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Abstract

Thermal motion in crystallography is an important problem. Here
two main aspects are especially evident for crystallographers: one is tak-
ing account of it for improving the fit of the model to experimental data
obtained by X-ray or neutron diffraction; another aspect concerns inter-
pretation of thermal motion, especially (for purely crystallographic work)
in connection with correction of bond lengths.

1Thermal motion has long been considered in crystallographic structure de-
termining operations; in routine structure-factor calculations, a temperature
factor Tk as the Fourier transform of the probability distribution of the atom
K in space mostly due to this effect was introduced already at the beginning of
the development of X-ray crystallography . Here we have the usual expression:

fk(hkl) = f0k(hkl)Tk exp
[
2πi(hx + ky + lz)

]
, (1)

where fk(hkl) is the contribution of the atom K to the structure factor f(hkl),
F0k is the form factor and Tk is the so-called temperature factor. In the first
applications, the distribution was assumed to be Gaussian and the same in all
directions (isotropic); in this case Tk can be written as:

Tk(hkl) = exp
(

−Bk sin2 θ

λ2

)
, (2)

where Bk is the isotropic atomic displacement parameter (or, something, more
improperly, the isotropic “temperature factor” of the atom K). Bk can be shown
to be related to the mean-square displacement of K, 〈u2

k〉, as follows:

Bk = 8π2〈u2
k〉 (3)

On improving the techniques of data collection, the approximation of iso-
tropic atomic displacement proved at once to be inadequate. This inadequacy is
often already evident in the final difference Fourier synthesis, where if isotropic
displacement parameters are used, then strong positive and negative zones can
be clearly seen around the various atoms, showing a preferential direction in the

1This article is electronic published by Egyptian Physicists Association
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distribution. This phenomenon clearly indicates that if an appropriate model
for thermal vibration is adopted, the overall agreement between the observed
and calculated structure factors can be significantly improved. On referring to
the classic R index, on the whole such index cannot be smaller than about
8–10% if only isotropic displacement parameters are used.

For this reason, already in the mid-fifties (Cruickshank, 1956abc) the dis-
placement—whose distribution was still assumed to be Gaussian—was consid-
ered to be anisotropic, that is, different in the various directions, and anisotropic
temperature factors were consequently introduced, as Fourier transforms of a
tri-variate normal distribution:

Tk(hkl) = exp
(
2π2H2UkH

)
, (4)

where H is the reciprocal lattice vector referred to Cartesian axes, and Uk =
〈ukuk

T 〉 is the second-moment matrix of the probability distribution function,
referred to the same Cartesian set. Instead of using a Cartesian reference, in
most common crystallographic routine, the U’s are sometimes multiplied by 2π2

and referred (as B’s, or β’s) to the crystal axes, so that instead of H a vector
h is used, whose components are the Miller indices. We have, accordingly:

Tk(hkl) = exp
(
− hT βkh

)
. (5)

Since H = CT h, where C is the transformation matrix from a crystallo-
graphic reciprocal unit-cell reference to a Cartesian set of axes, it must be:

βk = 2π2CUkCT . (6)

It will also be:
Uk =

1
2
π2C−1βk(C−1)T (7)

or:
Uk =

1
2
π2OβkOT , (8)

where O(= C−1) is the transformation matrix from a unit-cell basis to a Carte-
sian reference system.

In common practice, however, it has been observed that it is better to refer
to an axial system of unit lengths; then, since referring to a Cartesian set implies
the definition of an orthogonalization matrix, which is not uniquely established,
the indices are referred instead to an axial frame coinciding in direction with the
reciprocal crystal axes, but with unit lengths of 1, and the direct reference system
for the U’s becomes the reciprocal of this reciprocal axial frame. Therefore,
whereas for crystals with orthogonal axes the reference is Cartesian, for crystals
with non-orthogonal axes, the reference is not Cartesian; in any case, this choice
implies that the transformation matrix C is always diagonal, with Cii = ai

∗,
that is, the corresponding reciprocal unit-cell parameter.

All these transformations are typical of second-rank tensors, and the aniso-
tropic atomic displacement parameters or ADP ’s (U’s, B’s, or β’s) so defined
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are second-rank symmetric tensors. The surfaces corresponding to the set of
equations:

xT Uk
−1x = constant (9)

or similar are ellipsoids (or should be such !) and they are generally used
to represent these tensors. In case the matrix U is not positive-definite, as
sometimes it may result from a refinement of a crystal structure, the surface
is not an ellipsoid, but there is something wrong, either concerning the data
used, or the procedure used in refining (unappropriate weights, etc.), or also the
interpretation (nature of the atom, which is heavier than it was supposed). A
critical examination of these surfaces, as they can be easily drawn for instance
by ORTEP (Johnson, 1965, 1980) often provides one of the easiest checks of the
quality of a crystal.

