Sociology 740

John Fox

Lecture 5: Dummy-Variable Regression

© 2004 by John Fox

- One of the limitations of multiple-regression analysis is that it accommodates only quantitative explanatory variables.
- *Dummy-variable regressors* can be used to incorporate qualitative explanatory variables into a linear model, substantially expanding the range of application of regression analysis.

Dummy-Variable Regression

1. Goals:

- To show how dummy regessors can be used to represent the categories of a qualitative explanatory variable in a regression model.
- To introduce the concept of interaction between explanatory variables, and to show how interactions can be introduced into a regression model by forming interaction regressors.
- To introduce the principle of marginality, which serves as a guide to constructing and testing terms in complex linear models.
- To show how incremental *F*-tests are employed to test terms in dummy regression models.

© 2004 by John Fox	Sociology 740	© 2004 by John Fox	Sociology 740

Dummy-Variable Regression

2. A Dichotomous Explanatory Variable

- The simplest case: one dichotomous and one quantitative explanatory variable.
- Assumptions:
- Relationships are additive the partial effect of each explanatory variable is the same regardless of the specific value at which the other explanatory variable is held constant.
- The other assumptions of the regression model hold.
- The motivation for including a qualitative explanatory variable is the same as for including an additional quantitative explanatory variable:
 - to account more fully for the response variable, by making the errors smaller; and
 - to avoid a biased assessment of the impact of an explanatory variable, as a consequence of omitting another explanatory variables that is related to it.

Dummy-Variable Regression

- The Figure 1 represents idealized examples, showing the relationship between education and income among women and men.
- In both cases, the within-gender regressions of income on education are parallel. Parallel regressions imply additive effects of education and gender on income:
- In (a), gender and education are unrelated to each other: If we ignore gender and regress income on education alone, we obtain the same slope as is produced by the separate within-gender regressions; ignoring gender inflates the size of the errors, however.
- In (b) gender and education are related, and therefore if we regress income on education alone, we arrive at a biased assessment of the effect of education on income. The overall regression of income on education has a *negative* slope even though the within-gender regressions have positive slopes.

5

- We could perform separate regressions for women and men. This approach is reasonable, but it has its limitations:
- Fitting separate regressions makes it difficult to estimate and test for gender differences in income.
- Furthermore, if we can assume parallel regressions, then we can more efficiently estimate the common education slope by pooling sample data from both groups.

© 2004 by John Fox

Sociology 740

© 2004 by John Fox

2.2 Regressors vs. Explanatory Variables

- This is our initial encounter with an idea that is fundamental to many linear models: the distinction between *explanatory variables* and *regressors*.
- Here, *gender* is a qualitative explanatory variable, with categories *male* and *female*.
- The dummy variable D is a regressor, representing the explanatory variable gender.
- In contrast, the quantitative explanatory variable *income* and the regressor X are one and the same.
- We shall see later that an explanatory variable can give rise to several regressors, and that some regressors are functions of more than one explanatory variable.

Dummy-Variable Regression

9

2.3 How and Why Dummy Regression Works

- Interpretation of parameters in the additive dummy-regression model:
 - $-\gamma$ gives the difference in intercepts for the two regression lines.
 - * Because these regression lines are parallel, γ also represents the constant separation between the lines the expected income advantage accruing to men when education is held constant.
 - \ast If men were disadvantaged relative to women, then γ would be negative.
 - $-\alpha$ gives the intercept for women, for whom D = 0.
- $-\beta$ is the common within-gender education slope.
- Figure 3 reveals the fundamental geometric 'trick' underlying the coding of a dummy regressor:
- We are, in fact, fitting a regression plane to the data, but the dummy regressor D is defined only at the values zero and one.

