

EEE598D: Analog Filter & Signal Processing Circuits

Instructor: Dr. Hongjiang Song

Department of Electrical Engineering Arizona State University

Thursday February 28, 2002

Today:

Frequency Scaling and Transformation

- Lowpass Prototype Filter
- Frequency Scaling
- Frequency Transformation

Lowpass Prototype Filter

- It is a normalized filter.
- Passband $0 < \Omega < 1$
- Stopband $1 < \Omega$

Frequency Scaling

• A lowpass filter with cutoff frequency ω_s can be built from the prototype lowpass filter

Frequency Scaling

by scaling the the values of RLC with respect to the RLC of normalize (prototype) filter in the following way:

Dr. Hongjiang Song, Arizona State University

Dr. Hongjiang Song, Arizona State University

Typical Component Values in IC

Tolerances:

Resistor: Capacitor: Inductor: $10 \sim 40\%$ absolute 0.1 ~ 1% for ratio $50 \sim 100k\Omega$ 0.5 ~ 50pf <10nH (lossy)

Frequency Transformation

- Lowpass-to-highpass transformation
- Lowpass-to-bandpass transformation
- Lowpass-to-bandstop transformation
- Lowpass-to-multi-bandpass transformation

Lowpass-To-Highpass Transformation $\Omega = -\frac{\omega_o}{\omega} \quad or \quad S = \frac{\omega_o}{s}$ ω S $|H(j\omega)|$ $|H(j\Omega)|$ 1 Ω ω ω A) Lowpass prototype B) Highpass normalized

Lowpass-To-Highpass Transformation

• Location of poles of the transfer function

$$p_{LP} \Rightarrow \frac{p_{HP}}{\omega_o} = \frac{1}{p_{LP}} = \left|\frac{1}{p_{LP}}\right| e^{-\theta_{PL}}$$

Example: LP-to-HP Transformation

• LP filter:

$$H_L(s) = \frac{1}{1+s}$$

• Transformation

$$s \Rightarrow \frac{1}{s}$$

1

• LP filter

$$H_{H}(s) = H_{L}(\Omega)|_{\Omega = 1/s} = \frac{1}{1 + 1/s} = \frac{s}{1 + s}$$

Lowpass-To-Bandpass Transformation

Dr. Hongjiang Song, Arizona State University

Pole Locations

• For the first-order lowpass prototype:

$$s - p_{Lp} = 0 \Longrightarrow Q(\frac{s}{\omega_o} + \frac{\omega_o}{s}) - p_{Lp} = 0$$

$$\Rightarrow \left(\frac{s}{\omega_o}\right)^2 - \frac{p_{Lp}}{Q} \left(\frac{s}{\omega_o}\right) + 1 = 0$$

$$\frac{p_{BP}}{\omega_o} = \left(\frac{p_{LP}}{2Q} \pm j \sqrt{1 - \left(\frac{p_{LP}}{2Q}\right)^2}\right)$$

Pole Locations

• For the second-order lowpass prototype:

$$s^{2} + \frac{s}{Q_{LP}} + 1 = (s - p_{LP1})(s - p_{LP2}) = 0$$

$$\Rightarrow (Q(\frac{s}{\omega_{o}} + \frac{\omega_{o}}{s}) - p_{Lp1})(Q(\frac{s}{\omega_{o}} + \frac{\omega_{o}}{s}) - p_{Lp2}) = 0$$

$$\Rightarrow \{\frac{p_{BP1}}{\omega_{o}} = \frac{p_{LP1}}{2Q} \pm \sqrt{(\frac{p_{LP1}}{2Q})^{2} - 1}$$

$$\Rightarrow \{\frac{p_{BP2}}{\omega_{o}} = \frac{p_{LP2}}{2Q} \pm \sqrt{(\frac{p_{LP2}}{2Q})^{2} - 1}$$

0

Lowpass-To-Bandstop Transformation

Dr. Hongjiang Song, Arizona State University

Pole Location

• For first-order lowpass prototype

Dr. Hongjiang Song, Arizona State University

Pole Location

Pole Locations

• For the second-order lowpass prototype:

$$s^{2} + \frac{s}{Q_{LP}} + 1 = (s - p_{LP1})(s - p_{LP2}) = 0$$

$$\Rightarrow (\frac{1}{Q(\frac{s}{\omega_{o}} + \frac{\omega_{o}}{s})} - p_{Lp1})(\frac{1}{Q(\frac{s}{\omega_{o}} + \frac{\omega_{o}}{s})} - p_{Lp2}) = 0$$

$$\Rightarrow \{\frac{p_{BP1}}{\omega_{o}} = \frac{1}{2Qp_{LP1}} \pm \sqrt{(\frac{1}{2Qp_{LP1}})^{2} - 1}$$

$$\Rightarrow \{\frac{p_{BP2}}{\omega_{o}} = \frac{1}{2Qp_{LP2}} \pm \sqrt{(\frac{1}{2Qp_{LP2}})^{2} - 1}$$

0

Dr. Hongjiang Song, Arizona State University

Lowpass-To-Multi-Passband Transformation

$$\Omega = \frac{K}{\omega} \prod_{k=1}^{n} \frac{(\omega^{2} - \omega^{2}_{0(2k-1)})}{(\omega^{2} - \omega^{2}_{0(2k)})}$$
$$S = \frac{K}{s} \prod_{k=1}^{n} \frac{(s^{2} + \omega^{2}_{0(2k-1)})}{(s^{2} + \omega^{2}_{0(2k)})}$$