Besides the conventions specified above, there area number of additional
ways for defining anisotropic displacement parameters (for instance, where the
off-diagonal terms are multiplied by 2, etc.), and unfortunately no unique for-
mulation has been universally accepted so far, although the last definition of U’s
here given seems to be the most widely accepted at present, and has been offi-
cially recommended by the IUCr Commission on crystallographic Nomenclature
in a recent article (Trueblood et al., 1996. For this reason, in all crystallographic
works, the temperature factor expression [such as, for instance, (4) or (5)] should
be always indicated clearly. Accordingly, the corresponding expression for the
most widely accepted U’s is the following:

Tk(hkl) = Tk(h) = exp
[
− 2π2

(
U11h

2a∗
2
+ · · · + 2U23klb∗c∗

)]
. (10)

The use of anisotropic temperature factors of this kinds has greatly improved
the agreement between observed and calculated structure factors (the so-called
R index can routinely reach values around 3% or even less if accurate measure-
ments and corrections for effects such as absorption, etc. have been carried out);
however, the number of parameters to be determined in crystal structure refin-
ment becomes considerable. In fact, whereas for isotropic temperature factors
we have an additional parameter for each atom, with respect to the atomic coor-
dinates, for anisotropic temperature factors we have six additional parameters,
corresponding to the components of the symmetric second-rank tensors Uk or
βk. Therefore, anisotropic temperature factors involve a number of parameters
which is twice the number of atomic coordinates.

In more recent times, also possible deviation from the normal distribution has
been accounted form leading to additional terms in the Edgeworth expansion
(Johnson, 1969, 1970 a,b), and corresponding to the introduction of further
tensors of rank higher than two. Using this formulation, for the temperature
factors we have expressions of the kind:

Tk(h) = T ′
k(h) exp

(
− 2πiβkhihjhm + · · ·

)
, (11)

where T ′
k(h) is a temperature factor expression corresponding to a second-rank

tensor [such as, for instance, (4), (5), or (10)]; for the following terms (as usu-
ally for tensor notation) the so-called dummy-suffix notation is adopted, which
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implies summation over all the possible values (here 1,2,3, corresponding to the
crystallographic indices h, k, orl) when the suffix occurs twice in the same term.

It is easy to see that if such an expression is adopted, then the number of
thermal motion parameters to be determined becomes indeed formidable. For
instance, the third-rank tensors will involve 10 additional parameters per atom
(with a total of 19), the fourth-rank tensors imply a total of 34, etc.

For this reason, the use of higher-rank tensors (3 or more) should be re-
stricted only to the cases where an extensive number of highly accurate data
are available, and—on the other hand—there is positive evidence for an unusu-
ally large amplitude of motion, generally connected with anharmonic behaviour,
or when it is necessary to obtain very accurate results, as for instance in electron-
density studies.

In other cases, caution is recommended, because otherwise the use of an
extensive number of thermal parameters might prove to be substantially an
expedient to increase the number of refinable variables, with a consequent low-
ering of the R index without involving however too much physical significance;
this point of view is still widely considered, even for usual anisotropic parame-
ters, in spite of extensive evidence for their physical meaning, at least for those
determined by crystal structure refinement of good quality.

Already in the late fifties, the importance of knowing thermal parameters
with some degrees of accuracy was pointed out, in connection with the problem
of correcting this correction is necessary when the bond lengths obtained from
crystal-structure refinement are to be compared with theoretical estimates, even

at very low temperature (see below). For instance, errors around 0.01
◦
A or 0.003

◦
A are usually encountered for room-temperature study of molecular crystals
or minerals (included synthetic inorganic compounds), respectively, and these
errors (especially in the first case) substantially exceed the standard deviation
in the bond lengths.

Unfortunately, the general correction for thermal motion of a bond lenght
implies knowing besides the U’s, also the correlation tensors Uik’s=〈uiuT

k 〉,
which cannot be obtained from Bragg diffraction measurements. We have, in
fact (Johnson 1970ab, 1980; Scheringer, 1972):

d = d′ +

[
tr(Z) − ’.

T Z ’.
d′2

]
2d′

, (12)

where d and d′ are the corrected and the uncorrected distance, respectively, d′

is the vector corresponding to the distance d′ and Z is a matrix defined as:

Z = Ui + Uk − Uik − Uki. (13)

The need of the correlation tensors Uik and Uki can be envisaged as a require-
ment of knowing the relative phase in crystal motion: there is, in fact, a phase
problem not only concerning the structure factors, but also in thermal motion.
In fact, it is easy to see that the average distance between the atoms does not
depend on the distribution only, but also on the phase of their motion.