© 2004 by John Fox	Sociology 740	© 2004 by John Fox	Sociology 740
Dummy-Variable Regression	11	Dummy-Variable Regression	12
Y		 Essentially similar results are obtained if v one for women: The sign of γ is reversed, but its magnitu The coefficient α now gives the income i 	ve code D zero for men and ide remains the same. ntercept for men.
		 It is therefore immaterial which group is o zero. 	oded one and which is coded
		 This method can be applied to any number long as we are willing to assume that the two categories of the dichotomous explan- regression surfaces): 	r of quantitative variables, as slopes are the same in the atory variable (i.e., parallel
α		$Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik}$ – For $D = 0$ we have	$C_{ik} + \gamma D_i + \varepsilon_i$
		$Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_n X_{in} $	$\beta_k X_{ik} + \varepsilon_i$
Figure 3. The regression 'plane' underlying the additive dummy-remodel.	egression	$Y_i = (\alpha + \gamma) + \beta_1 X_{i1} + \cdots$	$+\beta_k X_{ik} + \varepsilon_i$

Sociology 740

```
© 2004 by John Fox
```

Sociology 740

3. Polytomous Explanatory Variables

- Recall Duncan's regression of the rated prestige of 45 occupations on their education and income levels.
- I have classified Duncan's occupations into three categories: (1) professional and managerial; (2) 'white-collar'; and (3) 'blue-collar'.
- The *three*-category classification can be represented in the regression equation by introducing *two* dummy regressors:

Category	D_1	D_2
Professional & Managerial	1	0
White Collar	0	1
Blue Collar	0	0

- The regression model is then

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \gamma_1 D_{i1} + \gamma_2 D_{i2} + \varepsilon_i$$

where X_1 is education and X_2 is income.

© 2004 by John Fox	Sociology 740

Dummy-Variable Regression

- The choice of a baseline category is usually arbitrary, for we would fit the same three regression planes regardless of which of the three categories is selected for this role.
- Because the choice of baseline is arbitrary, we want to test the null hypothesis of no partial effect of occupational type,

*H*₀:
$$\gamma_1 = \gamma_2 = 0$$

- but the individual hypotheses H_0 : $\gamma_1 = 0$ and H_0 : $\gamma_2 = 0$ are of less interest.
- The hypothesis H_0 : $\gamma_1 = \gamma_2 = 0$ can be tested by the incremental-sum-of-squares approach.

Dummy-Variable Regression

13

 This model describes three parallel regression planes, which can differ in their intercepts:

- $* \alpha$ gives the intercept for blue-collar occupations.
- * γ_1 represents the constant vertical difference between the parallel regression planes for professional and blue-collar occupations (fixing the values of education and income).
- * γ_2 represents the constant vertical distance between the regression planes for white-collar and blue-collar occupations.
- Blue-collar occupations are coded 0 for both dummy regressors, so 'blue collar' serves as a *baseline* category with which the other occupational categories are compared.

© 2004 by John Fox

Sociology 740

16

Dummy-Variable Regression

- 3.1 How Many Dummy Regressors Are Needed?
- It may seem more natural to code *three* dummy regressors:

Category	D_1	D_2	D_3
Professional & Managerial	1	0	0
White Collar	0	1	0
Blue Collar	0	0	1

– Then, for the jth occupational type, we would have

$$Y_i = (\alpha + \gamma_j) + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

- The problem with this procedure is that there are too many parameters: – We have used four parameters (α , γ_1 , γ_2 , γ_3) to represent only three group intercepts.
- We could not find unique values for these four parameters even if we knew the three population regression lines.

15

© 2004 by John Fox

17

- Likewise, we cannot calculate unique least-squares estimates for the model, since the set of three dummy variables is perfectly collinear: $D_3 = 1 - D_1 - D_2$.
- \bullet For a polytomous explanatory variable with m categories, we code m-1 dummy regressors.
 - One simple scheme is to select the last category as the baseline, and to code $D_{ij} = 1$ when observation *i* falls in category *j*, and 0 otherwise:

Category	D_1	D_2	• • •	D_{m-1}
1	1	0	• • •	0
2	0	1		0
•	•	•		•
•	•	•		•
•	•	•		•
m-1	0	0	• • •	1
m	0	0		0

© 2004 by John Fox

Sociology 740

- When there is more than one qualitative explanatory variable with additive effects, we can code a set of dummy regressors for each.
- To test the hypothesis that the effects of a qualitative explanatory variable are nil, delete its dummy regressors from the model and compute an incremental *F*-test.
- Duncan's regression of prestige on education and income:

$$\widehat{Y} = -6.065 + 0.5458X_1 + 0.5987X_2 (4.272) (0.0982) (0.1197)$$

$$R^2 = .8282$$

Sociology 740

20

18

Dummy-Variable Regression

19

 Inserting dummy variables for type of occupation into the regression equation produces the following results:

$$\begin{split} \widehat{Y} &= -0.1850 + 0.3453X_1 + 0.5976X_2 \\ (3.714) & (0.1136) & (0.0894) \\ &+ 16.66D_1 - 14.66D_2 \\ & (6.99) & (6.11) \end{split}$$

