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ABSTRACT

The classic control charts for attribute data (p-charts, u-charts, etc.,), are based on

assumptions about the underlying distribution of their data (binomial or Poisson).

Inherent in those assumptions is the further assumption that the “parameter”

(mean) of the distribution is constant over time. In real applications, this is not

always true (some days it rains and some days it does not). This is especially

noticeable when the subgroup sizes are very large. Until now, the solution has been

to treat the observations as variables in an individual’s chart. Unfortunately, this

produces flat control limits even if the subgroup sizes vary. This article presents a

new tool, the p 0-chart, which solves that problem. In fact, it is a universal technique

that is applicable whether the parameter is stable or not.
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THE PROBLEM

In control charts for attributes (p-, np-, u-, and c-

charts), the standard deviation is obtained from a formula

based on the overall mean. It is assumed that such data

come from a binomial or Poisson probability distri-

bution. For instance, in a p-chart:

ni ¼ sample size; subgroup i ði ¼ 1; . . .; kÞ

xi ¼ number of occurrences of the attribute of interest

pi ¼ xi=ni

�p ¼
X

xi=
X

ni

spi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pð1 2 �pÞ

ni

r

CL ¼ Center Line ¼ �p

UCL=LCL ¼ Upper=Lower Control Limits

¼ �p ^ 3spi

Note that if the subgroup sizes vary, the control limits are

different.
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Unfortunately, we sometimes forget a critical

assumption in this approach: the distributional

parameters (the underlying probabilities) must remain

fixed over time. We assume we always roll the same

pair of dice. In real processes, this is seldom true—the

dice often change over time. In a telephone company,

for instance, whether there is rain or lightning today

will have a profound effect on the repair work today

and tomorrow. A chart over many days might suggest

that rainy days exhibit special causes of variation. In

the Sahara perhaps! For most of us rainy days are part

of our normal existence (common causes of variation).

Experience suggests that this is a pervasive problem,

especially among service industries, where total

process variation is so heavily influenced by

environmental and other external influences, and

where subgroup sizes are often quite large (in the

thousands or even millions).

So long as the plotted points are based on samples

of only a few hundred, this is seldom a problem; the

uncertainty due to sampling error is usually so large

that any variation in the parameter over time is

practically invisible. (This is why applications in

manufacturing, where subgroup sizes are usually

small, have failed to reveal this phenomenon.) The

problem with the distributional assumption is usually

seen only when the sample sizes are extremely large,

rendering sampling error virtually nonexistent. Then

the “batch-to-batch” variation [(1), pp. 157–165] is

almost all there is. Unfortunately, the classical control

limit formulas depend entirely on sampling variation,

so when the sample sizes are very large, the limits

squeeze in toward the center line of the chart. If the

data points have variation in excess of the assumed

probability distribution, they will “hang out. ”Jones

and Govindaraju (2) call this “overdispersion.” For

example, see Fig. 1.

The data for Fig. 1 were based on subgroups

averaging over 7600 observations each. The control

limits react to that number by tightening around the

center line, but there is obviously a lot more variation

present. When most of the data are outside the control

limits, how can we say it is due to special causes? The

large sample sizes do not cause this phenomenon; they

merely reveal it. Larger sample sizes improve the

sampling precision of our estimates, thus revealing

more clearly the invalidity of the binomial (or Poisson)

assumption.

In private correspondence on this subject, Roger

Hoerl described this very well: “With very large

sample sizes (in the thousands, for example) the

statistical uncertainty associated with within-sample

variation is ‘averaged out’ by the large subgroup size,

resulting in limits that are right on top of each other.

This is not a problem theoretically. Practically,

however, since no process is perfectly stable, the

chart is so sensitive that most points fall outside the

limits. They are statistically detectable, but represent

such minor shifts or trends that they are not worth

going after. Of course, Shewhart’s original purpose

was to segregate special causes that were economical

to remove, so in this case, the chart loses its original

motivation.”

