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Abstract

Within the context of a latent class model with manifest binary vari-
ables, we propose an alternative method that solves the problem of esti-
mating empirical distribution with sparse contingency tables and the chi-
square approximation for goodness-of-fit will not be valid.We analyze
sparse binary data, where there are many response patterns with very small
expected frequencies in several data sets varying in degreeof sparseness
from 1 to 5 definedd = n/2p = n/R is a factor that is mentioned in
almost all prior literature as being an important determinant of how well
the distribution is represented by the chi-squared.The proposed approach
produced results that were valid and reliable under the mentioned prob-
lematic data conditions. Results from the proposal presented compare the
rates of Type I for traditional goodness-of-fit tests. We also show that with
data densityd ≤ 5, Pearson’s statistic

(

χ2
)

should not be used to select
latent class models using the Patterns Method, given that this has the prob-
ability of Type I error being greater than5%. By comparing the Patterns
Method and the Parametric Bootstrap for data densityd = 2, we show that
the Patterns Method has more accurate Type I error probabilities since the
likelihood ratio, Read-Cressie and Freeman-Tukey statistics afford values
of α < 0.05. In contrast, the Parametric Bootstrap provides values in these
statistics that surpass5%.

Keywords: sparse data; latent class; goodness-of-fit; binary data.

Resumen

En el contexto de modelos de clases latentes con variables manifiestas
binarias, se propone un método alternativo para resolver elproblema de
la estimación de la distribución empírica con tablas de contingencias es-
casas, donde la aproximación de los estadísticos de bondad de ajuste por
la distribución Chi-Cuadrada no es valida. Se analiza datosbinarios esca-
sos, donde muchos patrones de respuesta que tienen frecuencias esperadas
pequeñas, en conjuntos de datos con grados de datos escasos de 1 a 5,
donded = n/2p = n/R es un factor es mencionado en la literatura como
determinante de la bondad de ajuste a la distribución Chi-Cuadrada. La
propuesta presenta resultados validos y confiables en las condiciones de
los datos mencionadas. Para los resultados se presenta tasas de error tipo
I para las pruebas tradiciones de bondad de ajuste. También se muestra
que para niveles de densidad de datosd ≤ 5, el estadístico Pearson

(

χ2
)

no es el apropiado para seleccionar modelos de clases latentes utilizando
el Método de Patrones, dado que presenta probabilidad de error de tipo I
mas grandes que 5%. Al comparar el Método de Patrones y el Bootstrap
Paramétrico para la densidadd = 2, se muestra que el Método de Patrones
tiene probabilidades de error de tipo I menores de 5% en los estadísticos
de razón de verosimilitud, Read-Cressie y Freeman-Tukey. En contraste,
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el Bootstrap Paramétrico produce valores en estos estadísticos que superan
un 5%.

Palabras clave:datos escasos; clases latentes; bondad de ajuste; datos binarios.

Mathematics Subject Classification:62H30, 62H17.

1 Introduction

Latent class analysis is a statistical method for analyzing and understandingmul-
tivariate categorical data. These methods have been used extensively inthe so-
cial sciences to model the heterogeneity of manifest variables in a multivariate
sense; they can be used to identify unobserved subgroups within a population
from multivariate categorical and/or continuous observed variables by estimat-
ing the characteristics of these latent clusters, returning the probability thateach
subject belongs to each group and identifying the variables that best serve to
distinguish among classes [3].

In theory, ap-value value for the goodness-of-fit statistic (GFS) can be ob-
tained by comparing the statistics to the reference chi-square theoretical prob-
ability distribution corresponding to the degrees of freedom in the model. The
assumption is valid based on the Integral Theorem of De Moivre-Laplace, when
both the observed frequencies of the different response patterns and the sample
size are large. (fxh → ∞, n → ∞).

This is a special case of the central limit theorem. It states that the binomial
distribution of the number of successes inn independent Bernoulli trials with
a probabilityp of success in each trial approximates a normal distribution with
meannp and standard deviation

√
npq if n is very large and some conditions are

satisfied [26].
Statistical inference problems caused by sparsity of contingency tables are

widely discussed in the literature. The problem arises because the possiblein-
crease in Type I error rates of goodness-of-fit statistics do not match their ex-
pected rates under the chi-square approximation [6]. In particular, sparseness is
a function of the sample size and the size of the contingency table (or the total
of the response patterns,R = 2p). The ratiod = n/R is used to measure the
amount of spareness present in a table. In this sense, Larntz [21] showed that
whend is less than 5, the distribution of theG2 test statistic is not well approxi-
mated by the chi-square distribution, and instead is unknown, making it difficult
to test the absolute fit of a model. Accordingly, small expected frequencieswill
provide high values in the GFS and will be more likely to lead us to reject the
model even though it is appropriate for describing the data set. Furthermore,
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sparse data have an adverse effect on goodness-of-fit tests as they may invalidate
using theχ2 distribution. Many suggestions have been given on how to measure
sparseness in a multi-way contingency table. But, to date, no universal defini-
tion of sparseness has been adopted. The most widely used rules of thumbare to
consider the percentage of expected cell frequencies smaller than or equal to 1,
5 or 10 [2, 7, 13, 15, 31, 19, 9] and the percentage of observed zero frequencies.