278



For a molecule behaving as a rigid body, a model allowing this correction to
be made using crystal structure parameters only was proposed by Cruickshank
(1956ab) and a more complete one by Schomaker and Trueblood (1968). These
models express the thermal motion of the whole molecule in terms of three ten-
sors, T, L, and S, which correspond to translation, rotation and translational-
rotational coupling, respectively. We have:

Uk = T + AkLAT
k + AkS + ST

k AT
k , (14)

where

Ak =

 0 r3k r2k

−r3k 0 r1k

−r2k −r1k 0

 (15)

and r1k, r2k, and r3k are the components of the vector distance rk from the mean
position of the atom k from an arbitrary reference point (usually, the center of
mass of the molecule), T is a translational displacement vector of the whole
molecule, L is a tensor representing the rotation of the molecule as a whole, and
S is another tensor accounting for the translational-rotational coupling.

The values of the components of these tensors (apart from an indeterminacy
concerning the trace of S) can be obtained froma least squares fit to the in-
dividual atomic parameters; the tensor L is used together with the molecular
geometry for correcting the bond lengths.

whenever indeterminacies are given(as for instance when all the atoms lie
on a conic section, etc) the use of regression on principal components has been
recommended(Johnson, 1970ab). however, some caution should be used in ap-
plying such a criterion, since if the undeterminacy concerns some elements of
the rotational tensor L, then the corrections of bond lengths become physically
meaningless (for examples of such an inconvenience, see Filippini et al., 1974a).

Extension of these models to partly rigid molecules has been carried out by
several authors [dunitz and white (1973), Johnson (1970a), Trueblood (1978),
Schomaker & Trueblood (1984), trueblood & Dunitz (1983), Hummel, Rasell
& Burgi (1990), and he & Craven(1993)]; however, the interpretation of in-
tramolecular motion,especially if the molecule is complex,might result in partly
undefined tensors, and the above-suggested caution becomes even more neces-
sary.Another delicate point is the number of the tensors necessary for a “segment-
ed-rigid” molecule even of moderate complexity, due to the coupling between
the various rotations of the different parts and also with the molecular transla-
tion:an example of the complexity of the problem has been given by Filippini &
Gramaccioli (1986).

Since the correction for thermal libration essentially depends on rotational
tensors,once these tensors are known (such for instance L in the rigid body)
the problem can be solved quite easily. For instance, according to Cruickshank
(1961) in a rigid body each atom, as it is found at the end of the refinement,
should be shifted outwards the center as follows:

∆rk =
1
2
[
tr(L)rk − Lrk

]
, (16)
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where ∆rk is the shift and rk is the vector distance from the center of the
molecule.

For the structures which can be hardly considered as rigid bodies, as for
most inorganic compounds, a well-known method proposed by Busing & Levy
(1964) can be used. Starting from crystal structure data only, this methods
provides at least the interval where the corrected bond length must lie, and it
gives a precise answer in two cases:

1. for a riding motion, that is, when a lighter atom is bound to a heavier
one, and participates to its motion, besides having its proper motion, as
a rider on a horse;

2. for non-correlated motion. For instance, ion the former case, we have:

dik = d′ik +

(
〈W 2

k 〉 − 〈W 2
i 〉
)

2d′ik
. (17)

Here dik is the corrected bond length, d′ik is the uncorrected one, and 〈W 2〉,
the mean-square displacement perpendicular to the bond for the atom i and k,
erspectively, is given by : 〈W 2〉 = 〈r2〉 − 〈z2〉, where 〈r2〉 is the mean-square
displacement in general and 〈z2〉 is that along the bond. It will be (see also
(19)):

〈r2〉 = Tr(U), and 〈z2〉 = d′T Z
d′

d′2
. (18)

For non-correlated motion, a formula differing from (17) for having a plus sign
instead of a minus sign is used.

The use of these methods for bond-length correction has greatly enhanced
the importance of thermal parameters in crystallography; at the same time, the
excellent fit of individual ADP’s to a rigid-body scheme for molecules which can
be expected to behave as rigid bodies (and often the ORTEP drawings them-
selves!) have provided for the first time substantial evidence for the physical
validity of these thermal parameters, as deduced from crystallographic work.

