
Monostable

Etude d'un monostable à portes CMOS 1.1

On considère un monostable à portes CMOS dont le schéma est le suivant:

Les portes CMOS sont alimentées sous 5V. Cette tension peut être obtenue en utilisant une diode Zener de 5.1V.

L'entrée est à l'état "1" si v_{IN} > v_T

L'entrée est à l'état "0" si $v_{IN} < v_{T}$ où $v_{T} = v_{DD}/2$.

$$0\dot{\mathbf{u}} \mathbf{v}_{T} = \mathbf{v}_{DD}/2$$

Le signal v_{IN} délivre des impulsions positives que l'on peut obtenir en dérivant puis redressant un signal carré. Régler la fréquence F de ces impulsions à F = 10kHz.

Question 1

Câbler le montage ci dessus.

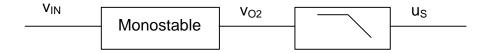
Question 2

Observer et relever sur un oscillogramme les tensions v_{O1}, v_{O2} et v_X.

Question 3

Observer et relever sur un oscillogramme la tension v_C. Pour observer v_C il faut faire une mesure différentielle (utilisation des touches INV et ADD de l'oscilloscope).

Question 4


Que pouvez vous dire de la continuité (au sens mathématique du terme) des tensions observées?

Question 5

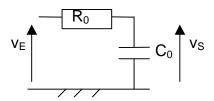
La tension v_{O2} est la tension délivrée par le monostable. Préciser sur le chronogramme les états stables et instables. Mesurer la durée τ de l'état instable. Vérifier la formule du cours τ = RC ln2.

1.2 Application: convertisseur tension fréquence

Le schéma d'ensemble est:

A la sortie du monostable on place un filtre passe-bas de fréquence de coupure $f_0 < F/100$, où F est la fréquence de v_{O2} .

Question 6

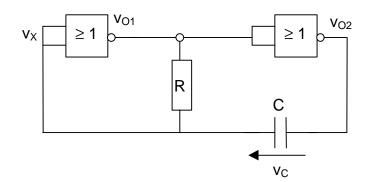

Que représente le signal us obtenu en sortie du filtre passe-bas?

Question 7

Donner l'expression de $u_{\rm S}$. Pourquoi dit-on que l'on a réaliser un convertisseur tension fréquence?

Question 8

Le filtre est un circuit RC:


Determiner la fonction de transfert \underline{H} du filtre. Calculer R_0 et C_0 afin d'obtenir $f_0 < F/100$.

Question 9

Faites varier la fréquence de v_{IN} et tracer la courbe u_S en fonction de F. Quelle relation existe-t-il entre u_S et F?

\parallel <u>Astable</u>

On considère un astable à portes CMOS dont le schéma est le suivant:

Les portes CMOS sont alimentées sous 5V. Cette tension peut être obtenue en utilisant une diode Zener de 5.1V.

L'entrée est à l'état "1" si v_{IN} > v_T

L'entrée est à l'état "0" si $v_{IN} < v_{T}$ où $v_{T} = v_{DD}/2$.

Question 10

Câbler le montage ci dessus.

Question 11

Observer et relever sur un oscillogramme les tensions v_{O1} , v_{O2} , v_C et v_X .

Question 12

La tension v_{O2} est la tension délivrée par le montage astable. Mesurer la période T du signal obtenu. Comparer cette valeur avec la formule du cours T = 2RC ln3.