 $R^2 = .9131$

- The three fitted regression equations are:

Prof: $\hat{Y} = 16.48 + 0.3453X_1 + 0.5976X_2$ **WC:** $\hat{Y} = -14.84 + 0.3453X_1 + 0.5976X_2$ **BC:** $\hat{Y} = -0.1850 + 0.3453X_1 + 0.5976X_2$ Dummy-Variable Regression

© 2004 by John Fox

- To test the null hypothesis of no partial effect of type of occupation,

$$\begin{split} H_0: \, \gamma_1 = \gamma_2 = 0 \\ \text{calculate the incremental } F\text{-statistic} \\ F_0 \, = \, \frac{n-k-1}{q} \times \frac{R_1^2 - R_0^2}{1 - R_1^2} \\ &= \, \frac{45 - 4 - 1}{2} \times \frac{.9131 - .8282}{1 - .9131} = 19.54 \\ \text{with 2 and 40 degrees of freedom, for which } p < .0001. \end{split}$$

21

4. Modeling Interactions

- Two explanatory variables *interact* in determining a response variable when the partial effect of one depends on the value of the other.
- Additive models specify the absence of interactions.
- If the regressions in different categories of a qualitative indepenent variable are not parallel, then the qualitative explanatory variable interacts with one or more of the quantitative explanatory variables.
- The dummy-regression model can be modified to reflect interactions.
- Consider the hypothetical data in Figure 4 (and contrast these examples with those shown in Figure 1, where the effects of gender and education were additive):
- In (a), gender and education are independent, since women and men have identical education distributions.
- In (b), gender and education are related, since women, on average, have higher levels of education than men.

© 2004	by John Fox
--------	-------------

```
Sociology 740
```


Figure 4. In both cases, gender and education interact in determining income. In (a) gender and education are independent; in (b) women on average have more education than men.

```
© 2004 by John Fox
```

Dummy-Variable Regression

Dummy-Variable Regression

23

- In both (a) and (b), the within-gender regressions of income on education are not parallel — the slope for men is larger than the slope for women.
 - * Because the effect of education varies by gender, education and gender interact in affecting income.
- It is also the case that the effect of gender varies by education. Because the regressions are not parallel, the relative income advantage of men changes with education.
- * Interaction is a symmetric concept the effect of education varies by gender, and the effect of gender varies by education.

Dummy-Variable Regression

- These examples illustrate another important point: *Interaction* and *correlation* of explanatory variables are empirically and logically distinct phenomena.
- Two explanatory variables can interact whether or not they are related to one-another statistically.
- Interaction refers to the manner in which explanatory variables combine to affect a response variable, not to the relationship between the explanatory variables themselves.

Sociology 740

24

© 2004 by John Fox

4.1 Constructing Interaction Regressors

- We could model the data in the example by fitting separate regressions of income on education for women and men.
- A combined model facilitates a test of the gender-by-education interaction, however.
- A properly formulated unified model that permits different intercepts and slopes in the two groups produces the same fit as separate regressions.
- The following model accommodates different intercepts and slopes for women and men:

 $Y_i = \alpha + \beta X_i + \gamma D_i + \delta(X_i D_i) + \varepsilon_i$

– Along with the dummy regressor D for gender and the quantitative regressor X for education, I have introduced the *interaction regressor* XD.

Sociology 740

25

Sociology 740

Dummy-Variable Regression

- The interaction regressor is the *product* of the other two regressors: *XD* is a function of *X* and *D*, but it is not a *linear* function, avoiding perfect collinearity.

