

PARAMETER	VALUE	
Filter order	2	_
-3dB Bandwidth (Hz)	0.3	_
$HD_3 @ V_{in} = 150 \text{mVpp}$ (dB)	-45	• HD2 ~ -33dBm ~ 2.2 %
Total input noise (μVrms)	15.6	
$\frac{\text{SNR (dB)}@ HD_3 = -}{45 \text{dB}}$	70.5	
Power consumption (uW)	8.18	
Power supply (V)	±1.35	
Total filter area (mm ²)	0.06	_

$$i_{f} = \frac{i_{1}\frac{g_{m_{2}}}{g_{m_{1}}} - i_{2}}{g_{m_{1}}(g_{m_{3}} + sC) - g_{m_{2}}g_{m_{4}}} \bullet g_{m_{1}}g_{m_{4}}$$
$$i_{f} = g_{m_{1}}g_{m_{4}}\frac{i_{1}\frac{g_{m_{2}}}{g_{m_{1}}} - i_{2}}{g_{m_{1}}g_{m_{3}} - g_{m_{2}}g_{m_{4}} + g_{m_{1}}sC}$$
$$a) \text{ Lossless Integrator}$$
$$i_{f} = \frac{g_{m_{4}}}{i_{f}}\frac{g_{m_{4}}}{g_{m_{4}}}\frac$$

b) Lossy Integrator $g_{m_1}g_{m_3} > g_{m_2}g_{m_4} \quad , \quad g_{m_1} = kg_{m_2} , \quad g_{m_3} = kg_{m_4}$ $i_f = \frac{k}{k^2 - 1} \frac{ki_1 - i_2}{1 + \frac{sC}{g_{m_4}} \frac{k^2 - 1}{k}} \quad , \quad k > 1$ i.e. k = 2 $i_f = \frac{2}{3} \frac{2i_1 - i_2}{1 + \frac{sC}{g_{m_4}} \frac{3}{2}}$ If the parasitic capacitances and the output conductances are considered, then $i_f = \frac{-k_1(s - z_1)i_1}{(s + p_1)(s + p_2)} - \frac{k_2(s + z_2)}{(s + p_1)(s + p_2)}$

Where

$$k_{1} = g_{0}/C_{1} , k_{2} = g_{m}/C_{2}$$

$$p_{1} = 4g_{0}/C_{2} , p_{2} = g_{m}/C_{1}$$

$$z_{1} = \frac{g_{m}}{C_{2}} \frac{g_{m}}{g_{0}} , z_{2} = \frac{g_{m} + g_{0}}{C_{1}}$$
All transistors are equal, and C₁ and C₂ are the lumped nodal capacitances associated with nodes 1 and 2. Note that p₁ moves from the origin to
$$p_{1} \rightarrow \frac{\overline{w_{0}}}{\alpha} = \frac{\overline{c_{2}}}{\overline{g_{m}}} = \frac{g_{m3} + g_{0}}{g_{m} - C_{2}}$$
And
$$Q = -\frac{g_{m1} - C_{2}}{c_{1} - C_{1}}$$

Q≈^{gml} CI

$A_{dm}(0)$ $\frac{g_m}{2g_0}$ $\frac{g_m}{6g_0}$ $\frac{g_m}{6g_0}$ $A_{cm}(0)$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{g_0}{2g_m}$ CMRR(0) $\frac{g_m}{g_0}$ $\frac{g_m}{3g_0}$ $\frac{2}{g_m^2}$
$A_{cm}(0)$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{g_0}{2g_m}$ CMRR(0) $\frac{g_m}{g_0}$ $\frac{g_m}{3g_0}$ $\frac{g_m}{2g_m}$
CMRR(0) $\frac{g_{\rm m}}{g_0}$ $\frac{g_{\rm m}}{3g_0}$ $\frac{2}{g_{\rm m}^2}$
CMRR(∞)

Summary of the Results						
	$\omega_0 = \sqrt{\frac{\varepsilon m_A}{C_O}} \omega_{p_A} .$	$\sqrt{1-\frac{1}{N^2}}$				
$Q = \frac{\omega_{p_A}}{\omega_o} \left[1 + \frac{1}{N} - \frac{1}{N+1} \right] - \frac{\omega_o}{2\omega_{p_H}} \left[1 - \frac{1}{N} \right]$						
DEPENDENCE OF Q and with N .						
N	f ₀ /MHz	z Q				
∞	16.45	56.66				
15	16.41	40.90				
7.0	16.28	27.72				
3.0	15.50	13.83				
$C_m = 20 pF, C_0 = 1 pF,$	$g_{mA} = 850 \mu A/V, f_{1}$	PH=75MHz and	$f_{PA} = 2MHz$			
Where ω_{PH}	is the high frequency	pole of mirror M4	, M4P.			

$$\begin{aligned} & \underline{\text{Appendix: Derivation of Expressions}} \\ & N = \frac{g_{M_A}^{\circ}}{g_{M_B}^{\circ}} = \frac{\omega_{P_A}}{\omega_{P_B}} \\ & \omega_0 = \sqrt{\frac{g_{M_A}}{C_0}} \omega_{P_A} \sqrt{\left(1 - \frac{1}{N^2}\right)} \\ & \tan^{-1} x = \frac{\pi}{2} - \tan^{-1} \frac{1}{x} \\ & \tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \\ & \Phi(\omega) = \frac{\omega_{P_A}}{\omega} \left[1 + \frac{1}{N} - \frac{1}{N+1}\right] - \frac{\omega}{2\omega_{PH}} \left[1 - \frac{1}{N}\right] \\ & Q = \frac{1}{\frac{\omega_{P_A}}{\omega_0} \left[1 + \frac{1}{N} - \frac{1}{N+1}\right] - \frac{\omega_0}{2\omega_{PH}} \left[1 - \frac{1}{N}\right]} \\ & Q(N \to \infty) = \frac{1}{\frac{\omega_{P_A}}{\omega_0} - \frac{\omega_0}{2\omega_{PH}}} \end{aligned}$$

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>