
Telecooperation: Internet Lab.
2nd Assignment – Peer-to-Peer Networks and Distributed Hash Tables
Fernando Ruiz Vera - 1177767 - fruizvera@yahoo.com
You Yue - 1282746 - you@stud.tu-darmstadt.de

1 GENERAL DESCRIPTION OF THE SYSTEM.

A Class for the Graphic User Interface (GUI) was created with the name DHTStorage.
This class is responsible of accepting the user commands and also display the
information concerned to the actual node, which means the id of actual, predecessor
and successor node in addition to the outgoing and incoming messages sent and
received by the actual node respectively. The class DHTStorage contains a reference
to the ChordNode class which runs in a separate thread.

Before enter into the details of the ChordNode class better is to introduce the
ChordNet Interface which provide the signature for the four methods that must be
supported by the Chord API as follows:

• public void join(String HostAddress, int port, long hash)
• public void leave()
• public void store(String name, long hash, int value)
• public int retrieve(String name, long hash)

The class ChordNode implements two interfaces. First the java::lang::Runnable
interface to allow the execution of this class in a separated thread into the GUI. The
second interface implemented by the ChordNode class is the ChordNet interface
already mentioned above. In consequence, the ChordNode class implements the
method under the contract established by the Runnable and the ChordNet interface.
To comply with the Runnable interface, the run() method is implemented where an
instance of a ServerSocket is created on the port number corresponding to the actual
node. This instance called listenSocket wait for incoming messages and is passed as a
parameter to the ChordRequest Class.

The ChordNode class works as originating point for the four operation described by
the ChordNet interface, which means that the ChordNode class create the messages
JOIN, LEAVE, STORE and RETRIEVE, wait for the corresponding answers as
JOIN_OK, DONE, OK, NOTFOUND and finally inform to the network about the
new changes with the messages NEWNODE, TRANSFER, NODEGONE. In order to
store the key-value pairs, each node contains a hash table.

In contrast to the ChordNode class, the ChordRequest class is responsible for the
decision of process an incoming message or simply route it forward or backward. For
certain group of messages (JOIN, STORE, RETRIEVE), the decision is made after
parsing the message and check the hash value passed as parameter. For other
messages as (NEWNODE, LEAVE, NODEGONE, TRANSFER), that have been sent
over a direct connection to the destination node are processed without check any
special condition.

In order to facilitate the management of the actual, predecessor and successor
information in each node, another class called nodeInfo was created which has the
hashcode, IP address and port number of each of them; and provide read and write
access to them via get and set methods.

In the figure 1, it is showed the Class diagram with the static structure of the system.

Figura 1. Static Structure - Class diagram

Figure 2 shows the interaction between classes for the particular case of a join
operation. Even this is a particular case the rest of operation work in a similar way. A
detail not showed in this sequence diagram is the case where a message needs to be
rerouted to the successor node and it is waited the answer message to be routed back.

Figura 2. Class interaction for a join operation.

2 SPECIAL DESIGN CHOICES

2.1 Hash calculation for Node’s IDs and keys.

For both Node’s identifiers and key of the stored strings, the calculation of the hash
code must return an unsigned value. The following fragment of code shows how it is
done for the IP Address; the same procedure is made for the key.

 String sAddress = sIPAddress + ":" + Integer.toString(iPort);

 lID = sAddress.hashCode() % Long.MAX_VALUE;
 if (lID < 0)
 lID += Long.MAX_VALUE;

From certain length of the string the .hashCode() method return negative values in
order to place them into the positive range the maximum of a Long type is added.

2.2 Initial State of nodes.

Right after the execution of the GUI main program allocated in the DHTStorage class,
an instance of the ChordNode class is created and placed into a Thread. The
ChordNode constructor method initializes the three references of type nodeInfo with
the same information. One of these it is used to store the actual node information itself
and the other two correspond to the predecessor and successor. Figure 2, left.

Figura 3. Initial state of a node (left). Interconnection state of the first two nodes (right).

2.3 Interconnection of the first two nodes.
Having two nodes initially connected with them selves, a join message is sent form
one to the other. It is assumed that the nodes do not contain any key-value pairs in
their corresponding hash tables at the initial state. Hence during the join transaction
there is no TRANSFER message and without need to check any condition the
predecessor and successor of each node point to the other. Figure 2, right.

3 WORKING WITH THE GRAPHIC USER INTERFACE.

In order to execute the main application a parameter with the port number where is
desired to listen to the messages coming form other nodes must be provided. Also
must be taken into account that a package with the name com.vbcolombia.p2p was
created with the following simple structure as it is showed in the figure 3.

Figura 4. Package structure

From the command line it can be executed as:
 > java -classpath "C:\" com.vbcolombia.p2p.DHTStorage <port number>

If the idea is run the program with the real values for nodes identifiers and key-value
pairs the left side manage this kind of operation. At the right side three options exists
for testing purposes whose operation is explained subsequently.

• Join with Id: this option is used when a node is desired to join the network
with a specific identifier. For this case the identifier is replaced by the value
given as Id and the Join message is sent to the specified node in the
Connection panel.

• Retrieve this Id: this option create a RETRIEVE message with the value given
as Id. If the value is found, it is showed in the Retrieve panel. Ignores the hash
calculation of the string Name at the Storage panel

• Store at this Id: this option construct the STORE message with the value
entered in the Storage panel and the provided Id. Ignores the hash calculation
of the string Name at the Storage panel.

Every message that it is sent or received for a node is reflected in the textarea at the
Local History panel. At any time, this textarea can be clean it up by clicking the Clear
History button.

To finish, any change on the information about predecessor, successor and current
node (only change when the option Join with Id is used), is reflected at the label of the
Node Information panel.