Other contributions to the study of the sparse contingency tables are: Bayes-
ian modeling of temporal dependence in large sparse contingency tables [18],
nonparametric criteria for sparse contingency tables [30], goodness-of-fit tests
for sparse nominal data based on grouping [28], accurate directionalinference
for vector parameters [10], chi-square orthogonal components for assessing good-
ness-of-fit [24], profile statistics for sparse contingency tables under Poisson
sampling [27], the measurement of model fit for sparse categorical data [17]
and modeling and measuring association for ordinal data [14].

We propose an alternative method to calculate the empirical probability dis-
tribution of the GFS when sparseness is extreme and here we refer to this as
the Patterns Method. The structure of this article is as follows. In Section 2,
we present the basic concepts related to Latent Class Models. In Section 3, the
sparse data problem and the statistical tests that assess the goodness-of-fit of the
latent class model are presented. In Section 4, we present the Patterns Method.
The design of the study is described in Section 5. Section 6 includes the results
of the Pattern Method regarding probability of Type I error. Section 7 describes
the construction of the tables of critical values for the Pattern Method. Finally,
Section 8 presents the key results of this study.

2 Latent class models

The latent class model (LCM) is a multivariate statistical technique that allows
study of the existence of one (or several)latent class(es) by means of aset of
manifest variables observed, and makes it possible to define, from their classes,
a classification or typology of the individuals analyzed. LCM was introduced
by Lazarsfeld and Henry [22], who used the technique as a tool for building
typologies (or clustering) based on dichotomous observed variables.

In Latent Class analysis, the measurement levels of both the manifest vari-
ables and the latent variable are categorical. Each latent class is characterized by
a pattern of probabilities of response for the manifest variables. A particular case
of LCM occurs when the manifest variables are binary; that is, there areonly two
levels of response: 0 and 1. Formally we have a collectionX

′

= (X1, · · · , Xp)
of binary indicators for each individual, these being the presence or absence of
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particular events. LetX
′

be a vector ofp binary manifest variables which form a
p−dimensional contingency table. Let us assume that thesep variables are con-
sidered to be indicators of a latent variableY with C categories or latent classes.
The LCM describing this situation is given byπX (x) =

∑C
c=1 πX,Y (x, c) where

πX,Y (x, c) = P (X = x, Y = c) is the overall likelihood that a randomly se-
lected individual will have a responsex = (x1, x2, · · · , xp) and is in the latent
classc.

We shall assume conditional independence; therefore, the overall likelihoods
follow a Bernoulli distributionπXi/Y (c)(xi) = πxi

ic (1− πic)
1−xi whereπic is the

conditional probability of obtaining a positive response in theXi variable for an
individual of the latent classc. In practice, for each response pattern this set
of probabilities is inspected and the individual is assigned to the latent class in
which this probability is greatest (modal assignment).

The estimation for item parameters and sizes of latent classes are estimated
in the expectation-maximization (EM) algorithm. The EM is a general method
for maximum likelihood estimation in a missing data setting and convergence is
checked by determining the relative change in the log-likelihood of subsequent
iterations.The usual procedure to decide on the number of classes beginswith
a small number of classes and then checks whether an additional class could
improve the fit significantly.

3 Sparse contingency tables

The statistical tests that assess the goodness-of-fit of the model to the data are
based on null hypotheses derived from the theoretical models. For categorical
data, significance tests normally entail a comparison between the observed and
expected frequencies that are derived by substituting maximum-likelihood esti-
mates for parameters in the theoretical model. The three most commonly used
GFS for goodness-of-fit testing of a latent class model are: the Pearson chi-
squared statistic (χ2), the likelihood ratio statistic (G2) and the Freeman-Tukey
statistic (FT ). All of the above statistics are embedded in a family of power
divergence statistics thoroughly discussed by Cressie and Read (1984) for multi-
nomial sampling they are obtained using the following formula

RC(λ) =
2

λ (λ+ 1)

R
∑

h=1

fxh





(

fxh

f̂xh

)λ

− 1



 (1)

where thefxh are the observed cell frequencies,f̂xh are the expected cell fre-
quencies and R is the number of cells. The special cases of power divergence
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statistics are Pearson chi-squared statistic (putλ = 1) and the likelihood ratio
statistic (the limit asλ → 0).

These statistical tests are asymptoticallyχ2 distributed under the null hy-
pothesis in large samples, with a degree of freedom specific for the model.
The reference chi-square theoretical probability distribution for statistical tests
is based on an asymptotic result under the assumption that each expected cell
count is large. In fact, theχ2 approximation can also break down when the table
is small but contains very large as well as small cell counts. Nevertheless,if the
number of manifest variables and/or the number of categories of each variable
are large, with a small sample size, the multi−way contingency table of the ob-
served variables yields sparse data. Suppose that data are available onp = 12
dichotomous variables (each variable can take only the values 0 and 1) andwith
a sample size then = 500 all 212 = 4096 number of possible response pat-
terns. On average, the expected frequency will be too small(0.122) for theχ2

approximation to sampling distribution to be valid.

Sparseness is not restricted to the tables with smaller sample sizes alone, but
could also occur with large sample sizes; this is due to the high concentration of
frequencies in certain cells, with poor frequencies or none at all in others. It is
clear that for such a sparse table an approximation with the asymptotic result is
not appropriate.

