EEE 598D: Analog Filter and Signal Processing Circuits
Instructor: Dr. Hongjiang Song
Homework 1

Fuding Ge, Registered at ASU east

Problem 1:
For the following filters with s-domain pole/zero location shown in the diagrams, (i) find the transfer function of the filters, (ii) sketch the gain and phase responses of the filters.

(A)
(Assuming $|\mathrm{H}(\mathrm{j} \omega)|_{\mid \omega=0}=1$)

(C)
(Assuming $|\mathrm{H}(\mathrm{j} \omega)|_{\omega=1}=1$)

(B)
(Assuming $|\mathrm{H}(\mathrm{j} \omega)|_{\omega=1}=1$)

(D)
(Assuming $|\mathrm{H}(\mathrm{j} \omega)|_{\omega=0}=1$)

(E)
(Assuming $|\mathrm{H}(\mathrm{j} \omega)|_{\omega=0}=1$)

Answer:

(A): The system has two poles at $p 1,2=-\frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} j$. The transfer function can be generally written as:

$$
\begin{gathered}
H(s)=\frac{K}{(s-p 1)(s-p 2)} \\
H(s)=\frac{K}{\left[s-\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} j\right)\right]\left[s-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} j\right)\right]}=\frac{K}{s^{2}+\sqrt{2} s+1}
\end{gathered}
$$

Because $|H(j \omega)|_{\omega=0}=1$, so $\mathrm{K}=1$. Then we have:

$$
H(s)=\frac{1}{s^{2}+\sqrt{2} s+1}
$$

It is a low pass filter with natural frequency $\omega_{0}=1$ and $Q=\frac{\sqrt{2}}{2}$. Its bode plot is shown below:

(B): The system has two poles at $p 1,2=-\frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} j$ and one zero at origin. The transfer function can be generally written as:

$$
\begin{gathered}
H(s)=\frac{K s}{(s-p 1)(s-p 2)} \\
H(s)=\frac{K s}{\left[s-\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} j\right)\right]\left[s-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} j\right)\right]}=\frac{K s}{s^{2}+\sqrt{2} s+1}
\end{gathered}
$$

Because $|H(j \omega)|_{\omega=1}=1$, so $K=\sqrt{2}$. Then we have:

$$
H(s)=\frac{\sqrt{2} s}{s^{2}+\sqrt{2} s+1}
$$

It is a band pass filter with the bode plot shown below:

(C): The system has two poles at $p 1,2=-\frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} j$ and two zeros at the origin. The transfer function can be generally written as:

$$
\begin{gathered}
H(s)=\frac{K s^{2}}{(s-p 1)(s-p 2)} \\
H(s)=\frac{K s^{2}}{\left[s-\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} j\right)\right]\left[s-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} j\right)\right]}=\frac{K s^{2}}{s^{2}+\sqrt{2} s+1}
\end{gathered}
$$

Because $|H(j \omega)|_{\omega=1}=1$, we have:

$$
|H(s)|_{\omega=1}=\left|\frac{K j^{2}}{j^{2}+\sqrt{2} j+1}\right|=\left|\frac{-K}{\sqrt{2} j}\right|=1
$$

So we have $K=\sqrt{2}$, and:

$$
H(s)=\frac{\sqrt{2} s^{2}}{s^{2}+\sqrt{2} s+1}
$$

It has a high pass characteristic. Its bode plot is shown in the following figure:

(D): The system has two poles at $p 1,2=-\frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} j$ and two zeros at $z 1,2=\frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} j$. The transfer function can be generally written as:

$$
\begin{gathered}
H(s)=\frac{K(s-z 1)(s-z 2)}{(s-p 1)(s-p 2)} \\
H(s)=\frac{K\left[s-\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} j\right)\right]\left[s-\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} j\right)\right]}{\left[s-\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} j\right)\right]\left[s-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} j\right)\right]}=\frac{K\left(s^{2}-\sqrt{2} s+1\right)}{s^{2}+\sqrt{2} s+1}
\end{gathered}
$$

Because $|H(j \omega)|_{\omega=0}=1$, so $\mathrm{K}=1$. Then we have:

$$
H(s)=\frac{s^{2}-\sqrt{2} s+1}{s^{2}+\sqrt{2} s+1}
$$

This is a all pass filter. Its bode plot is shown below:

(E): The system has two poles at $p 1,2=-\frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} j$ and two zeros at $z 1,2= \pm j \omega$. The transfer function can be generally written as:

$$
\begin{gathered}
H(s)=\frac{K(s-z 1)(s-z 2)}{(s-p 1)(s-p 2)} \\
H(s)=\frac{K(s-j \omega)(s+j \omega)}{\left[s-\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} j\right)\right]\left[s-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} j\right)\right]}=\frac{K\left(s^{2}+1\right)}{s^{2}+\sqrt{2} s+1}
\end{gathered}
$$

Because $|H(j \omega)|_{\omega=0}=1$, so $\mathrm{K}=1$. Then we have:

$$
H(s)=\frac{s^{2}+1}{s^{2}+\sqrt{2} s+1}
$$

It shows a notch filter characteristic, as shown below:

Problem 2.

