
PHP-workshop-5

	PHP/MySQL: Creating a dynamic summary

	Jean-Guillaume Birot

Numerous sites use the Master/Detail relationship. For instance, a summary page displays a list of short descriptions with links pointing to pages containing details. This kind of relationship is very easy to implement with PHP. This gives us the opportunity to tackle the question of processing a SQL query that returns more than one row, and to start creating a library of functions that will be useful for all your developments.

[image: image1.png]

 Warning
	[image: image2.png]

	[image: image7.png]

Prerequisites This workshop is based on the techniques covered in the workshop explaining the display of a MySQL database record. So have a look at it if you feel the need or if you have not visited it at all.

	[image: image3.png]

	[image: image4.png]

Creating a Function Library for Database Connections

Certain functions, such as those for managing errors or connecting to a personal database, can be used by all the pages of your site. To make things easier, and to lighten these pages, we recommend that you write these functions in a separate file that can be included in future scripts. Let's put this into practice by creating the ezine_db.inc.php file with the following code:

1: <?php
2:
3: function ezine_mysql_die($error = "")
4: {
5: if (empty($error))
6: {
7: $mysqlError = mysql_error();
8: if (!empty($mysqlError))
9: {
10: echo "SQL server reply: ".$mysqlError;
11: }
12: }
13: else
14: echo "SQL server reply: ".$error;
15: echo "
BACK";
16: exit;
17: }
18:
19:
20: function ezine_connecte_db()
21: {
22: // Server connection parameter
23: require "ezine.conf.php";
24:
25: $db = mysql_connect($host,$login,$password) or ezine_mysql_die();
26: mysql_select_db($base);
27: return $db;
28: }
29:
30: ?>

The file contains two functions. The first manages the errors (lines 3 to 17), and the second, the connection to the database (lines 20 to 28).

The error management function has been improved. We will now test whether there is a message in the $error variable through the empty function (line 5). If the variable is empty, we will try to retrieve the message sent by the MySQL server itself, using the mysql_error() function (line 7).

The function that establishes the connection has also been enhanced for better portability. All the variables required for the connection process are written in a separate file (ezine.conf.php) that we include in line 23 (require function). Afterwards, when changes to the parameters are needed, we will only have to edit this file. Here are the entries it contains:

<?php
// configuration of my database
$host = "localhost";
$login= "user";
$base = "user_db";
$password="password";
?>

You must substitute appropriate entries for the user, user_db and password values.

The function then hands over the link identifier directly to the page that requested the connection. For this, we use the return() function (line 27).

Details of the Articles

The purpose of our title list is to create links to each of the available articles. For this, we need to adapt the process used to display a record, and specially to take into account the connection procedure just described.

1: <html>
2: <head>
3: <title> PHP Workshop - detail page </title>
4:
5: <?php
6:
7: require "ezine_db.inc.php";
8:
9: $ezine_db = ezine_connecte_db();
10:
11: $requete = "SELECT * FROM article WHERE id=".$id;
12:
13: $result = mysql_query ($requete,$ezine_db) or ezine_mysql_die();
14:
15: $article =mysql_fetch_object($result);
16: mysql_free_result($result);
17: ?>
18:
19: </head>
20: <body>
21: <?php echo $article->titre ?> <I>par <?php echo $article->auteur ?></I>
22:

23: <?php echo $article->chapeau_long ?>
24:

25: <?php echo $article->corps ?>
26: </body>
27: </html>

Here are the only changes needed in comparison with our previous script:

· Line 7, we include our ezine_db.inc.php library in the script.
[image: image5.png]

· Line 9, the connection has now been established through the ezine_connecte_db function.
[image: image6.png]

This access method will remain valid for all our pages. The end of the script should not pose any problem.
Writing a SQL query for the Title List

Once the changes have been made, we can focus on the display of the summary page. We need a SQL query that returns a list of records, not just one. Here is the instruction we need:

SELECT id,title,author FROM article WHERE affichage='yes' ORDER BY date DESC

This query does not select all the columns as we did in the previous workshop with SELECT *. If the database was filled up with loads of articles, the result set returned by such a query would take up too much memory space. So we restrict our selection list by specifying only a few columns (id, title and author), separated by a comma.

The WHERE clause also differs from the one used in the previous script. What we need is to retrieve all the records for which a display is authorised. For this, we must check the affichage column value. If it is yes, the values of all the requested columns are retrieved. So our clause reads WHERE affichage='yes'.

Finally, we must choose the sort order to be applied to the various records of the result set. We have decided to list them in chronological order, with the most recent appearing first. For this, we use the ORDER BY clause on the date column. The DESC attribute defines a descending order.

Displaying the Record List

We will now use this query to write the list of our various articles into a HTML table. This will be done on another page, listearticle.php:

6: <body>
7:
8: <?php
9: require "ezine_db.inc.php";
10: $ezine_db = ezine_connecte_db();
11:
12:
13: $str_requete = "SELECT id,titre,auteur FROM article WHERE affichage='oui' ORDER BY date DESC";
14:
15: $result_articles = mysql_query ($str_requete,$ezine_db) or ezine_mysql_die();
16:
17: print ('<table width=100% border=0>');
18:
19: while ($articleDb =mysql_fetch_object($result_articles))
20: {
21: print("
22: <tr>
23: <td width='5%'>$articleDb->id</td>
24: <td width='49%'>$articleDb->titre</td>
25: <td> <I>par $articleDb->auteur </I></td>
26: <td width='14%'>id'>Afficher</td>
27: </tr>
28: ");
29: }
30:
31: print ('</table>');
32:
33: ?>

As is the case for all PHP pages, our script begins with a connection to the database, using the library we created(lines 9 and 10). The SQL query constructed earlier on is sent to the server lines 13 and 15. The processing and displaying of all the results is done later on.

To obtain a better layout, we will display all the retrieved articles in a table. To create HTML code from the PHP code, we will use the print() function. On line 17, we set the table attributes. The table body is created through a while loop that writes a row for every record fetched from the result set referred to by the $result_articles variable (lines 19 to 29).

We check whether there is a record by calling up the mysql_fetch_object() function. It uses an internal result set pointer to read the first record returned by the SQL query. After each call, the internal pointer is moved to the next record available. This process continues till there is no more record to fetch, in which case the function returns the value 0 and the while loop stops.

The remaining part of the loop only concerns the creation of the article list in the table body. For each record fetched, we write a row (line 22) with a table column for each field value retrieved (lines 23 to 26). Note the construction that creates a link to our article details page (line 26) passing it the currently read object's id property.

Page 2 of 4