The distorting effect of sparseness on the Chi-square test is well known; see
for example, Mielker and Berry [23]. Among the order statistics, the likelihood
ratio (G2) appears to be the most susceptible to the effects of sparseness for the
one-factor model with dichotomous variables [29]. In this sense too, moreover,
Dayton [11] provides computational details for Pearson’sχ2, the likelihood ratio
(G2) and the Read-Cressie statistic (RC), concluding that the RC is the best op-
tion when there are small expected frequencies. Bartholomew and Tzamourani
[5] proposed alternative ways for assessing the goodness-of-fit of the latent trait
model for binary responses based on Monte Carlo methods and residualanalysis.

This problem can be overcome using parametric bootstrap procedures to gen-
erate an empirical distribution of the model fit statistic and use this distribution
to test the fit statistic from the original data [8, 1, 16]. In this sense, Tollenaar and
Mooijaart [32] reported that the validity of the bootstrap is associated with the
statistic used in the hypothesis test, because there are problems when estimating
Type I error through theχ2 andG2 statistics. Based on a Monte Carlo study, von
Davier (1997) concluded that bootstrap procedures work adequatelyfor theχ2

statistic and theRC fit statistic [34].
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4 The patterns method

The parametric bootstrap is the most commonly used method for categorical
data whenever the frequency table to be analyzed is sparse [35]. However,
this requires both knowledge of advanced statistics and computationally intense
methods because to obtain a stablep-value several hundred bootstrap resamples
are needed for each model the researcher is interested in comparing. Inthis
sense, there could be problems when certain parameter estimates in the para-
metric bootstrap are on the boundary of the parameter space, because thesam-
pling is taken from the empirical distribution; a data pattern that is not observed
in the sample has probability zero of being selected into the bootstrap sam-
ples and, consequently the estimated distribution may be too far from the true
distribution [33].

We propose a new method, namely the Patterns Method, which solves the
problems of the parametric bootstrap. The Patterns Method is an alternative
for the latent class model diagnostic when the data are sparse. The basic idea
behind this method is to take the total number of patterns possible(R = 2p)
as the population and apply simple random sampling with replacement in order
to simulate samples of similar size to the original sample for constructing the
empirical probability distribution of the GFS.

This focus of the Patterns Method differs from previous ones, such asthe
non-parametric bootstrap, which builds the unknown probability distribution of
the statistic by resampling of the original sample. Likewise, the Patterns Method
differs from the parametric bootstrap, which uses the parameters of the latent
class model to reproduce new data sets. A basic feature of the Patterns Method
is the substitution of the underlying function of the unknown probability dis-
tribution F (X) by an estimator. Sampling with replacement of the response
patterns is used to obtain a large number of random samples to perform the es-
timation. The empirical probability distribution̂F (X∗), obtained from the re-
sponse patterns, assigns a probability of1/R to each response patternxr, for
r = 1, 2, · · · , R, whereR is the total number of patterns(R = 2p) for p binary
manifest variables.

The number of all the possible response patterns (R) is used as a starting
point for simulation. Thus, the probability of random selection of a pattern is
1/R. By iterating this processn times, we obtain a set of data that form the
so-called random pattern sample. Thus,x∗i = (x∗1, x

∗

2, · · · , x∗p) represents a re-
sponse pattern that will be given by the matrix:X∗ = [x∗1, x

∗

2 · · · x∗n]. Following
this, we obtainA random pattern samples (p.j. A=500), until they are considered
acceptable to estimate the empirical probability distribution.
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Accordingly, although each random pattern sample will have the same num-
ber of elements as the original sample and by random sampling with replace-
ment, that sample may contain most of the patterns of the original sample, to-
gether with other new ones that are part of the population of patterns that were
not observed in data acquisition. Thus, the proportion of response patterns in
each resample is increased above the levels observed in the original sample, with
the same amount of information to estimate the empirical distribution of GFS.

For each of these random samples of patterns, the GFS can be calculated,
because the latent class model assumption is accepted as appropriate for the
original sample data. In order to differentiate the goodness-of-fit statistics cal-
culated on the values of the original sampleθ̂ and the goodness-of-fit statistics
for samplea, the latter will be denoted aŝθ∗a. After selecting random samples
of responses patterns, it is possible to estimate the empirical probability distribu-
tion of θ̂∗a, assigning a probability of1/A to each value of the statistic calculated:
θ̂∗1, θ̂

∗

2, · · · , θ̂∗A.
This distribution is thus converted into an immediate estimator for the dis-

tribution functionθ and can be used to test the validity of the latent class model
hypothesized to describe the original data. In summary, the Patterns Methodis
executed in the following procedure for assessing the goodness-of-fit of a latent
class model for binary data:

1. Fit model to the observed data and calculate the goodness-of-fit statistics
(θ̂). This is called the original sample.

2. Generate one sample of the same size as the original data by simulating
from possible response patterns.

3. Fit a model with the same structure as in Step 1. and calculate the goodness-
of-fit statistics.

4. Repeat Steps 2 and 3 a great many times (e.g.A = 500) to approximate
the distribution of the GFS, assuming that the fitted model is correct.

