
Telecooperation: Internet Lab.
3rd Assignment – Caching Web Proxy
Fernando Ruiz Vera - 1177767 - fruizvera@yahoo.com
You Yue - 1282746 - you@stud.tu-darmstadt.de

1 GENERAL DESCRIPTION OF THE SYSTEM.

The class VBProxyServer corresponds to the Graphic User Interface (GUI). This class
is responsible for starting the Proxy Server on a port number specified by the user.
Addtionally, the graphic user interface allows specifying the cache directory where
the files will be located. As another additional feature, the request and response
headers are shown in separated textareas. To store the path where headers and their
corresponding body contents are located, two HashTables with identical key are
provided.

In a separated Thread runs the class ProxyServer whose responsibility is listen to
incoming request and attend each request into a separated Thread. The HttpRequest
class is in charge of this task. A different HttpCommand is created according to the
request method (GET or POST), either GetCommand or PostCommand respectively.

Both command inherit from the HttpCommand interface the Execute() method. The
GetCommand verify if the requested URL is already stored at the cache. In positive
case, the response message is re-constructed here and sends to the Browser. In case
that the requested URL has not been already cached, the request is sent to the
corresponding web server and an instance of HttpResponse is created that will wait,
process and storage the response message. For the case of PostCommand, the
instance of HttpResponse waits for the response and simply sends to the client
browser.

The HttpResponse class provides three public methods. SetCacheable() to decide
when a response is cacheable, in the case of this implementation any response to a
GET request. A second method setRequestPath() that work as interface to establish
the URL to be cached. At last but not least, processResponse() is responsible to wait
for the answer, sent to the client browser and according to the class attribute
bCacheable store or not this response.

The private method storeURL() at first calculate the hashcode of the requested URL,
this one will be the key for two Hash Tables. One hash table is used to stored address
the headers files and the other one for the content body files. The key coincide in both
tables, whereas the value is calculated as follows:

 Random rndIndex = new Random();
 String sURL = serverSocket.getInetAddress().getHostName() + httpPath;
 hash = sURL.hashCode();

 UID = System.currentTimeMillis();
 index = rndIndex.nextInt(128);

 fBody = new File(strRoot + "\\B" + UID + index);
 fHeader = new File(strRoot + "\\H" + UID + index);

With the use of Random.nextInt(128) is it tried to eliminate the possible coincidence
in two subsequent requests.

+Execute()

«interface»
HttpCommand

+Execute()
+GetCommand(in osClient : java::io::OutputStream, in httpHost : string, in httpPath : string, in httpPort : int, in strHeader : string, in App : VBProxyServer)

-httpHost : string
-httpPath : string
-httpPort : int
-strHeader : string
-App : VBProxyServer

GetCommand

+Execute()
+PostCommand(in osClient : java::io::OutputStream, in httpHost : string, in httpPath : string, in httpPort : int, in strHeader : string, in strParam : string, in App : VBProxyServer)

-httpHost : string
-httpPath : string
-httpPort : int
-strHeader : string
-App : VBProxyServer

PostCommand

+write()
+flush()

java::io::OutputStream java::net::Socket

+cmdStartActionPerformed(in evt)

#htCacheBody : java::util::Hashtable
#htCacheHeader : java::util::Hashtable
-ps : ProxyServer
#strCacheDir : string

VBProxyServer

+put(in key : object, in value : object) : object
+get(in key : object) : object

java::util::Hashtable
+run() : void

«interface»
java::lang::Runnable

javax::swing::JFrame

+run()

-port : int
-App : VBProxyServer

ProxyServer1

1

+HttpRequest(in socket : java::net::Socket, in App : VBProxyServer)
+run()
-processRequest()
-readHeader(in is : java::io::InputStream) : string
-parseRequestHeader(in header : string) : int
-parseRequestLine(in requestLine : string)
-readQueryString(in isClient : java::io::InputStream) : string

-clientSocket : java::net::Socket
-methodName : string
-httpHost : string
-httpPath : string = "/"
-hostStr : string
-httpPort : int = 80

HttpRequest

implements Runnable

java::io::InputStream

+HttpResponse(in osClient : java::io::OutputStream, in serverSocket : java::net::Socket, in App : VBProxyServer)
+setCache(in bCache : bool)
+setRequestPath(in httpPath : string)
+processResponse()
-readHeader(in in : java::io::InputStream) : string
-parseResponseHeader(in header : string) : int
-readContent(in in : java::io::InputStream)
-storeURL()

-osClient : java::io::OutputStream
-serverSocket : java::net::Socket
-App : VBProxyServer
-bCacheble : bool = false
-httpPath : string
-httpHost : string
-strContent : string
-statusLine : string
-strHeader : string
-lengContent : int = 0

HttpResponse

+accept() : java::net::Socket

java::net::ServerSocket

1

*

serve

1

0..1

1

0..1

1
1

1

1

Figura 1. Static Structure - Class diagram

Figure 2 shows a GET request when there is no cache hit and the request must be sent
to the Web Server, received by the Proxy Server, send it back to the browser and
stored it at the Cache. Figure 3 shows the case when a Cache hit happens for a GET
request and there is no need to send any request to the Web Server. A third case is a
POST request where always the request is pass to the Web Server and there is no need
to ask if the response is located at the cache, see figure 4.

Figura 2. GET request - Cache missing object case

Figura 3. GET request - Cache hit object case

Figura 4. non cache - POST request case

2 WORKING WITH THE GRAPHIC USER INTERFACE.

The package com.vbcolombia.proxy contains the files required by the application.

Figura 5. Package structure

From the command line it can be executed as:
 > java -classpath "C:\" com.vbcolombia.proxy.VBProxyServer

Before starting the Proxy Server, the listening port number and the directory where
the cache files will be located need to be specified.

Every request message received by the ProxyServer is showed at the left textarea. At
the right side the response message from the Web Server are showed and in the button
textarea a historical log of cache hits is displayed.