A practical VLSI active RC filter is shown in figure below. Derive the s-domain transfer function and simulate the ac responses (gain and phase) of the filter using a circuit simulate (spice/pspice/hspice or other.) with the operation amplifier provided.

Answer:

See the following figure, we define two nodes: V1 and V2.

See the above figure. The node equation at V1 is:

$$
\begin{equation*}
\frac{V 1-V i n}{R 1}=(V 2-V 1) s C 2-V 1 s C 1+\frac{(V o-V 1)}{R 3} \tag{2.1}
\end{equation*}
$$

Node equation at V2:

$$
\begin{equation*}
(V 2-V 1) s C 2+\frac{V 2}{R 2}=0 \tag{2.2}
\end{equation*}
$$

Equation at node Vo:

$$
\begin{equation*}
\frac{(V o-V 2)}{R 4}+\frac{V o-V 1}{R 3}=0 \tag{2.3}
\end{equation*}
$$

We also have:

$$
\begin{equation*}
\frac{V 2}{R 5}=\frac{V o-V 2}{R 4} \tag{2.4}
\end{equation*}
$$

From (2.4) we get:

$$
\begin{equation*}
V 2=\frac{V o \cdot R 5}{R 4+R 5} \tag{2.6}
\end{equation*}
$$

Using (2.6) and (2.2) we get:

$$
\begin{equation*}
V 1=\frac{V o \cdot R 5}{R 4+R 5}\left(\frac{1+s C 2 R 2}{s C 2 R 5}\right) \tag{2.7}
\end{equation*}
$$

Plug (2.6) and (2.7) into (2.1) we get:

$$
\begin{gather*}
V o\left[\frac{R 5}{(R 4+R 5) R 2}+\frac{R 5}{(R 4+R 5)} \frac{1+s C 2 R 2}{s C 2 R 2}\left(\frac{1}{R 1}+s C 1+\frac{1}{R 3}\right)-\frac{1}{R 3}\right]=\frac{V i n}{R 1} \tag{2.8}\\
\frac{V o}{V i n}=\frac{R 4+R 5}{R 1 R 5} \frac{1}{\left[\frac{1}{R 2}+\frac{1+s C 2 R 2}{s C 2 R 2}\left(\frac{1}{R 1}+s C 1+\frac{1}{R 3}\right)\right]-\frac{R 4+R 5}{R 3 R 5}} \tag{2.9}
\end{gather*}
$$

$$
\begin{gather*}
\frac{V o}{V i n}=\frac{R 4+R 5}{R 1 R 5} \frac{s C 2 R 2}{\left[\frac{s C 2 R 2}{R 2}+(1+s C 2 R 2)\left(\frac{1}{R 1}+s C 1+\frac{1}{R 3}\right)\right]-s C 2 R 2 \frac{R 4+R 5}{R 3 R 5}} \tag{2/10}\\
\frac{V o}{\operatorname{Vin}}=\frac{R 4+R 5}{R 1 R 5} \frac{s C 2 R 2}{s^{2} C 1 C 2 R 2+s\left[\frac{C 2 R 2}{R 2}+C 2 R 2\left(\frac{1}{R 1}+\frac{1}{R 3}\right)-C 2 R 2 \frac{R 4+R 5}{R 3 R 5}\right]+\frac{1}{R 1}+\frac{1}{R 3}} \tag{2.11}
\end{gather*}
$$

Which can be written as:

$$
\begin{equation*}
\frac{V o}{V i n}=\frac{R 4+R 5}{R 1 R 5 C 1} \frac{s}{s^{2}+s \frac{1}{C 1}\left[\frac{1}{R 2}+\left(\frac{1}{R 1}+\frac{1}{R 3}\right)-\frac{R 4+R 5}{R 3 R 5}\right]+\left(\frac{1}{R 1}+\frac{1}{R 3}\right) \frac{1}{C 1 C 2 R 2}} \tag{2.12}
\end{equation*}
$$

It can be seen that it is a second order system. It has a band-pass characteristic.
The following figure shows the actually schematic of the amplifier used for simulation:

Note that there is no negative bias. The following figure shows the test circuit of the opamp. The power supply is 3 V , and we use $\mathrm{Vcc} / 2$ as the common mode voltage.

The following figure is the Bode plot of the amplifier. The load is 10 K Ohms.

Bode plot of the Opamp with a 10K Ohms load.

Test bench circuit of the filter. Note that the reference of the input AC signal is Vcc/2=1.5.

Output character of the filter. The ac magnitude of the input signal is 1 V . Clearly it shows a bandpass characteristic.

Keep the value of R 5 to be constant as 10 K Ohms, the value of R 4 changed. The natural frequency keep constant but the Q value changes a lot.

Keep R4/R5 to be constant, the absolute values of R4 and R5 changes ($\mathrm{R} 5=5 \mathrm{~K}, 10 \mathrm{~K}$ and 20 K Ohms). The natural frequency and Q value do not change with the change of R4 and R5.

Change the value of C 1 and C 2 and keep other component constant. It can bee seen that the natural frequency changes with the change of C 1 and C 2 .

Keep C1C2R2 to be constant. It can be see that the natural frequency also keeps to be constant but the Q value changes. This is consistent with Equation (2.12).