5. Reject the model if thep-value(pv) is larger than the significanceα.

From this research, calculation of the level of significance was based on
estimating the sampling distribution of the GFS under the hypothetical latent
class model. If̂θ is the value obtained in the original sample, the significance
test will be to calculate how unusualθ̂ is with respect to the sampling distribution
of θ̂∗. Thus, the significance level of the test statistic is,

pv = P
[

θ̂∗ ≥ θ̂
]

=
Number of times that

[

θ̂∗ ≥ θ̂
]

+ 1

A+ 1
. (2)
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The decision rule regarding the hypothetical model will be to reject the latent
class model ifpv < α, whereα is the significance level seta priori. Thus, the
one-sided significance level is simply the proportion of simulated samples in
which the value of̂θ∗ is greater than or equal to the estimatedθ̂ in the original
sample. Furthermore, a smallpv implies that the data of the original sample are
implausible (or have a small probability of occurring) under the null hypothesis

In sum, the proposed Patterns Method aims to estimate the empirical proba-
bility distribution with a view to drawing inferences about the appropriate latent
class model for the data of the original sample, although the mode of action
is different from the parametric and non-parametric bootstrap techniques. Fur-
thermore, it is worth mentioning that the Patterns Method does not rely on the
assumption that the sample data are drawn from a given probability distribution,
or on the assumption that the GFS has anχ2 theoretical probability distribution.

5 Design of the study

In this section, we apply the Patterns Method to several data sets varying in their
degree of sparseness. The ratiod = n/2p = n/R is used to measure the amount
of sparseness present in a table, wherep is the number of manifest variables,
n is the size of the original sample andR = 2p is the number of response
patterns; random samples were simulated, with sizes given bynk = k ∗ R, for
k = 1, · · · , 5. These degrees of sparseness in the data are the major problems to
justify the asymptotic approximation of the GFS to theχ2 theoretical distribution
and have been used in previous investigations similar to the present one [4,8].

We then simulated binary data corresponding to different sample sizes and,
therefore, with varying degrees of density (or sparseness), which isa factor de-
terminant on how well the distribution is represented by theχ2. Specifically, the
number of binary manifest variables varied from 5 to 9 and models with two to
five latent classes were examined (original sample).

The detail of the simulated data sets is shown in Table 1. For example, for 7
binary manifest variables we simulated samples that had 2, 3 and 4 latent classes.
As may be seen, the size of the samples,n1, · · · , n5, were 128, 256, 384, 512
and 640, respectively.

The main goal of the simulation study presented here is to establish whether
the Patterns Method can be used under different sparseness conditions. In or-
der to do so, four frequently used goodness-of-fit statistics were chosen for
this study, namely the likelihood-ratio(G2), Pearson’s(χ2), the Freeman-Tukey
(FT ) and the Read-Cressie(RC) statistic. The verification process of the sim-
ulation is intended to show that the simulated model is confirmed as valid by the
method of diagnosis.
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Table 1: Sizes of samples associated with the degrees of density of the data according
to the number of manifest variables and latent classes.

Manifest variables Latent Class Sizes of samples simulated
p C n1 n2 n3 n4 n5

5 2
32 64 96 128 160

5 3
6 2

64 128 192 256 320
6 3
7 2

128 256 384 512 6407 3
7 4
8 2

256 512 768 1024 12808 3
8 4
9 2

512 1024 1536 2048 25609 3
9 4

The set up of the simulation study was as follows. We present illustrations
using several simulated data sets varying in their degree of sparseness with the
CMABOOT –a computational program developed usingMATLAB language
designed by the author of this article. It was designed in three stages: in the
first stage, the original sample is simulated; in the second one, the pattern sam-
ples are simulated, and in the third phase, the Type I Error is calculated (i.e., the
probability of incorrectly rejecting a true model). This implementation of com-
putational algorithms proves to be a complex task, especially when it is necessary
to process mathematical operations with hefty computational requirements.

The research methodology consisted first of assuming a latent class model
in which the overall and conditional probabilities are known, after which, by
means of aMATLAB application, a random sample is built. We shall call this
the original sample. For the second step, in order to analyze the effectiveness of
the method as regards correct determination of the model with which the data of
the original sample were generated, we simulatedA = 500 pattern samples. For
each, we used a decision criterion or cut-off value of5%, to determine how many
values of the GFS are lower than the cut-off point and determine non-rejection
of the null hypothesis (the number of latent classes of the original sample).In
the third step the simulation experiment of theA = 500 pattern samples was
repeated100 times, calculating the probability of Type I Error(α), which is
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represented by the proportion of repeats in which the decision is the incorrect
one, rejection of the null hypothesis being correct.

In sum, to carry out the research, we needed 1,500,000 replications of the
experiment, which involved more than2, 500 processing hours on10 computers
carried out simultaneously, with the following features: Intel (R) Core(TM) i5
2.40 GHz 4 GB RAM PC.

6 Results

This section presents summaries from the simulation study. We then analyzed
the results of the simulations in terms of the probability of Type I error. The
validation process consisted of ascertaining that the Patterns Method had low
α probabilities for the four goodness-of-fit statistics considered under different
sparseness conditions,d = 1, 2, · · · , 5. We need consider only small values
of d associated with distribution of the GFS which do not follow a probabil-
ity chi-square distribution. Furthermore, these represent the degrees of density
frequently studied by researchers to evaluate latent class models.