Some years later, Hirshfeld (1976) noticed that for well-refined crystal struc-
tures, owing to the difficulty of stretching a chemical bond along its direction
(compared with the much easier bending, or with the still easier alteration
of non-bonded distances) the mean-square displacement of chemically bonded
atoms along the bonds should be essentially the same. Since the mean-square
displacement 〈z2

k〉 of the atom k in the direction of the bond with the atom i is
given by:

〈zk
2〉 = d′T U

d′

d′2
, (19)

where d is the distance vector between these atoms, it will be:

d2
(
〈zk

2〉 − 〈zi
2〉
)

= dT
(
Uk − Ui

)
d, (20)

where the U ’s here are those of expression (4).
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This principle (called the rigid-bond test) has been shown to hold in the
greatest majority of cases, and the only exceptions so far known have been found
to correspond to a particularly interesting co-existence of different bonding
schemes (Ammeter et al.,1979; Bürgi, 1984; Chandrasenkhar & Bürgi, 1984; Ste-
bler et al., 1986; Stebler & Bürgi, 1987). Together with the rigid-body fit (and
with similar fits to partly rigid molecules) this principle has also strongly sup-
ported the physical significance of crystallographic thermal parameters, to the
point that distinguished crystallographers (see, for instance, Dunitz, Schomaker
& Trueblood, 1998) emphasize the need of publishing also three parameters,
which are unfortunately omitted from most publications, in view of scarcity of
space.

In the same years, substantial efforts for deriving ADP’s theoretically on a
routine basis even for moderately complex crystal structures have been made.
For this purpose, lattice-dynamical calculations following the Born-von Karman
model were considered; the vibrational frequencies of the crystal are also ob-
tained during this process, providing a good link to spectroscopic data; through
the vibrational partition function, temperature-dependent values of thermody-
namic functions can be also evaluated.

For such calculations, dynamical matrices D(q) for each value of the so-called
wave vector q should be built and diagonalized; the elements of such matrices
correspond to the second derivatives of the potential energy with respect to the
shifts of the different atoms in the primitive unit-cell along the reference axes;
such derivatives are multiplied by exp 2πi(qT r), where r is the vector distance
between the atoms involved in each interaction. The eigenvalues of D(q) corre-
spond to the frequencies νi(q) of the various normal modes of vibration in the
crystal.

According to theory of harmonic motion (see for instance Willis & Proyr,
1075), from the average energy Ei(q) of the ith vibrational mode:

Ei(q) = hνi(q)

(
1
2

{
exp

[
hν(q)
kT

]
− 1
}−1

)
(21)

the contribution of the mode to the tensor Uk will be the following:

Uk = (Nmk)−1
∑
i,q

Ei(q)[2πνi(q)]−2e(k | iq)e∗(k | iq)T , (22)

where e(k | iq) is the mass-adjusted polarization vector of the atom in the
unit cell, which is a part of the corresponding eigenvector of the dynamical ma-
trix D(q). Omitting a number of interesting considerations, here some interest
should be pointed out on the nature of D(q), and its relationship with similar
matrices occurring in crystal-structure modelling. For a more detailed account
of the situation, see for instance Gramaccioli & Pilati (1992).

For lattice-dynamical calculations on molecular crystals, the rigid-body model
was first selected as a good approximation for limiting the size of dynamical ma-
trices (Pawley, 1967; Gramaccioli et al., 1973, 1974ab, 1975ab, 1976ab, 1977,
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1980, 1981ab, 1984; Criado et al., 1984, 1988; Dianez et al., 1986; Criado, 1989,
1990). In a second stage, also semi-rigid molecules were considered, taking into
account additional degrees of freedom, corresponding to the lowest vibration
frequencies of the isolated molecule. (Bonadeo & Burgos, 1982; Gramaccioli
et al., 1982; Gramaccioli & Filippini, 1983, 1985ab; Filippini & Gramaccioli,
1984ab, 1986); for minerals and inorganic compounds in general, a complete
lattice-dynamical derivation considering all the degrees of freedom has been
performed (Pilati et al., 1990abc, 1993ab, 1994, 1995, 1996ab, 1997).

All these calculations showed essential agreement with the experimental crys-
tallographic data, thereby confirming their validity (see also Brock, Dunitz &
Hirshfeld, 1991); for molecular crystals there is also in general a good agreement
between the tensors T, L, and S derived from a Schomaker-Trueblood fit and
the corresponding lattice-dynamical results; on such grounds, there is a definite
possibility for future routine application of these lattice-dynamical calculations
to the problem of correcting bond lengths in any case.

A further interesting application of theoretical (lattice-dynamical) calcula-
tions of ADP’s has been the quantitative evaluation of the mean-square dis-
placement at temperature close to the absolute zero (0 K); here, owing to well-
known quantum effects, the mean-square displacement is not zero, contrarily
to a widespread belief. For instance, for benzene, the zero-point mean-square
displacement of the carbon atoms is about one quarter of the corresponding
one at 123 K and about 90% of the value at 15 K (Filippini & Gramaccioli,
1989; Jeffrey et al., 1987; David & Ibberson, 1989; Jeffrey, 1992). For minerals
and other similar inorganic structures, the zero-point displacement may exceed
one half (up to 70%) the corresponding value at room temperature (Pilati et
al., 1990abc, 1993ab, 1994, 1995, 196ab, 1997). Therefore, at the right of such
results, the idea of referring to still atoms and molecules needs critical revision
and reformulation.
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