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• One of the limitations of multiple-regression analysis is that it accommo-

dates only quantitative explanatory variables.

• Dummy-variable regressors can be used to incorporate qualitative

explanatory variables into a linear model, substantially expanding the

range of application of regression analysis.
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1. Goals:
• To show how dummy regessors can be used to represent the categories

of a qualitative explanatory variable in a regression model.

• To introduce the concept of interaction between explanatory variables,

and to show how interactions can be introduced into a regression model

by forming interaction regressors.

• To introduce the principle of marginality, which serves as a guide to

constructing and testing terms in complex linear models.

• To show how incremental F -tests are employed to test terms in dummy

regression models.
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2. A Dichotomous Explanatory Variable
• The simplest case: one dichotomous and one quantitative explanatory

variable.

• Assumptions:

– Relationships are additive — the partial effect of each explanatory

variable is the same regardless of the specific value at which the other

explanatory variable is held constant.

– The other assumptions of the regression model hold.

• The motivation for including a qualitative explanatory variable is the

same as for including an additional quantitative explanatory variable:

– to account more fully for the response variable, by making the errors

smaller; and

– to avoid a biased assessment of the impact of an explanatory variable,

as a consequence of omitting another explanatory variables that is

related to it.
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• The Figure 1 represents idealized examples, showing the relationship

between education and income among women and men.

– In both cases, the within-gender regressions of income on education

are parallel. Parallel regressions imply additive effects of education

and gender on income:

– In (a), gender and education are unrelated to each other: If we ignore

gender and regress income on education alone, we obtain the same

slope as is produced by the separate within-gender regressions;

ignoring gender inflates the size of the errors, however.

– In (b) gender and education are related, and therefore if we regress

income on education alone, we arrive at a biased assessment of

the effect of education on income. The overall regression of income

on education has a negative slope even though the within-gender

regressions have positive slopes.
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Figure 1. In both cases the within-gender regressions of income on educa-
tion are parallel: in (a) gender and education are unrelated; in (b) women
have higher average education than men.
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• We could perform separate regressions for women and men. This

approach is reasonable, but it has its limitations:

– Fitting separate regressions makes it difficult to estimate and test for

gender differences in income.

– Furthermore, if we can assume parallel regressions, then we can more

efficiently estimate the common education slope by pooling sample

data from both groups.
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2.1 Introducing a Dummy Regressor

• One way of formulating the common-slope model is

Yi = α + βXi + γDi + εi
where D, called a dummy-variable regressor or an indicator variable, is

coded 1 for men and 0 for women:

Di =

{
1 for men

0 for women

– Thus, for women the model becomes

Yi = α + βXi + γ(0) + εi = α + βXi + εi

– and for men

Yi = α + βXi + γ(1) + εi = (α + γ) + βXi + εi

• These regression equations are graphed in Figure 2.

c© 2004 by John Fox Sociology 740

Dummy-Variable Regression 8

1

1

Y

X

D = 1

D = 0$

$

"

" + (

(

0

Figure 2. The parameters in the additive dummy-regression model.
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2.2 Regressors vs. Explanatory Variables

• This is our initial encounter with an idea that is fundamental to many

linear models: the distinction between explanatory variables and

regressors.

– Here, gender is a qualitative explanatory variable, with categories

male and female.

– The dummy variable D is a regressor, representing the explanatory

variable gender.

– In contrast, the quantitative explanatory variable income and the

regressor X are one and the same.

• We shall see later that an explanatory variable can give rise to several

regressors, and that some regressors are functions of more than one

explanatory variable.
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2.3 How and Why Dummy Regression Works

• Interpretation of parameters in the additive dummy-regression model:

– γ gives the difference in intercepts for the two regression lines.

∗ Because these regression lines are parallel, γ also represents the

constant separation between the lines — the expected income

advantage accruing to men when education is held constant.

∗ If men were disadvantaged relative to women, then γ would be

negative.