The most critical situation arises when the density of the data is very low
(d = 1), meaning that most of the response patterns are not observed. As can
be seen Table 2 shows that the most appropriate GFS proves to be the likelihood
ratio statistic (G2), followed by Read-Cressie (RC). Similarly, the Freeman-
Tukey statistic(FT )has low probabilities ofα in the models examined, except
when there are 6 manifest variables and three latent classes, for whichα = 0.15
and the model for 5 manifest variables and two latent classes, whereα = 0.07.
Hence, the Pearson statistic

(

χ2
)

provides more unfavorableα values, for some
of the models examined were greater than5%. For example, for 9 variables and
two latent classes the probability of Type I error isα = 0.23.

Also, for a density of the original samples (d = 2) the results are very similar
in contrast to the above analysis. The likelihood ratio statistic gives probabilities
of α mostly of 0. TheRC andFT statistics haveα values lower than 0.05,
with the exception of the model for 5 manifest variables and two latent classes,
where withRC we haveα = 0.06. The Pearson statistic

(

χ2
)

continued to give
unsatisfactory results since theα probabilities were greater than expected.

In this same setting, for the density of datad = 3 the results show a similar
trend to the two previous cases (Table 3). TheG2 andRC statistics haveα values
lower than 0.05, except for the model with 6 manifest variables and two latent
classes, for which, with theRC statistic we haveα = 0.06. Freeman-Tukey
(FT) gave acceptableα values(α < 0.05), except for the model with 7 variables
and 4 latent classes, where we haveα = 0.09. Also, for 5 and 6 variables, both
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Table 2: Probabilities of Type I error according to the number of manifest variables and
latent classes for a data density of 1(n1 = R = 2p).

Manifest variables Latent Class G2 χ2 FT RC
5 2 0.00 0.02 0.07 0.00
5 3 0.01 0.03 0.01 0.02
6 2 0.00 0.03 0.00 0.01
6 3 0.00 0.06 0.15 0.01
7 2 0.00 0.12 0.00 0.02
7 3 0.00 0.06 0.01 0.00
7 4 0.00 0.01 0.00 0.00
8 2 0.00 0.17 0.00 0.01
8 3 0.00 0.08 0.00 0.01
8 4 0.00 0.04 0.00 0.00
9 2 0.00 0.23 0.00 0.00
9 3 0.00 0.10 0.00 0.01
9 4 0.00 0.10 0.00 0.00
9 5 0.00 0.11 0.00 0.00

with 3 classes, theα values are 0.06. The Pearson statistic
(

χ2
)

has type I error
probabilities greater than 0.05 only for the models that have 5 manifest variables,
with two and three latent classesα < 0.05.

It was found that the the probabilities of Type I (α) error tend to vary when
the value of the degree of density isd = 4. The Read-Cressie statistic (RC) and
the likelihood ratio statistic (G2) are those providing the most acceptable results,
that is,α values less than 5%, except for the model with 6 variables and 3 latent
classes, where for both statistics we haveα = 0.08. In nine out of fourteen
models studied, the Freeman-Tukey statistic is no longer effective since it has
probabilities greater than0.05, the most critical being the models that have 3
and 4 latent classes. Pearson’s statistic

(

χ2
)

only provides acceptable values of
α < 0.05 in two simulated models, for 5 variables and 2 latent classes, as well
as that composed of 9 variables and 3 latent classes.

The probability of Type I error when the degree of sparseness isd = 5
(n/2p = 5) (Table 4) shows the most acceptable statistics that give the proba-
bilities of α in Read-Cressie (RC) and in the likelihood ratio

(

G2
)

because the
most frequent values ofα are lower than 0.05. The Pearson statistic

(

χ2
)

pro-
vides values that are not appropriate for use in the latent class models diagnosis
for sparse tables by means of the Patterns Method; only with the model for 5
variables and 2 latent classes do we have a probabilityα = 0.05. The results for
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Table 3: Probabilities of Type I error according to the number of manifest variables and
latent classes for a data density of 3(n3 = 3 ∗ 2p).

Manifest variables Latent Class G2 χ2 FT RC
5 2 0.00 0.05 0.00 0.02
5 3 0.04 0.04 0.06 0.04
6 2 0.02 0.11 0.02 0.06
6 3 0.04 0.08 0.06 0.05
7 2 0.00 0.13 0.00 0.02
7 3 0.00 0.10 0.00 0.03
7 4 0.02 0.09 0.09 0.05
8 2 0.00 0.14 0.00 0.01
8 3 0.00 0.20 0.00 0.01
8 4 0.00 0.10 0.05 0.02
9 2 0.00 0.24 0.00 0.02
9 3 0.00 0.13 0.04 0.00
9 4 0.00 0.11 0.00 0.00
9 5 0.00 0.10 0.00 0.01

the Freeman-Tukey statistic, however, show that this test is less effective, since
in most models analyzedα > 0.05, only in the model with 9 variables and 2
latent classes do we haveα = 0.00.

