure théorique du filtre ainsi que sa bande passante. Quelle est la valeur du déphasage ϕ pour cette fréquence?
- 5- Tracer l'allure des courbes du module et de l'argument en fonction de la fréquence.

II.2 Etude expérimental

- 1- Régler la valeur efficace du signal d'entrée à 5V.
- 2- Pour diverses valeurs de la fréquence, mesurer les valeurs efficaces des signaux 3-d'entrée et de sortie, calculer le rapport U_s/U_e puis le gain en décibel:
- 3- Tracer la courbe G_{dB} en fonction de log(f).

$$G_{db} = 20 * \log \left(\frac{U_s}{U_e} \right)$$


- 4- Déterminer: le gain maximal
 - la fréquence de coupure à -3dB
 - la bande passante du filtre
 - la pente de la courbe dans la partie croissante (exprimer la pente en dB par décade)
- 5- A l'aide de la méthode des neufs carreaux, tracer la courbe donnant le déphasage ϕ en fonction de log(f).
- 6- Retrouvez vous les résultats de la question II-1-3?

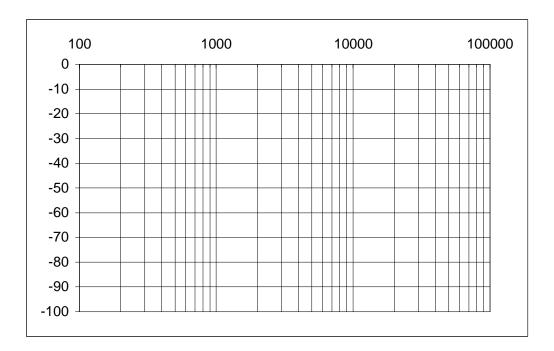
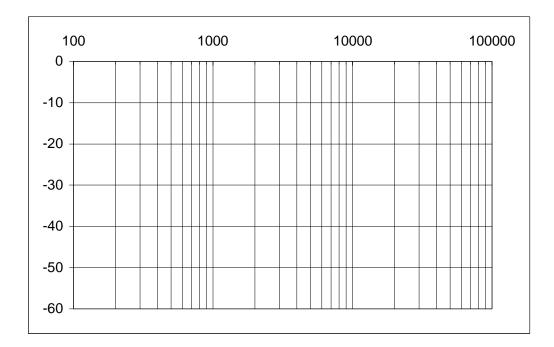
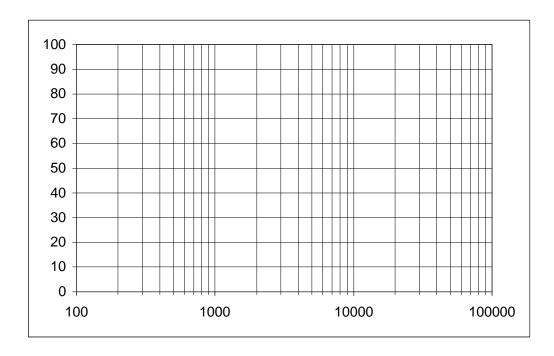

TP Nº3

Diagramme de bode Filtre passe-bas // Filtre passe-haut


T STI2


Document Réponse - Partie 1

Document Réponse - Partie2