– α gives the intercept for women, for whom D = 0.

– β is the common within-gender education slope.

• Figure 3 reveals the fundamental geometric ‘trick’ underlying the coding

of a dummy regressor:

– We are, in fact, fitting a regression plane to the data, but the dummy

regressor D is defined only at the values zero and one.
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Figure 3. The regression ‘plane’ underlying the additive dummy-regression
model.
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• Essentially similar results are obtained if we code D zero for men and

one for women:

– The sign of γ is reversed, but its magnitude remains the same.

– The coefficient α now gives the income intercept for men.

– It is therefore immaterial which group is coded one and which is coded

zero.

• This method can be applied to any number of quantitative variables, as

long as we are willing to assume that the slopes are the same in the

two categories of the dichotomous explanatory variable (i.e., parallel

regression surfaces):

Yi = α + β1Xi1 + · · · + βkXik + γDi + εi
– For D = 0 we have

Yi = α + β1Xi1 + · · · + βkXik + εi

– and for D = 1

Yi = (α + γ) + β1Xi1 + · · · + βkXik + εi
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3. Polytomous Explanatory Variables
• Recall Duncan’s regression of the rated prestige of 45 occupations on

their education and income levels.

– I have classified Duncan’s occupations into three categories: (1)

professional and managerial; (2) ‘white-collar’; and (3) ‘blue-collar’.

– The three-category classification can be represented in the regression

equation by introducing two dummy regressors:

Category D1 D2

Professional & Managerial 1 0

White Collar 0 1

Blue Collar 0 0

– The regression model is then

Yi = α + β1Xi1 + β2Xi2 + γ1Di1 + γ2Di2 + εi
where X1 is education and X2 is income.
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– This model describes three parallel regression planes, which can differ

in their intercepts:

Professional: Yi = (α + γ1) + β1Xi1 + β2Xi2 + εi
White Collar: Yi = (α + γ2) + β1Xi1 + β2Xi2 + εi
Blue Collar: Yi = α + β1Xi1 + β2Xi2 + εi

∗ α gives the intercept for blue-collar occupations.

∗ γ1 represents the constant vertical difference between the parallel

regression planes for professional and blue-collar occupations (fixing

the values of education and income).

∗ γ2 represents the constant vertical distance between the regression

planes for white-collar and blue-collar occupations.

– Blue-collar occupations are coded 0 for both dummy regressors,

so ‘blue collar’ serves as a baseline category with which the other

occupational categories are compared.
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– The choice of a baseline category is usually arbitrary, for we would

fit the same three regression planes regardless of which of the three

categories is selected for this role.

• Because the choice of baseline is arbitrary, we want to test the null

hypothesis of no partial effect of occupational type,

H0: γ1 = γ2 = 0

but the individual hypotheses H0: γ1 = 0 and H0: γ2 = 0 are of less

interest.

– The hypothesis H0: γ1 = γ2 = 0 can be tested by the incremental-

sum-of-squares approach.
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3.1 How Many Dummy Regressors Are Needed?

• It may seem more natural to code three dummy regressors:

Category D1 D2 D3

Professional & Managerial 1 0 0

White Collar 0 1 0

Blue Collar 0 0 1

– Then, for the jth occupational type, we would have

Yi = (α + γj) + β1Xi1 + β2Xi2 + εi

• The problem with this procedure is that there are too many parameters:

– We have used four parameters (α, γ1, γ2, γ3) to represent only three

group intercepts.

– We could not find unique values for these four parameters even if we

knew the three population regression lines.
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– Likewise, we cannot calculate unique least-squares estimates for the

model, since the set of three dummy variables is perfectly collinear:

D3 = 1−D1 −D2.

• For a polytomous explanatory variable withm categories, we codem−1
dummy regressors.