Finally, we compared the Parametric Bootstrap with our proposal as regards
the behavior of the magnitude of Type I error in order to determine whether there
were differences between them in the models analyzed. For example, as illus-
trated in (Table 5),ford = 2 density data degree, the magnitude ofα for the
Patterns Method is smaller in all the models than those obtained using the Para-
metric Bootstrap with respect to theG2, FT andRC statistics. We also see that
theα values are lower than 5%, a situation not found with the Parametric Boot-
strap, where it is observed that many values ofα are higher than the expected
value (α = 0.05), since it is the quota of type 1 error fixed on performing the
significance tests upon each of the 100 replicates. However, using the Pearson
statistic in all models the Parametric Bootstrap has Type I error values lower than
those obtained with the Patterns Method. For some models theα obtained with
the Bootstrap are greater than expected (α > 0.05). For example, for the model
with 6 variables and 2 latent classes we obtain the valueα = 0.14.
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Table 4: Probabilities of type I error according to the number of manifest variables and
latent classes for a data density of 5(n5 = 5 ∗ 2p).

Manifest variables Latent Class G2 χ2 FT RC
5 2 0.04 0.05 0.14 0.04
5 3 0.10 0.08 0.18 0.08
6 2 0.05 0.11 0.23 0.05
6 3 0.11 0.08 0.26 0.07
7 2 0.00 0.21 0.11 0.04
7 3 0.03 0.15 0.23 0.04
7 4 0.17 0.10 0.65 0.10
8 2 0.00 0.18 0.08 0.04
8 3 0.01 0.10 0.32 0.03
8 4 0.02 0.11 0.31 0.03
9 2 0.00 0.13 0.00 0.00
9 3 0.09 0.06 0.95 0.03
9 4 0.00 0.15 0.61 0.01
9 5 0.05 0.15 0.86 0.05

Table 5: Comparison of Parametric Bootstrap and the Patterns Methodaccording of
Type I error, considering the number of manifest variables,the number of latent
classes and a data density of 2(d2 = 2 ∗ 2p).

Manifest Latent Parametric Bootstrap Method Patterns
variables (p) Class (c) G2 χ2 FT RC G2 χ2 FT RC

5 2 0.07 0.09 0.06 0.07 0.01 0.09 0.04 0.06
5 3 0.03 0.04 0.03 0.04 0.01 0.05 0.02 0.01
6 2 0.03 0.14 0.02 0.13 0.00 0.21 0.00 0.04
6 3 0.08 0.06 0.06 0.09 0.00 0.09 0.02 0.03
7 2 0.03 0.11 0.03 0.09 0.00 0.21 0.00 0.03
7 3 0.08 0.06 0.06 0.06 0.00 0.09 0.01 0.02
7 4 0.05 0.05 0.06 0.05 0.00 0.07 0.01 0.02
6 3 0.08 0.06 0.06 0.09 0.00 0.09 0.02 0.03
8 2 0.07 0.05 0.08 0.05 0.00 0.17 0.00 0.10
8 3 0.06 0.07 0.09 0.08 0.00 0.10 0.00 0.00
8 4 0.04 0.07 0.05 0.03 0.00 0.10 0.00 0.01
9 2 0.04 0.06 0.04 0.05 0.00 0.21 0.00 0.00
9 3 0.05 0.05 0.05 0.07 0.00 0.13 0.00 0.00
9 4 0.04 0.04 0.06 0.04 0.00 0.12 0.00 0.00
9 5 0.08 0.08 0.06 0.05 0.00 0.08 0.00 0.00
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7 Statistical tables of critical values

The Patterns Method does not derive from supposed parametrics with respect to
the probability distribution of the original sample’s data. On the contrary, it only
generates data groups of identical size as the original sample, using the same
number of manifest binary variables in order to estimate the empirical distribu-
tion of the GFS. Thus, the construction of statistical tables of critical values for
GFS is made possible in order to contrast a hypothetical latent class model with
sparse data which is suitable for the data from the original sample.

Due to the fact that sample sizes can vary widely, in the statistical tables
we have decided to represent then/R factor, wheren is the size of the original
sample, andR is the number of response patterns. The particular valuen/R
represents the estimate of the density data for the fit of the latent class models.
The tabulated values ofn/R are comprised from 1 and 10.

In the tables of critical values, accumulated probabilities are shown in the
top row; the rationale forn/R appears in the first column, followed by the GFS.
The intersection of the row with the column corresponds to theθ goodness-of-fit
statistic. The level of theoretical significance is calculated as,
pvalue = 1− P (θ < θ∗).

In order to use the tables of critical values, this procedure should be followed:

• Establish the null hypothesis(H0) for the latent classes.

• Adjust the latent class model to obtain the goodness-of-fit statistic model
values of the sample.

• Calculate the rationale forn/R and find it in the table.

• For each goodness-of-fit statistic determine thep-value.

• Discard(H0) if the fixed level of significance (α) is greater than thep-
value.

For these purposes, two tables of critical values are presented to demonstrate
the application of this approach to contrast a hypothetical latent class modelwith
sparse data. The tables of critical values below present 6 manifest variables and
2 latent classes (see Table 6), as well as 8 manifest variables and 3 latentclasses
(see Table 7).