Figure 1. Heimann’s Fig. 5 (p-chart).
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THE USUAL REMEDY: THE X-CHART

The usual solution to this problem is to ignore the fact

that the data are attributes, and simply plot them with an

individual’s chart or X-chart. Justification for this

practice can be found in Ref. (3), pp. 196–197; Ref.

(4), p. 136; and Ref. (1), p. 259. It is done as follows:

Ri ¼ jpi 2 pi21j ði ¼ 2; . . .; kÞ

�R ¼
1

k 2 1

Xk

i¼2

Ri

sp ¼ �R=1:128

CL ¼ �p

UCL=LCL ¼ �p ^ 3sp ¼ �p ^ 2:66 �R

Figure 2 shows the same data from Fig. 1 displayed in

an X-chart. Clearly, these control limits make a lot more

sense.

The data for these examples came from Peter

Heimann at AT&T in Ref. (5), which represents a

diagnostic test to help us know when the use of an

X-chart is warranted.

A NEW APPROACH: THE p0-CHART

The problem with the X-chart is that the resulting flat

control limits no longer account for the effects of varying

subgroup sizes. A new instrument, the p 0-chart devel-

oped here, solves this problem. The data from the

previous example are shown in a p0-chart in Fig. 3. Note

that the control limits are about where they were in the

X-chart, but now they vary with changes in subgroup

sizes, as one would expect.

Is this a big problem? As it happens, it was a major

problem for another data set in Dr. Heimann’s paper. Figure

4 shows the original p-chart; Fig. 5 the corresponding X-

chart. Precisely because of the wide fluctuations in

subgroup size, Dr. Heimann was unable to decide which

chart was better. Is point 15 in or out of control?

In a p0-chart (Fig. 6), the necessity of variable control

limits becomes obvious. Point 15 is definitely out of

control. The very fact that it was based on a relatively

large sample helps to show that its distance above the

center line is indeed significant.

The p0-chart does not have to choose between intra-

subgroup variation (as in the p-chart) or inter-subgroup

variation (as in the X-chart). It uses all the variation in

the data. If there is any batch-to-batch variation, its

control limits are appropriately farther away from the

center line than in a p-chart. In addition, if there is a

variation in subgroup sizes, its control limits will vary,

unlike the X-chart. The following describes how the

p0-chart is constructed.

STEP 1: THE Z-CHART

A standard method for handling attribute data, usually

when the display of variable control limits is undesirable,

is to convert each p-value to a z-score (the number of

sample standard deviations between that point and the

overall mean), and then plot these numbers on a “z-chart”

[(3), p. 197]. Since the theoretical mean of the z-scores is

Figure 2. Heimann’s Fig. 5 (X-chart).
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Figure 3. Heimann’s Fig. 5 (p0-chart).

Figure 4. Heimann’s Fig. 7 (p-chart).

Figure 5. Heimann’s Fig. 7 (X-chart).
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zero, this is what is used for the center line of the chart.

Moreover, since the standard deviation of z is assumed to

be unity, the control limits are set at þ3 and 23. The “z-

transformation” automatically adjusts each point for its

unique intra-subgroup variation, thus producing flat

control limits:

zi ¼
pi 2 �p

spi

CL ¼ 0

UCL=LCL ¼ ^3

But is the “unit variance” assumption valid? Since that

assumptionreliessolelyonthe intra-subgroupvariation, it is

not correct when batch-to-batch variation is present. As Dr.

DonaldWheelerhasaskedinnumerousbooksandspeeches,

“Why assume the variation when you can measure it?”

STEP 2: AN IMPROVED Z-CHART

What we should do is put together the concepts of the

X-chart and the z-chart: Convert the p-values to z-scores

(thus correcting in advance for variable sample sizes)

and then plot the z’s in an individuals chart:

Ri ¼ jzi 2 zi21j ði ¼ 2; . . .; kÞ

�R0 ¼
1

k 2 1

Xk

i¼2

R0
i

sz ¼ �R0=1:128

CL ¼ 0

UCL=LCL ¼ ^3sz

We no longer assume that the standard deviation of

the z-values is equal to one. We measure it to find out

what it actually is.