– One simple scheme is to select the last category as the baseline,

and to code Dij = 1 when observation i falls in category j, and 0

otherwise:
Category D1 D2 · · · Dm−1

1 1 0 · · · 0

2 0 1 · · · 0

·

·

·

·

·

·

·

·

·

·

·

·

m− 1 0 0 · · · 1

m 0 0 · · · 0
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– When there is more than one qualitative explanatory variable with

additive effects, we can code a set of dummy regressors for each.

– To test the hypothesis that the effects of a qualitative explanatory

variable are nil, delete its dummy regressors from the model and

compute an incremental F -test.

• Duncan’s regression of prestige on education and income:

Ŷ = −6.065 + 0.5458X1 + 0.5987X2

(4.272) (0.0982) (0.1197)

R2 = .8282
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– Inserting dummy variables for type of occupation into the regression

equation produces the following results:

Ŷ = −0.1850 + 0.3453X1 + 0.5976X2

(3.714) (0.1136) (0.0894)

+ 16.66D1 − 14.66D2

(6.99) (6.11)

R2 = .9131

– The three fitted regression equations are:

Prof: Ŷ = 16.48 + 0.3453X1 + 0.5976X2

WC: Ŷ = −14.84 + 0.3453X1 + 0.5976X2

BC: Ŷ = −0.1850 + 0.3453X1 + 0.5976X2
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– To test the null hypothesis of no partial effect of type of occupation,

H0: γ1 = γ2 = 0

calculate the incremental F -statistic

F0 =
n− k − 1

q
×

R2

1
−R2

0

1−R2

1

=
45− 4− 1

2
×

.9131− .8282

1− .9131
= 19.54

with 2 and 40 degrees of freedom, for which p < .0001.
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4. Modeling Interactions
• Two explanatory variables interact in determining a response variable

when the partial effect of one depends on the value of the other.

– Additive models specify the absence of interactions.

– If the regressions in different categories of a qualitative indepenent

variable are not parallel, then the qualitative explanatory variable

interacts with one or more of the quantitative explanatory variables.

– The dummy-regression model can be modified to reflect interactions.

• Consider the hypothetical data in Figure 4 (and contrast these examples

with those shown in Figure 1, where the effects of gender and education

were additive):

– In (a), gender and education are independent, since women and men

have identical education distributions.

– In (b), gender and education are related, since women, on average,

have higher levels of education than men.
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Figure 4. In both cases, gender and education interact in determining
income. In (a) gender and education are independent; in (b) women on
average have more education than men.
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– In both (a) and (b), the within-gender regressions of income on

education are not parallel — the slope for men is larger than the slope

for women.

∗ Because the effect of education varies by gender, education and

gender interact in affecting income.

– It is also the case that the effect of gender varies by education. Be-

cause the regressions are not parallel, the relative income advantage

of men changes with education.

∗ Interaction is a symmetric concept — the effect of education varies

by gender, and the effect of gender varies by education.
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• These examples illustrate another important point: Interaction and

correlation of explanatory variables are empirically and logically distinct

phenomena.

– Two explanatory variables can interact whether or not they are related

to one-another statistically.

– Interaction refers to the manner in which explanatory variables

combine to affect a response variable, not to the relationship between

the explanatory variables themselves.
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4.1 Constructing Interaction Regressors

• We could model the data in the example by fitting separate regressions

of income on education for women and men.

– A combined model facilitates a test of the gender-by-education

interaction, however.

– A properly formulated unified model that permits different intercepts

and slopes in the two groups produces the same fit as separate

regressions.

• The following model accommodates different intercepts and slopes for

women and men:

Yi = α + βXi + γDi + δ(XiDi) + εi
– Along with the dummy regressor D for gender and the quantitative

regressor X for education, I have introduced the interaction regressor

XD.
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– The interaction regressor is the product of the other two regressors:

XD is a function of X and D, but it is not a linear function, avoiding

perfect collinearity.