Tables of critical values of the Patterns Method are simple and practical al-
ternative to the Parametric Bootstrap for the diagnosis of latent class models with
sparse data. This facilitates the study of problems in the framework of latent class
models with binary variables in sparse data. However, the critical value should
be viewed with caution whenn/R represented in the table is very different from
the real value.
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Table 6: The tables of critical values: 6 manifest variables and 2 latent classes

n/R GFS
Cumulative Probabilities

0,25 0,50 0,75 0,90 0,95 0,96 0,97 0,98 0,99
G2 51,7 57,3 63,0 68,2 71,0 72,2 73,3 74,6 76,8

1 χ2 42,8 48,3 54,0 60,2 63,7 65,1 67,2 69,1 72,4
FT 81,9 90,3 99,1 106,6 110,7 112,5 113,0 116,1 118,6
RC 43,1 48,4 53,4 58,9 61,9 63,2 65,1 66,4 69,8
G2 51,5 58,0 66,4 73,0 77,3 78,3 79,9 82,3 86,9

2 χ2 44,2 49,9 56,9 63,5 68,7 70,0 72,7 74,3 77,5
FT 73,3 82,8 96,2 108,6 114,0 116,7 119,2 123,6 129,7
RC 44,6 50,3 57,5 63,3 68,1 69,3 71,5 72,8 76,5
G2 45,1 53,1 61,5 69,5 73,7 75,0 78,1 79,1 83,7

3 χ2 40,3 47,2 54,7 61,7 64,7 66,1 68,0 69,7 74,2
FT 56,2 68,5 80,9 92,5 100,8 105,9 109,8 114,0 115,5
RC 40,7 47,5 55,1 62,2 65,8 66,3 67,2 70,3 74,2
G2 43,3 50,1 57,8 64,1 68,0 69,1 71,0 73,8 76,4

4 χ2 40,6 45,6 52,6 58,5 62,4 63,1 65,4 67,9 72,8
FT 48,7 57,8 70,2 79,9 87,1 89,1 90,5 94,9 99,2
RC 40,8 46,2 53,3 58,8 61,9 63,7 65,4 68,2 71,8
G2 42,7 48,8 55,2 63,7 66,0 67,0 69,2 71,7 76,0

5 χ2 40,9 46,1 52,1 58,3 62,4 64,0 65,5 68,2 71,1
FT 45,2 53 62,4 72,9 78,4 79,8 82,0 86,8 97,1
RC 41,1 46,5 52,4 59,0 62,6 64,4 65,1 68,3 70,6
G2 42,2 48,6 56,0 63,5 67,7 68,7 69,8 72,1 75,1

6 χ2 40,6 46,6 54,3 61,0 64,9 65,9 66,8 68,3 72,1
FT 44,1 51,1 59,6 70,2 74,7 75,8 77,8 81,7 87,1
RC 41,0 46,9 54,5 60,8 65,2 65,8 67,4 69,0 72,6
G2 41,8 47,6 54,3 62,4 68,3 69,0 70,7 74,1 78,3

7 χ2 40,6 46,1 52,3 60,7 64,4 65,8 67,8 70,0 73,0
FT 43,7 50,2 57,2 67,1 73,8 78,3 79,7 82,0 87,5
RC 40,8 46,4 52,7 60,4 65,2 66,1 67,4 71,1 73,1
G2 40,5 47,6 53,7 61,5 65,2 68,5 68,7 74,6 78,4

8 χ2 39,7 45,8 51,9 59,3 63,0 64,4 66,5 71,2 75,1
FT 41,8 49,2 56,2 64,6 69,6 71,6 74,6 80,4 86,7
RC 39,7 46,1 52,3 60,0 63,2 64,4 66,8 71,9 75,5
G2 41,0 47,6 55,2 62,2 67,1 69,0 70,0 72,2 76,3

9 χ2 40,4 46,8 54,1 59,7 64,7 66,3 68,4 70,0 73,3
FT 42,2 49,2 57,0 64,9 70,7 72,9 74,5 75,9 82,3
RC 40,5 46,5 54,3 59,9 64,8 67,0 68,3 69,8 72,8
G2 40,9 47,4 54,4 61,8 65,0 66,1 67,5 69,9 74,2

10 χ2 40,3 46,6 53,1 60,3 63,0 63,3 64,8 68,2 72,9
FT 41,7 48,4 56,2 63,7 67,9 69,4 70,9 73,6 78,5
RC 40,5 46,5 53,5 60,5 63,1 63,7 64,7 69,2 72,8
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Table 7: The tables of critical values: 8 manifest variables and 3 latent classes.

n/R GFS
Cumulative Probabilities

0,25 0,50 0,75 0,90 0,95 0,96 0,97 0,98 0,99
G2 260,1 272,3 284,9 292,6 296,6 299,2 303,0 306,2 313,3

1 χ2 221,9 235,7 249,9 262,3 269,7 271,3 273,5 277,5 285,6
FT 414,5 431,4 448,5 459,2 464,4 468,9 474,8 480,7 487,9
CR 220,8 232,7 245,9 255,3 260,6 262,0 264,3 269,8 275,6
G2 251,2 265,5 281,3 295,5 304,1 306,2 308,8 310,7 316,1

