

CSCI0330 Intro to Computing Systems Doeppner

C Coding Style and Conventions
Fall 2019

1 Introduction 1

2 Functions Without Arguments 2

3 Stars and Spaces Forever 2

4 Program Organization 3
4.1 Header Files 3

5 Stylistic Conventions 4
5.1 Layout and Spacing 4
5.2 Brace Yourselves... 5
5.3 Naming Conventions 6

6 Commenting 7
6.1 Header Comments 7
6.2 Inline Comments 7
6.3 Extraneous Comments 8

7 README 8

8 Logic/Pointers 8
8.1 Logic 8
8.2 Pointers and Syntactic Sugar 9

8 The Reformat Script 9

1 Introduction
This document shall serve as a brief introduction to C coding style, according to the standards
that we will be following in this class. As in other languages, proper style is not enforced by the
compiler, but is necessary in order to write clear and human-readable code. All support code
will be written according to these standards outlined in this document. The first set of issues that
we will touch upon are those that present a significant threat to the correctness of your C code.
While code that violates these conventions will still compile, and may well run correctly, it comes
with a much higher risk of bugs, and will be more susceptible to programmer mistakes. You
should be careful to heed the warnings given here, and make sure your code conforms to these
specifications, lest you accidentally introduce bugs that take you an inordinate amount of time to
track down. While we won't be covering software engineering in this course, the ability to
organize a program in a clear and logical manner transcends all course and professional
boundaries. Organization can mean the difference between an incomprehensible,

JardinIoT

CSCI0330 C Coding Style and Conventions Doeppner

unmaintainable monster of a program, and a lean, clear, easy-to-read masterpiece far easier to
debug. Thus, we will be placing significant weight on organization, even though it isn't the main
focus of this class. Please code accordingly, and pay attention to the tips and conventions laid
out below.

2 Functions Without Arguments
Function arguments in C are passed just as they are in Java, in a comma-separated list
enclosed by parentheses. If a function is called without arguments, the parentheses are still
required, but nothing is placed between them. When declaring a function, parameters are
specified according to the same syntax, with each parameter name preceded by a type name.
In this respect, C functions behave like those of Java. However, when declaring a function that
does not take any arguments, things get a bit more complicated. In Java, one simply omits the
argument list, leaving the function declaration with a pair of empty parentheses, as below:

 public int func();

In C, it is entirely possible to do exactly the same thing, leaving out the parameters in the
declaration:

 int func();

However, a C function that is declared in such a manner does not behave the same way. The
compiler interprets the declaration as that of a function which can take any number of
arguments, and will not check to ensure that you have passed in the proper number of
arguments. Instead, declare zero-argument functions with the following:

 int func(void);

This prevents confusion and ensures that you cannot call ​func()​with additional arguments,
which could cause debugging confusion down the line.

3 Stars and Spaces Forever
One of the more hotly debated issues in the realm of C coding style is the question of where to
put the “star” character (​*​) when declaring a variable or function with a pointer type. This issue
divides C programmers into two ideologically-distinct groups. One group argues that the star 1

should come first (i.e. ​int* ptr​), as it is part of the variable's type (there is also precedence for
this in C++); the other favors association of the star with the variable's name rather than its type
(i.e. ​int *ptr;​). Java programmers may leap to agree with the first group, as in Java all

1 Really.

CSCI0330 C Coding Style and Conventions Doeppner

non-primitive types are effectively pointer types; however, there are compelling reasons to
follow the second style, as CS033 will. This argument is based on a feature of C syntax: when
multiple variables are declared in a single statement, the type declaration “distributes” over the
variable names; hence, the following declaration will produce two new integer variables:

 int i, j;

The same, however, is not true of the star operator. Consider the following declaration:

 int* i, j;

Such a declaration is commonly interpreted to produce two variables which are both pointers to
integers. However, this is not the case; instead, only ​i​ is declared as a pointer to an integer,
with ​j​ being declared as merely an integer. To declare two pointers to integers, we must give
each variable its own star:

 int *i, *j;

This syntactic feature provides a compelling argument in favor of space-star declarations. For
many data types, making a mistake can change the behavior of a program entirely.
Consequently, this is among the more important stylistic guidelines contained within this
document.

4 Program Organization
An important organizational issue that you must tackle as a C programmer is how to organize
your program into files. In Java, file organization is straightforward --- each class gets its own
file, and all definitions corresponding to that class belong in that file. A C program, however,
does not have classes; each function belongs to the entire program. Consequently how
functions should be organized into files is less clear. In general, you should group functions of
similar or interdependent functionality into the same file --- for example, functions which operate
on a particular data structure should all be grouped together.

4.1 Header Files
C programs use ​header files​ to share functions or other definitions between different parts of a
program. These files should provide ​only​ functions which other parts of your program will need
--- helper functions should not be declared in a header file.
Header files are sometimes also an appropriate location for ​struct​ definitions. If other parts of
the program will make direct use of the ​struct​ fields, then the definition of that ​struct
necessarily must appear in the header file. If that is not the case, it is better to hide the ​struct

CSCI0330 C Coding Style and Conventions Doeppner

definition in a .​c​ file. A common practice is to use a ​typedef​ statement in a header file to
declare a type for other parts of the program, and hide the definition of that type. For example:

 typedef struct my_struct my_struct_t;

A ​typedef​ statement allows you to refer to objects of the first type with the second type --- in
this example, a reference to a ​my_struct_t​ becomes the same as a reference to a ​struct
my_struct​. By convention, ​_t​ is appended to the new type name.

