

1

EEE598D: Analog Filters & Signal Processing Circuits

Instructor: Dr. Hongjiang Song

Department of Electrical Engineering Arizona State University

Dr. Hongjiang Song, Arizona State University

Tuesday March 5, 2002

Today: Active RC and MOS-C Filter Design
Basic Filter Structures
First-Order Filters
Second-Order Filters
Cascaded Design of High-Order Filters

Basic Circuit Elements

- Opamps
 - Isolation/Decoupling between stages
 - Gain
 - Inversion
- Capacitor
 - Integration
- Resistor/MOS-VCR
 - Linear conversion
 - Tuning

General CT Filter Structure

Basic Filter Elements

- Integrator
- Adder

 \checkmark

V

Active RC Integrator Structures

A) Inverted input

B) Inverted output

Dr. Hongjiang Song, Arizona State University

C) Internal inversion

MOS-C Integrator Structures (I)

C) Internal inversion

A) Inverted input

Single-end & Single Transistor

- Simple
- Small
- •Tunable
- Poor Linearity
- Poor PSRR

MOS-C Integrator Structures (II)

- Fully Differential 2-Transistor
 - Improved Linearity
 - Improved PSRR
 - Tunable

MOS-C Integrator Structures (III)

- Fully Differential 4-Transistor
 - Better Linearity
 - Better PSRR
 - Tunable
 - Large Area

Active RC Adder/Subtractor Structures

A) Inverted Addition

D) Differential addition/subtraction

Dr. Hongjiang Song, Arizona State University

MOS-C Adder/Subtractor Structures (I)

A) Inverted addition

B) Subtraction

Dr. Hongjiang Song, Arizona State University

Single-end & Single Transistor

- Simple
- Small
- Tunable
- Poor Accuracy
- Poor PSRR

MOS-C Adder/Subtractor Structures (II)

- Fully Differential 2-Transistor
 - Improved Linearity
 - Improved PSRR
 - Tunable

$$y = x_1 + x_2$$

MOS-C Adder/Subtractor Structures (III)

- Fully Differential 4-Transistor
 - Better Linearity
 - Better PSRR
 - Tunable
 - Large Area

$$y = x_1 + x_2$$

MOS-C Adder/Subtractor Structures (IV)

- Single-ended 4-Transistor
 - Good Linearity
 - Tunable
 - Smaller area

 $y = x_1 + x_2 - x_3$

Active RC Scaler Structures

A) Inverted

C) Fully Differential

Dr. Hongjiang Song, Arizona State University

MOS-C Scaler Structures (I)

• Fully Differential 2-Transistor

$$\frac{y}{X} = \frac{\beta_1 (V_{c1} - V_T)}{\beta_2 (V_{c2} - V_T)}$$

MOS-C Scaler Structures (II)

• Fully Differential 4-Transistor VCR

MOS-C Scaler Structures (III)

• Single-ended 4-Transistor VCR

$$\frac{y}{X} = \frac{\beta_1 (V_{c1} - V_{c2})}{\beta_2 (V_{c3} - V_{c4})}$$

First-Order Filters

- TF and SFG

$$H(s) = K \frac{s-z}{s-p}$$

pole :s =
$$p < 0$$

zero: s = z

First-Order Filters

• Bode Plots

A) $|\mathbf{p}| < |\mathbf{z}|, K > 0$

B) |p| > |z|, K > 0

First-Order Filters

• Bode Plots

First-Order Active RC Filters

• Single-ended

First-Order Active RC Filters

• Fully differential

First-Order MOS-C Filters

• Fully differential 2-transistor VCR

First-Order MOS-C Filters

• Fully differential 4-transistor VCR

• LP prototype

• HP

• BP

Dr. Hongjiang Song, Arizona State University

• **BS**

• AP

• Bode Plots (LP)

• Bode Plots (LP)

Dr. Hongjiang Song, Arizona State University

• Bode Plots (HP)

$$T_{\rm HP} = \frac{s^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$$

• Single-ended

• Fully differential

Second-Order MOS-C Filters

• Fully differential 2-transistor

$$H_{LP}(s) = \frac{K}{\left(\frac{s}{\omega_o}\right)^2 + \frac{1}{Q}\left(\frac{s}{\omega_o}\right) + 1}$$

$$\omega_o = 1 / RC$$

$$K = 1 + R_B / R_A$$

$$Q = 1 / (3 - K)$$

Figure 3: DDA Based Fully-Differential Sallen-Key Filter

• Delyiannis-Friend Circuits

Cascade Design of High Order Filters

• In general, a high order filter can be implemented by cascading of the first- and second-order filters:

