









| ALCULATED PARAMETER VALUES                                                     | FOR NON-LINEAR MACROMODEL            |
|--------------------------------------------------------------------------------|--------------------------------------|
|                                                                                |                                      |
|                                                                                |                                      |
| Element                                                                        | Value                                |
| C <sub>m</sub>                                                                 | 27.88 <i>f</i> F                     |
| C <sub>d</sub>                                                                 | 72.70 <i>f</i> F                     |
| R <sub>d</sub>                                                                 | 2128.50Ω                             |
| R <sub>1</sub> =R <sub>2</sub> =R <sub>3</sub> =R <sub>4</sub> =R <sub>5</sub> | 1ΚΩ                                  |
| $g_{ml}=g_{m2}=g_{m3}=g_{m4}=g_{m0}$                                           | 1mmhos                               |
| L1                                                                             | 125.60µH                             |
| L <sub>2</sub>                                                                 | 57.38µH                              |
| C3                                                                             | 2.83pF                               |
| L <sub>4</sub>                                                                 | Not used                             |
| C <sub>5</sub>                                                                 | 2.05pF                               |
| Ro                                                                             | 2.17MΩ                               |
| Co                                                                             | 109.88 <b>/</b> F                    |
| I <sub>dm</sub>                                                                | g <sub>mdm</sub> =590.04 µA/V        |
| I <sub>cm</sub>                                                                | g <sub>mcn</sub> =56.41 <b>η</b> A/V |
| V <sub>os</sub>                                                                | -1.44mV                              |
|                                                                                |                                      |

| Parameter                                               | Simulated Value   |
|---------------------------------------------------------|-------------------|
| G <sub>mdn</sub> DM Transconductance                    | 596.04 mA/V       |
| G <sub>mcm</sub> CMTransconductance                     | 56.41 hA/V        |
| A <sub>whn</sub> DM V/V Gain @ DC                       | 1239.40 @ 62.2dB  |
| CMRR CM Rejection Ratio                                 | 10565.95 @ 80.4dB |
| R Output Resistance                                     | 2.17 M W          |
| f. Phase Error @ 1MHz                                   | 1.750             |
| $\mathbf{w}_{-1}$ Dom. Pole (2 $\mathbf{n}f_{-1}$ )     | 2n(666.95 KHz)    |
| $\mathbf{w}_{-2} = 2^{nd} pole (2 \mathbf{n}_{-2})$     | 2 n(56.16 MHz)    |
| $\mathbf{w}_{n2} = 3^{rd} pole (2 \mathbf{n}_{n2})$     | 2 r(77.69 MHz)    |
| $\mathbf{w}_{ij} = Zero\left(2 \mathbf{n}f_{ij}\right)$ | 2 n(77.94 MHz)    |
| $\mathbf{w} = 1^{st} CMZero (2 \mathbf{n}f_{-})$        | 2n(813.67 KHz)    |
| $W_{2} = 2^{nd} CMZero (2 \pi f_{2})$                   | 2n(2.77 MHz)      |
| $Z_{1}$ , $DMZ_{1}$ (Real part                          | 1112.10W          |
| Z., DMZ, @Imag.                                         | -1.58 E09         |
| Z <sub>im</sub> CM Z <sub>in</sub> @ LF                 | 2.85 E09          |
| Z <sub>1</sub> CM Z <sub>1</sub> : Phase                | 900               |



















































| Structure/<br>Figure | Rout                             | Min $V_{DD}$ *                     |                               |
|----------------------|----------------------------------|------------------------------------|-------------------------------|
| Simple/1(a)          | $\frac{1}{g_{del}}$              | $\sqrt{\frac{2I_B}{k}}$ +          | $V_{sat,I_B}$                 |
| Cascode/l(b)         | $\frac{g_{m2}}{g_{ds1}}$         | $(1+m)\sqrt{\frac{2I_B}{k}}$       | $+ V_{sat,I_B}$               |
| Enhanced/1(c)        | $\frac{Ag_{m2}}{g_{ds1}}g_{ds2}$ | $(1+m)\sqrt{\frac{2I_B}{k}}$       | $+ V_{satI_B}$                |
| Folded/1(d)          | $\frac{g_{m2}}{g_{ds1} g_{ds2}}$ | $\sqrt{\frac{2I_B}{I}} + V_{Tp} +$ | V <sub>satI<sub>p</sub></sub> |











$$V_0 \left[ sC_2 + \frac{g_{m1}g_{m2}}{sC_1} + g_{m3} \right] = \frac{g_{m1}g_{m2}}{sC_1} V_i$$

$$H_{LP}(s) = \frac{V_0}{V_i} = \frac{g_{m1}g_{m2}}{s^2C_1C_2 + sC_1g_{m3} + g_{m1}g_{m2}} = \frac{\frac{g_{m1}g_{m2}}{C_1C_2}}{s^2 + s\frac{g_{m3}g_{m2}}{C_2} + \frac{g_{m1}g_{m2}}{C_1C_2}}$$

$$\omega_0^2 = \frac{g_{m1}g_{m2}}{C_1C_2} , \quad BW = \frac{\omega_0}{Q} = \frac{g_{m3}}{C_2}$$

$$Q = \frac{1}{g_{m3}} \sqrt{\frac{g_{m1}g_{m2}C_2}{C_1}} = \frac{C_2\omega_0}{g_{m3}}$$