THE FINAL STEP

All that remains now is to unravel the z-transforma-

tion and put our results back into the meaningful units of

the “p-plane”:

zi ¼
pi 2 �p

spi

pi ¼ �p þ spi
zi

sdðpiÞ ¼ spi
sz

CL ¼ �p

UCL=LCL ¼ �p ^ 3spi
sz

From this last line, we can see what sz really is. It is

the relative amount of process variation not explained by

the binomial assumption alone. As n increases, the

variation due to sampling diminishes, thus making the

Figure 6. Heimann’s Fig. 7 (p0-chart).
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batch-to-batch component relatively larger. That is why

applications with large subgroup sizes reveal this

situation very often.

In the first example (Figs. 1 and 2), sz was 5.6—

there was 460% more variation in the data than a

classical p-chart could account for. In the second

(Figs. 3–5), it was only 1.4, but enough to justify

abandoning the p-chart to allow for the 40% additional

variation in the process. In addition, this case

illustrates that the use of variable control limits

makes the p0-chart superior to the X-chart.

What this method does was well described by Roger

Hoerl on seeing an early draft of this manuscript: “We

may choose to define both within-sample and also the

variation between one sample and those immediately

before and after it (i.e., using moving ranges) as

common cause variation. In this case, only variation that

is above and beyond the normal point-to-point variation

shows up as special causes. The key point here is that

we have consciously changed the definition of common

and special cause. This is OK, as long as we realize we

have done it. In such cases where there are unequal

subgroup sizes, your approach seems to be the most

logical thing to do. I like it!”

SOME OBSERVATIONS

1. If a data set is in fact binomially distributed (no

batch-to-batch variation is present), sz ¼ 1: Then the p0-

chart is the same as the p-chart.

2. If all subgroup sizes are equal, the p0-chart is the

same as the X-chart. Therefore, the p0-chart is merely an

extension of the X-chart to the case with varying

subgroup sizes.

3. While this discussion has examined the binomial

case (p-chart), the extension to the Poisson case (u-chart)

is very simple. Just replace spi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pð1 2 �pÞ=ni

p
with

sui
¼

ffiffiffiffiffiffiffiffiffi
�u=ni

p
:

4. sz , 1 (“underdispersion” per Jones and Govin-

daraju) shows that there is positive autocorrelation in the

data. The classical limits of p- and u-charts will be too

wide.

5. As stated above, Heimann (5) presented a

diagnostic test to determine when the problem exists.

More recently, Jones and Govindaraju (2) gave us

another insightful article on this subject. Unfortunately,

neither paper went beyond diagnosis to cure. The only

remedy remained the X-chart.

6. The only attempt at a cure (known to this author)

was offered by Wheeler and Poling (6), suggesting

control limits given by:

UCL=LCL ¼ �p ^ 2:66 �R

ffiffiffiffi
�n

ni

r
:

This simple adjustment term affixed to the common

X-chart formula does adjust the levels of the limits

according to the varying subgroup sizes. Unfortu-

nately, the very existence of such differences suggests

that the average moving range (which gives equal

weight to all its constituents) is a biased estimate of

process variation. The p0 chart does not have that

problem.

SUMMARY

In control charts for attributes, the presence of batch-

to-batch variation suggests the use of X-charts instead of

p-charts (or u-charts). Such additional variation (over

and above that which the binomial and Poisson

assumptions can detect) is widespread, especially in

service company applications. Further, it is in those very

cases that subgroup sizes are often quite large, a situation

in which the presence of inter-subgroup variation is

clearly revealed. Unfortunately, the X-chart ignores the

intra-subgroup variation and is therefore unable to

produce variable control limits when the subgroup sizes

vary. The p0- and u0-charts, by addressing both sources of

variation, put the control limits in the right place and

show how they vary with subgroup sizes. Since the X-

chart has long been the method of choice when there is

batch-to-batch variation, since the p0- and u0-charts are

merely extensions of the X-chart to handle the case of

varying subgroup sizes, and since the p0- and u0-charts are

the same as the p- and u-charts when there is no batch-to-

batch variation, the p0- and u0-charts should be

universally adopted as the new standards for plotting

attribute data.
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