– For women,

Yi = α + βXi + γ(0) + δ(Xi · 0) + εi

= α + βXi + εi

– and for men,

Yi = α + βXi + γ(1) + δ(Xi · 1) + εi

= (α + γ) + (β + δ)Xi + εi

• These regression equations are graphed in Figure 5:

– α and β are the intercept and slope for the regression of income on

education among women.

– γ gives the difference in intercepts between the male and female

groups

– δ gives the difference in slopes between the two groups.
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Figure 5. The parameters in the dummy-regression model with interaction.
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∗ To test for interaction, we can test the hypothesis H0: δ = 0.

• In the additive, no-interaction model, γ represented the unique partial

effect of gender, while the slope β represented the unique partial effect

of education.

– In the interaction model, γ is no longer interpretable as the unqualified

income difference between men and women of equal education — γ

is now the income difference at X = 0.

– Likewise, in the interaction model, β is not the unqualified partial effect

of education, but rather the effect of education among women.

∗ The effect of education among men (β + δ) does not appear directly

in the model.
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4.2 The Principle of Marginality

• The separate partial effects, or main effects, of education and gender

are marginal to the education-by-gender interaction.

• In general, we neither test nor interpret main effects of explanatory

variables that interact.

– If we can rule out interaction either on theoretical or empirical grounds,

then we can proceed to test, estimate, and interpret main effects.

• It does not generally make sense to specify and fit models that include

interaction regressors but that delete main effects that are marginal to

them.

– Such models — which violate the principle of marginality — are

interpretable, but they are not broadly applicable.
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– Consider the model

Yi = α + βXi + δ(XiDi) + εi
∗ As shown in Figure 6 (a), this model describes regression lines

for women and men that have the same intercept but (potentially)

different slopes, a specification that is peculiar and of no substantive

interest.

– Similarly, the model

Yi = α + γDi + δ(XiDi) + εi
graphed in Figure 6 (b), constrains the slope for women to 0, which is

needlessly restrictive.
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Figure 6. Two models that violate the principle of marginality, by (a) omit-
ting D, and (b) omitting X.
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4.3 Interactions With Polytomous Explanatory

Variables

• The method of modeling interactions by forming product regressors

is easily extended to polytomous explanatory variables, to several

qualitative explanatory variables, and to several quantitative explanatory

variables.

• For example, for Duncan’s regression:

Yi = α + β1Xi1 + β2Xi2 + γ1Di1 + γ2Di2

+δ11Xi1Di1 + δ12Xi1Di2

+δ21Xi2Di1 + δ22Xi2Di2 + εi
– We require one interaction regressor for each product of a dummy

regressor with a quantitative explanatory variable.
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∗ The regressors X1D1 and X1D2 capture the interaction between

education and occupational type;

∗ X2D1 and X2D2 capture the interaction between income and

occupational type.

– The model permits different intercepts and slopes for the three types

of occupations:

Professional: Yi = (α + γ1) + (β1 + δ11)Xi1

+ (β2 + δ21)Xi2 + εi
White Collar: Yi = (α + γ2) + (β1 + δ12)Xi1

+ (β2 + δ22)Xi2 + εi
Blue Collar: Yi = α + β1Xi1

+ β2Xi2 + εi

– Blue-collar occupations, coded 0 for both dummy regressors, serve

as the baseline for the intercepts and slopes of the other occupational

types.
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– Fitting this model to Duncan’s data produces the following results:

Ŷi = −3.95
(6.79)

+ 0.320X1

(0.280)
+ 0.783X2

(0.131)

+ 32.0D1

(14.1)
− 7.04D2

(20.6)

+ 0.0186X1D1

(0.318)
+ 0.107X1D2

(0.362)

− 0.369X2D1

(0.204)
− 0.360X2D2

(0.260)

with R2 = .9233.
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4.4 Hypothesis Tests for Main Effects and

Interactions

• To test the null hypothesis of no interaction between education and type,

H0: δ11 = δ12 = 0, we need to delete the interaction regressorsX1D1 and

X1D2 from the full model and calculate an incremental F -test.