5 Stylistic Conventions
Now that we've covered the most important facets of proper style, we will be moving on to
several less essential (but still important!) stylistic conventions of the C language. These
conventions are primarily motivated by readability and clarity of code, and will not directly affect
the correctness of your program, although they may well help you avoid bugs before you
accidentally type them. Nevertheless, developing a consistent C style is important, so we will be
grading on this.

5.1 Layout and Spacing
Functions should be of a reasonable length: you should not have to scroll down through your
editor of choice to view an entire function body. Sometimes this may be unavoidable; in such
cases, ensure that your functions are easily broken up into discrete units. You should not,
however, sacrifice readability for length.

Specifically on the ​main​ function, you should strive to have no more than 200 lines of code.
Having a long ​main ​function indicates a lack of abstraction, meaning that your code has not
been sufficiently split into logical, smaller functions.

Further, your line lengths should be no more than 80 characters. This includes not only code,
but also comments. Indentation should be consistent - please use a 4-space indent. Do not
indent by a single space; this makes indentation extremely hard to follow.

Last, be sure to use a readable amount of horizontal spacing. For example, you should put
spaces between operators.

(x+11)/(y%5)-z

Is far less readable than

(x + 11) / (y % 5) - z

120

CSCI0330 C Coding Style and Conventions Doeppner

5.2 Brace Yourselves...
Another stylistic choice is the placement of the opening curly brace around the code block which
forms the body of a function, conditional, or loop. Here, there also seem to be two
commonly-used options: one may either place the opening brace immediately after the function
name or reserved word (with or without a space), or insert a newline before opening the code
block. These styles, respectively, are shown below:

 while (1) {
 …
 }

 while (1)
 {
 …
 }

As with the space star versus star space debate, there is no syntactic difference between these
two ways of writing a while loop --- the C compiler treats all whitespace as a delimiter, without
discriminating between spaces, tabs, or newlines. Any support code you receive from CS033
will place the opening brace on the same line as the function declaration or reserved word. We
request that you do the same, as this is generally the preferred style in C programs.

There are, however, some rules about the placement of curly braces. For example, in the
following block of code:

if(...)

if(...)

//do something

Technically, if the code within the inner if statement is a single line, it will be executed as
expected (if both conditions are met). However, this is ​bad​. If you need to add more code to
execute when both conditions are met, you will likely forget that you need curly braces. In part
for this reason, you should instead do the following for nested if statements:

if(...) {

if(...) {

//do something

}

}

if (...)
 if (...)

if (...)
 if (...)
 // this is a comment

if (...) {
 if (...) {
 // this is a comment
 }
}

CSCI0330 C Coding Style and Conventions Doeppner

You may omit the curly braces in the case of a simple, non-nested, single-line if statement.
However, we do not encourage this (for similar reasons as in the above example). In addition,
you should never have nested loops without brackets.

5.3 Naming Conventions
Different programming languages observe different naming conventions for programs, functions,
and variables. In Java, for example, the “CamelCase" convention is used:

 public int countSomeItem(...) {
 …
 }

This convention is often employed by C programmers - for example, some of the lecture slides
employ this convention. However, another common convention frequently found in C programs
is to name program constructs using ​underscores​:

 int count_some_item(...) {
 ...
 }

The C standard libraries abide by this convention, as do the support code files you will receive
throughout this course. For example, the ​<stdio.h>​ library names types and functions using
underscores (such as the ​size_t​ type and ​rand_r()​ function). In naming functions, we
encourage you to use the underscoring conventions, but as long as you are consistent,
CamelCase is acceptable as well.

 Preprocessor macros are often named differently still, combining the two conventions.

 #define NUM_ROWS 10

Macros are typically defined using all uppercase characters, with underscores separating
different words. As with the underscoring convention, C library functions abide by this
convention - the ​NULL​ pointer defined in ​<stdlib.h>​, for example, is actually a macro.

You will also find yourself often using structs in this class, which you will learn about very near
the beginning of the semester. When naming struct types, similar to the example under section
4.1, you should follow a descriptive name with ​_t​. For example, you might have a struct
representing a calendar date named ​date_t​.

As in all of your coding endeavors, you should strive to name variables clearly and descriptively,
so that you can easily see what is going on in your code. Variables such as ​foo​, ​bar​, ​a​, ​b​,

For JardinIoT, use CamelCase.

CSCI0330 C Coding Style and Conventions Doeppner

myvar123​, etc should not appear in any programs you write. And further, you should not name
your variables with a single capital letter (​int M = 2​) . 2

You should follow the conventions laid out above. Note that this will lend your code additional
consistency with the conventions used by the C standard libraries and staff-provided support
code.