- For women,

$$Y_i = \alpha + \beta X_i + \gamma(0) + \delta(X_i \cdot 0) + \varepsilon_i$$

= $\alpha + \beta X_i + \varepsilon_i$

and for men,

$$Y_i = \alpha + \beta X_i + \gamma(1) + \delta(X_i \cdot 1) + \varepsilon_i$$

= $(\alpha + \gamma) + (\beta + \delta)X_i + \varepsilon_i$

• These regression equations are graphed in Figure 5:

- α and β are the intercept and slope for the regression of income on education among women.
- γ gives the difference in intercepts between the male and female groups
- δ gives the *difference* in slopes between the two groups.

```
© 2004 by John Fox
```

Sociology 740

28

Dummy-Variable Regression

* To test for interaction, we can test the hypothesis H_0 : $\delta = 0$.

- In the additive, no-interaction model, γ represented the unique partial effect of gender, while the slope β represented the unique partial effect of education.
- In the interaction model, γ is no longer interpretable as the unqualified income difference between men and women of equal education γ is now the income difference at X = 0.
- Likewise, in the interaction model, β is not the unqualified partial effect of education, but rather the effect of education among women.
 - * The effect of education among men ($\beta + \delta$) does not appear directly in the model.

29

4.2 The Principle of Marginality

- The separate partial effects, or *main effects*, of education and gender are *marginal* to the education-by-gender interaction.
- In general, we neither test nor interpret main effects of explanatory variables that interact.
- If we can rule out interaction either on theoretical or empirical grounds, then we can proceed to test, estimate, and interpret main effects.
- It does not generally make sense to specify and fit models that include interaction regressors but that delete main effects that are marginal to them.
- Such models which violate the *principle of marginality* are interpretable, but they are not broadly applicable.

Dummy-Variable Regression

– Consider the model

$$Y_i = \alpha + \beta X_i + \delta(X_i D_i) + \varepsilon_i$$

- * As shown in Figure 6 (a), this model describes regression lines for women and men that have the same intercept but (potentially) different slopes, a specification that is peculiar and of no substantive interest.
- Similarly, the model

$$Y_i = \alpha + \gamma D_i + \delta(X_i D_i) + \varepsilon_i$$

graphed in Figure 6 (b), constrains the slope for women to 0, which is needlessly restrictive.

© 2004 by John Fox

- * The regressors X_1D_1 and X_1D_2 capture the interaction between education and occupational type;
- * X_2D_1 and X_2D_2 capture the interaction between income and occupational type.
- The model permits different intercepts and slopes for the three types of occupations:

 Blue-collar occupations, coded 0 for both dummy regressors, serve as the baseline for the intercepts and slopes of the other occupational types.

© 2004 by John Fox

Sociology 740

Dummy-Variable Regression

- Fitting this model to Duncan's data produces the following results:

$$\begin{split} \widehat{Y}_i &= -3.95 + 0.320X_1 + 0.783X_2 \\ (6.79) & (0.280) & (0.131) \\ &+ 32.0D_1 - 7.04D_2 \\ & (14.1) & (20.6) \\ &+ 0.0186X_1D_1 + 0.107X_1D_2 \\ & (0.318) & (0.362) \\ &- 0.369X_2D_1 - 0.360X_2D_2 \\ & (0.204) & (0.260) \end{split}$$

with $R^2 = .9233$.

© 2004 by John Fox

Dummy-Variable Regression

Dummy-Variable Regression

35

4.4 Hypothesis Tests for Main Effects and Interactions

- To test the null hypothesis of no interaction between education and type, $H_0: \delta_{11} = \delta_{12} = 0$, we need to delete the interaction regressors X_1D_1 and X_1D_2 from the full model and calculate an incremental *F*-test.
 - Likewise, to test the null hypothesis of no interaction between income and type, $H_0: \delta_{21} = \delta_{22} = 0$, we delete the interaction regressors X_2D_1 and X_2D_2 from the full model.
 - These tests, and tests for the main effects of occupational type, education, and income, are detailed in the following tables:

© 2004 by John Fox

36

34

Mode	l Terms	Parameters				RegSs	$S \mid$	df	
1	E,I,T,E×T,I×T	α, β_1, β_2	$,\gamma_1,\gamma_2,\delta_1$	$_{11}, \delta_1$	$_{2}, \delta_{21},$	δ_{22}	40,337	7.	8
2	E,I,T,E×T	α, β_1, β_2	$, \gamma_1, \gamma_2, \delta_2$	$_{11}, \delta_1$.2		39,965	5.	6
3	E,I,T,I×T	α, β_1, β_2	$, \gamma_1, \gamma_2, \delta_2$	$_{21}, \delta_{2}$	22		40,325	5.	6
4	E,I,T	α, β_1, β_2	$,\gamma_1,\gamma_2$				39,890).	4
5	E,I	α, β_1, β_2					36,181	۱.	2
6	E,T,E×T	$\alpha, \beta_1, \gamma_1$	$, \gamma_2, \delta_{11}, \delta$	12			36,011	۱.	5
7	I,T,I×T	α,β_2,γ_1	$, \gamma_2, \delta_{21}, \delta_{21}$	22			39,434	ŧ.	5
	Source	Models	SS	df	F		p		
Ī	Education	3 - 7	891.	1	9.6		.004		
1	Income	2 - 6	3954.	1	42.5	<<	.0001		
-	Туре	4 - 5	3709.	2	19.9	<	.0001		
1	Education×Type	1 - 3	12.	2	0.1		.91		
	Income×Type	1 - 2	372.	2	2.0		.15		
1	Residuals		3351.	36					
-	Total		43,688.	44					

37

Source	Models	H_0
Education	3 - 7	$\beta_1 = 0 \mid \delta_{11} = \delta_{12} = 0$
Income	2 - 6	$\beta_2 = 0 \mid \delta_{21} = \delta_{22} = 0$
Туре	4 - 5	$\gamma_1 = \gamma_2 = 0 \mid \delta_{11} = \delta_{12} = \delta_{21} = \delta_{22} = 0$
Education × Type	1 - 3	$\delta_{11} = \delta_{12} = 0$
Income×Type	1 - 2	$\delta_{21} = \delta_{22} = 0$

- Although the analysis-of-variance table shows the tests for the main effects of education, income, and type before the education-by-type and income-by-type interactions, the logic of interpretation is to examine the interactions first:
- Conforming to the principle of marginality, the test for each main effect is computed assuming that the interactions that are marginal to that main effect are 0.

Dummy-Variable Regression

- Thus, for example, the test for the education main effect assumes that the education-by-type interaction is absent (i.e., that $\delta_{11} = \delta_{12} = 0$), but not that the income-by-type interaction is absent ($\delta_{21} = \delta_{22} = 0$).
- The degrees of freedom for the several sources of variation add to the total degrees of freedom, but — because the regressors in different sets are correlated — the sums of squares do not add to the total sum of squares.
 - What is important is that sensible hypotheses are tested, not that the sums of squares add to the total sum of squares.

 \odot 2004 by John Fox

Sociology 740

39

Dummy-Variable Regression

5. A Caution Concerning Standardized Coefficients

- An *unstandardized* coefficient for a dummy regressor is interpretable as the expected response-variable difference between a particular category and the baseline category for the dummy-regressor set.
- If a dummy-regressor coefficient is standardized, then this straightforward interpretation is lost.
- Furthermore, because a 0/1 dummy regressor cannot be increased by one standard deviation, the usual interpretation of a standardized regression coefficient also does not apply.
 - A similar point applies to interaction regressors.

Dummy-Variable Regression

© 2004 by John Fox

6. Summary

- A dichotomous explanatory variable can be entered into a regression equation by formulating a dummy regressor, coded 1 for one category of the variable and 0 for the other category.
- A polytomous explanatory variable can be entered into a regression by coding a set of 0/1 dummy regressors, one fewer than the number of categories of the variable.
- The 'omitted' category, coded 0 for all dummy regressors in the set, serves as a baseline.
- Interactions can be incorporated by coding interaction regressors, taking products of dummy regressors with quantitative explanatory variables.
- The model permits "different slopes for different folks" that is, regression surfaces that are not parallel.

© 2004 by John Fox

Sociology 740

40

- 41
- The principle of marginality specifies that a model including a highorder term (such as an interaction) should normally also include the lower-order relatives of that term (the main effects that 'compose' the interaction).
 - The principle of marginality also serves as a guide to constructing incremental *F*-tests for the terms in a model that includes interactions.
- It is not sensible to standardize dummy regressors or interaction regressors.

© 2004 by John Fox

Sociology 740