– Likewise, to test the null hypothesis of no interaction between income

and type, H0: δ21 = δ22 = 0, we delete the interaction regressors X2D1

and X2D2 from the full model.

– These tests, and tests for the main effects of occupational type,

education, and income, are detailed in the following tables:
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Model Terms Parameters RegSS df

1 E,I,T,E×T,I×T α, β1, β2, γ1, γ2, δ11, δ12, δ21, δ22 40,337. 8

2 E,I,T,E×T α, β1, β2, γ1, γ2, δ11, δ12 39,965. 6

3 E,I,T,I×T α, β1, β2, γ1, γ2, δ21, δ22 40,325. 6

4 E,I,T α, β1, β2, γ1, γ2 39,890. 4

5 E,I α, β1, β2 36,181. 2

6 E,T,E×T α, β1, γ1, γ2, δ11, δ12 36,011. 5

7 I,T,I×T α, β2, γ1, γ2, δ21, δ22 39,434. 5

Source Models SS df F p

Education 3− 7 891. 1 9.6 .004

Income 2− 6 3954. 1 42.5 <<.0001

Type 4− 5 3709. 2 19.9 <.0001

Education×Type 1− 3 12. 2 0.1 .91

Income×Type 1− 2 372. 2 2.0 .15

Residuals 3351. 36

Total 43,688. 44
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Source Models H0

Education 3− 7 β1 = 0 | δ11 = δ12 = 0
Income 2− 6 β2 = 0 | δ21 = δ22 = 0
Type 4− 5 γ1 = γ2 = 0 | δ11 = δ12 = δ21 = δ22 = 0
Education×Type 1− 3 δ11 = δ12 = 0
Income×Type 1− 2 δ21 = δ22 = 0

• Although the analysis-of-variance table shows the tests for the main

effects of education, income, and type before the education-by-type and

income-by-type interactions, the logic of interpretation is to examine the

interactions first:

– Conforming to the principle of marginality, the test for each main effect

is computed assuming that the interactions that are marginal to that

main effect are 0.
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– Thus, for example, the test for the education main effect assumes that

the education-by-type interaction is absent (i.e., that δ11 = δ12 = 0), but
not that the income-by-type interaction is absent (δ21 = δ22 = 0).

• The degrees of freedom for the several sources of variation add to the

total degrees of freedom, but — because the regressors in different sets

are correlated — the sums of squares do not add to the total sum of

squares.

– What is important is that sensible hypotheses are tested, not that the

sums of squares add to the total sum of squares.
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5. A Caution Concerning Standardized

Coefficients
• An unstandardized coefficient for a dummy regressor is interpretable as

the expected response-variable difference between a particular category

and the baseline category for the dummy-regressor set.

• If a dummy-regressor coefficient is standardized, then this straight-

forward interpretation is lost.

• Furthermore, because a 0/1 dummy regressor cannot be increased

by one standard deviation, the usual interpretation of a standardized

regression coefficient also does not apply.

– A similar point applies to interaction regressors.
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6. Summary
• A dichotomous explanatory variable can be entered into a regression

equation by formulating a dummy regressor, coded 1 for one category

of the variable and 0 for the other category.

• A polytomous explanatory variable can be entered into a regression by

coding a set of 0/1 dummy regressors, one fewer than the number of

categories of the variable.

– The ‘omitted’ category, coded 0 for all dummy regressors in the set,

serves as a baseline.

• Interactions can be incorporated by coding interaction regressors, taking

products of dummy regressors with quantitative explanatory variables.

– The model permits “different slopes for different folks” — that is,

regression surfaces that are not parallel.
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• The principle of marginality specifies that a model including a high-

order term (such as an interaction) should normally also include the

lower-order relatives of that term (the main effects that ‘compose’ the

interaction).

– The principle of marginality also serves as a guide to constructing

incremental F -tests for the terms in a model that includes interactions.

• It is not sensible to standardize dummy regressors or interaction

regressors.
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