6 Commenting

6.1 Header Comments
Similar to the various introductory sequences you may have taken before CS0330, we require
that you document your functions using header comments. Header comments should include a
concise description of what the corresponding function does, an explanation for each argument,
and an explanation for the output of the function, as in the (simple) example below:

 /*

 * This function counts the number of instances of
 * an int in an array.
 *
 * item - the int to be found in the array
 * my_arr - the array to search in
 * returns the number of times item appears in my_arr
 */
public int countSomeItem(int item, int *my_arr) {

 …
 }

This may seem a bit redundant in this example, but as your functions become more complex,
documenting each function will become imperative to debugging and understanding your own
code.

6.2 Inline Comments
As well as a header comment for each function, you should write inline comments to help
explain particularly complicated sections of code. Of course, it is best to write code that is clear
to begin with, but sometimes it is not possible to do so, especially in the more complex projects
you will be implementing in this class. However, you should not find yourself writing inline
comments on every other line of your code– if you find yourself doing so, you may want to
reevaluate your logic and see if there is a clearer way to write the code.

2 Single letters are not descriptive, so they should not appear as variables whether they are capitalized or
lowercase!

CSCI0330 C Coding Style and Conventions Doeppner

6.3 Extraneous Comments
There are some comments you should ​not​ leave in your code. You might find yourself using
printlines or other debugging code in your programs. Before handing in, you should ​delete​ these
statements, not just comment them (and do not leave debug code in the file!). In fact, you
should not have commented code anywhere in your files. Many source files we provide contain
commented TODOs to help guide you along the way. These TODOs should also be deleted.

7 README
The README is where you document a high-level overview about how your program functions,
list which students helped you debug (by login), and discuss any known bugs in your program.
The README is not a place to detail every single function you wrote; rather, it is a summary of
how those parts work together. Failing to document an obvious bug (i.e “the program segfaults
immediately”) will result in a deduction, as will an overly brief project summary. Don’t feel as
though you should spend an inordinate amount of time on this, though. Write as much as you
feel would be necessary for another programmer to understand your project on a high level.

8 Logic/Pointers

8.1 Logic
There are various indicators of poor logic in a program. Each of these is considered a style
mistake; we’ll briefly list them below:

I. Using ​while(1)​ and then breaking out of the loop once a certain condition is met. What
you should do instead is ​while(/*condition is not met*/)​. This is acceptable in
very specific cases, such as in REPLs, but otherwise it is generally a symptom of poor
program logic. And definitely do not do this with a ​for(...)​ loop.

II. Empty brackets in an ​if​/​else​ or an ​ifdef​, such as ​if(...){}else{...}​.
III. Using ​assert(false)​ or similar for the purpose of exiting a program early.
IV. Creating a variable just to return it such as ​int ret = 3 * mul + 7; return ret;

Instead you should simply have ​return (3 * mul + 7);
V. Creating multiple bit masks when one would suffice.
VI. Using an ​if​/​else​ statement to return the value of the condition i.e. ​if(cond) return

true; else return false; ​instead you should return ​cond​.
VII. Excessive/unnecessary global variables.
VIII. Redundant code; this includes not creating a function for something you do more than

one time, or doing the same calculations multiple times unnecessarily.
IX. Using ​goto​ at any point.

Important: In some of these examples, the single space is missing between
keywords. Do not use them as an example of how you should code.

CSCI0330 C Coding Style and Conventions Doeppner

8.2 Pointers and Syntactic Sugar
There are some style don'ts relating to pointers as well, which are outlined here:

I. Passing copies of structs instead of using pointers. This is just not the C way of doing
things; pointers are your friends!

II. Misusing pointers such as making a pointer to an array, an array of pointers, etc. You’ll
learn about the proper usage of pointers at the beginning of the semester, and will likely
never feel the need to misuse pointers in this way.

III. Using ​(*p).val​ instead of ​p->val​. Manually dereferencing the pointer and then
accessing its field is more work than simply using the syntactic sugar available to access
the field; use the ​->​ syntax!

IV. Using array variables as pointers rather than indexing in, i.e. doing ​*(arr + i)​ rather
than ​arr[i]​, can lead to mistakes, since in the former way of accessing an element, ​i
changes based on what type of array ​arr​ is. ​arr[i]​ is much cleaner and clearer.

8 The Reformat Script

There is a script available to help you format your files. It's found in the ​/course/cs0330/bin
folder, and you can run it as follows:

cs0330_reformat <file1> <file2> ...

Note that this will only work on ​.c​ ​and ​.h​ ​files. Unfortunately, because of ​clang-format 3

limitations, it cannot address all style requirements outlined in this guide. However, at a
minimum you should run ​cs0330_reformat​ on all your ​.c​ and ​.h​ files before handing in. Note
that the script makes some additional changes not described in this style guide, such as
operator spacing and comment formatting.

To reformat all ​.c​ and ​.h​ files in the current directory, run the following command:

cs0330_reformat *.c *.h

3 ​clang-format​ is a C/C++ formatter that’s part of the LLVM compiler infrastructure project

https://clang.llvm.org/docs/ClangFormat.html