2 χ2 218,4 231,1 244,6 257,8 265,6 268,1 269,9 276,8 281,3
FT 359,6 384,3 411,4 434,7 446,8 452,8 455,8 458,1 459,8
CR 219,5 231,3 244,9 257,1 265,6 267,2 270,0 273,9 278,1
G2 236,9 251,7 264,8 280,1 292,4 295,2 300,2 303,4 307,0
χ2 214,8 226,8 240,4 254,2 262,4 264,1 268,2 274,8 281,1
FT 298,3 324,4 345,9 367,8 388,8 393,6 399,4 404,9 415,5
CR 215,9 228,1 240,5 255,3 262,2 266,6 270,4 274,4 280,0
G2 225,4 242,2 258,8 272,7 285,2 289,5 292,1 296,6 299,8

4 χ2 212,4 226,9 241,1 254,8 263,9 265,8 270,3 273,3 277,0
FT 259,0 281,7 306,3 332,2 351,5 359,3 365,1 373,6 381,2
CR 213,2 227,9 241,6 254,6 264,6 268,2 271,8 273,1 276,2
G2 219,9 236,6 251,5 264,6 272,9 277,3 279,5 286,2 293,9

5 χ2 209,5 225,0 238,9 251,4 260,5 263,0 266,1 269,3 275,8
FT 239,5 260,9 282,2 303,0 316,3 320,0 323,5 327,5 336,0
CR 210,5 225,4 239,6 251,3 260,0 262,1 266,0 269,3 278,2
G2 223,0 235,1 253,0 264,6 271,5 275,4 277,1 283,0 298,5

6 χ2 214,2 226 242,1 254,0 262,5 265,3 266,7 273,1 277,6
FT 234,6 253,1 273,8 289,8 297,4 306,8 311,3 318,6 339,1
CR 215,1 226,7 243,2 254,4 261,5 264,1 266,2 272,1 278,2
G2 218,4 232,2 247,9 260,4 271,3 274,1 280,3 283,4 291,3

7 χ2 212,2 225,3 239,7 252,6 262,1 266,2 270,3 277,5 284,1
FT 227,1 244,0 262,6 277,8 291,5 295,6 300,5 303,4 312,8
CR 212,5 225,5 240,4 253,1 263,4 265,7 270,9 275,5 282,3
G2 216,7 231,2 244,6 255,7 265,3 267,8 271,0 273,5 277,0

8 χ2 211,8 225 238,7 251,2 258,4 260,4 263,5 265,1 270,2
FT 224,1 240,6 255,5 269,9 279,4 281,9 283,8 288,9 296,9
CR 212,1 225,6 238,7 250,6 258,9 261,6 262,8 265,2 270,1
G2 214,7 232,2 245,5 261,7 270,3 271,7 274,9 278,2 284,5

9 χ2 210,3 226,5 241,0 254,6 264,8 266,8 268,9 270,6 280,5
FT 222,5 240,0 255,8 274,3 281,5 282,4 285,0 290,2 300,4
CR 210,4 226,8 241,1 255,4 264,5 266,6 268,5 271,5 279,5
G2 216,1 229,0 245,0 259,1 266,3 268,7 271,1 275,2 278,6

10 χ2 211,6 225,4 239,7 252,6 262,0 265,1 267,6 270,3 274,1
FT 222,0 236,3 254,2 267,9 276,2 278,5 280,8 285,0 289,5
CR 211,5 225,6 240,5 252,8 261,0 265,0 266,6 269,8 273,3
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8 Conclusions

In this study, we proposed a much faster alternative, which uses PatternsMethod
samples to construct the sampling distributions of the test statistic in sparse con-
tingency tables where the number of response patterns,R, is large compared to
sample size.

From the results of the simulations, for the latent class models with binary
manifest variables, using densities ofd ≤ 5, we have shown that the Type I
error probabilities are lower than5% (α < 0.05) for the likelihood ratio (G2)
and Read-Cressie (RC) statistics, using our Patterns Method proposal. In light
of this, we recommend the diagnosis of latent class models for sparse data us-
ing these statistics. In contrast, the Freeman-Tukey statistic provides acceptable
results when the data density ared ≤ 4.

In the case of data densityd ≤ 5, Pearson’s statistic
(

χ2
)

should not be used
to select latent class models using the Patterns Method, given that this has the
probability of Type I error being greater than5%. In the same way, Langeheine
et al. [20] in the context of parametric bootstrapping concluded that the Pearson
statistic puts a much more severe penalty on an observation in a cell with a very
low model-expected probability than the likelihood ratioG2 does.

As a side product, by comparing the Patterns Method and the Parametric
Bootstrap for data densityd = 2, we show that the Patterns Method has more
accurate Type I error probabilities since the likelihood ratio, Read-Cressie and
Freeman-Tukey statistics afford values ofα < 0.05. In contrast, the Parametric
Bootstrap provides values in these statistics that surpass5%. But further study
is required to be certain about these results.

The parametric bootstrap require both knowledge of advanced statistics and
this method is computationally intense since in order to obtain a stablep-value
several hundred bootstrap resamples are needed for each model the researcher
is interested in comparing. Meanwhile, the Patterns Method is presented as a
rapid, simple, and labour-saving technique to provide tables of critical values to
diagnose latent class models.

Finally, for future research, the Patterns Method will be tested for the anal-
ysis of ordinal data, in order to study the effectiveness of the latent class model
on sparse data.
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