Now let's assume the transconductance is characterized by:

$$\begin{split} g_m &= g_{mo} e^{-s/\omega_p} \cong g_{mo} \big( l - s/\omega_p \big) \text{ for } \omega_p << \omega_o \,. \end{split}$$
 Under this condition the excess phase can be expressed as  $\phi_E \equiv \omega_o \,/\omega_p. \\ \text{ Note that ideally } \phi_E &= 0^0. \end{split}$ 

then,

$$\begin{split} H_{LP}(s) &= \frac{g_{1001}g_{1002}(1-s/\omega_{p1})(1-s/\omega_{p2})}{s^2C_1C_2 + sC_1g_{1003}(1-s/\omega_{p3}) + g_{1001}g_{1002}(1-s/\omega_{p1})(1-s/\omega_{p2})} \\ D(s) &= s^2C_1C_2 + sC_1g_{1003} - s^2\frac{C_1g_{1003}}{\omega_{p3}} + g_{1001}g_{1002}\left(1-s\left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right) + \frac{s^2}{\omega_{p1}\omega_{p2}}\right) \\ D(s) &= s^2\left\{C_1C_2 - \frac{C_1g_{1003}}{\omega_{p3}} + \frac{g_{1001}g_{1002}}{\omega_{p1}\omega_{p2}}\right\} + s\left\{C_1g_{1003} - \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right)g_{1001}g_{1002}\right\} + g_{1001}g_{1002}\right\} \\ \end{split}$$

Then the  $% \omega_{0a}$  actual  $\omega_{0a}$  and  $BW_{a}$  become

$$\omega_{0a}^{2} = \frac{g_{mo} \, 1g_{mo} \, 2}{C_{1}C_{2} + \frac{g_{mo} \, 1g_{mo} \, 2}{\omega_{p1}\omega_{p2}} - \frac{C_{1}g_{mo} \, 3}{\omega_{p3}}}$$
$$BW_{a} = \frac{\omega_{0a}}{Q_{a}} = \frac{C_{1}g_{mo} \, 3 - \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right)g_{mo} \, 1g_{mo} \, 2}{C_{1}C_{2} - \frac{C_{1}g_{mo} \, 3}{\omega_{p3}} + \frac{1}{\omega_{p1}\omega_{p2}}}$$

Let us also assume that 
$$\omega_{p1} = \omega_{p2} = \omega_{p}$$
, then  $\omega_{oa} \equiv \omega_{o}$ , thus,  

$$BW_{a} = \frac{\omega_{oa}}{Q_{a}} = \frac{C_{1}g_{mo3} - \frac{2}{\omega_{p1}}g_{mo1}g_{mo2}}{C_{1}C_{2} - \frac{C_{1}g_{mo3}}{\omega_{p}} + \frac{1}{\omega_{p2}^{2}}} = \frac{C_{1}g_{mo3} - \frac{2}{\omega_{p}}g_{mo1}g_{mo2} 2}{C_{1}C_{2}}$$

$$BW_{a} \equiv \frac{g_{mo3}}{C_{2}} - \frac{g_{mo1}g_{mo2}}{C_{1}C_{2}} - \frac{2}{\omega_{p1}} = BW - \omega_{oa}^{2} \cdot \frac{2}{\omega_{p1}} = BW - \frac{2\omega_{oa}^{2}}{\omega_{p1}}$$

$$Q_{a} = \frac{\frac{\omega_{oa}}{BW_{a}}}{1 - \frac{C_{2}\omega_{oa}}{g_{m3}} - \frac{2\omega_{oa}}{\omega_{p1}}} = \frac{Q}{1 - \frac{2\omega_{oa}}{\omega_{p1}}}$$

$$Q_{a} = \frac{\frac{C_{2}\omega_{oa}}{g_{m3}} - \frac{2\omega_{oa}}{\omega_{p1}}}{1 - \frac{C_{2}\omega_{oa}}{\omega_{p1}} - \frac{2\omega_{oa}}{\omega_{p1}}} = \frac{Q}{1 - \frac{2\omega_{oa}}{\omega_{p1}}}$$
Alternatively,  $Q_{a}$  can be expressed in terms of the excess phase  $\phi = \tan^{-1}\frac{\omega_{oa}}{\omega_{p1}} = \frac{\overline{\omega_{oa}}}{\omega_{p}}$  then  

$$Q_{a} \equiv \frac{\overline{Q}}{1 - 2\phi \in Q} \equiv Q(1 + 2\phi \in Q)$$

