Subject: EEE598D Homework\#4
From: Dr. Hongjiang Song
Due Date: February 19, 2002

Problem 1 (s-z- transformations)
For the lowpass continuous-time filter shown in Fig. 1, find the z-domain transfer functions $\mathrm{H}(\mathrm{z})$ and plot gain and phase responses versus frequency $\log \omega(0.0001 \pi / \mathrm{T}<\omega<$ π / T) (i.e. BodePlots) under

1) Forward Euler
2) Backward Euler
3) Bilinear, and
4) LDI (or midpoint) transformations

$$
\begin{aligned}
& H_{A}(s) \equiv \frac{V_{o}(s)}{V_{i}(s)}=\frac{p}{p+s} \\
& p \equiv \frac{1}{R C}
\end{aligned}
$$

(Assuming $2 \pi / T=100 p$).

Solution:
Let
and

$$
\alpha \equiv p T=2 \pi / 100=0.0628
$$

$$
\Omega \equiv \omega T / \pi
$$

in the following analysis

1) For forward Euler transformation: we have

$$
\begin{aligned}
& \frac{1}{s}=\frac{T z^{-1}}{1-z^{-1}} \quad \Rightarrow s T=z-1 \\
& H(z)=\left.H_{A}(s)\right|_{s T=z-1}=\frac{\alpha}{\alpha+z-1}
\end{aligned}
$$

Frequency responses are given as

$$
\left.H(z)\right|_{z=e^{j \omega T} T}=\frac{\alpha}{\alpha+e^{j \omega T}-1}
$$

at low frequency $(\omega \mathrm{T} \ll 1)$,

$$
e^{j \omega T} \approx 1+j \omega T
$$

the above equation can be simplified as

$$
\left.H(z)\right|_{z=e^{j \omega T}} \approx \frac{\alpha}{\alpha+j \omega T}=\frac{p}{p+j \omega}=\left.H_{A}(s)\right|_{s=j \omega}
$$

which is the same as the original analog filter response.
In general the filter frequency response can be calculated as

$$
\left.H(z)\right|_{z=e^{j \omega T}}=\frac{\alpha}{\alpha-1+\cos (\Omega \pi)+j \sin (\Omega \pi)}=\frac{\alpha}{\sqrt{(\alpha-1+\cos (\Omega \pi))^{2}+\left(\sin (\Omega \pi)^{2}\right.}} e^{-j \tan -1\left(\frac{\sin (\Omega \pi)}{\alpha-1+\cos (\Omega \pi)}\right)}
$$

2) For backward Euler transformation, we have

$$
\begin{aligned}
& \frac{1}{s}=\frac{T}{1-z^{-1}} \Rightarrow s T=1-z^{-1} \\
& H(z)=\left.H_{A}(s)\right|_{s T=1-z^{-1}}=\frac{\alpha}{\alpha+1-z^{-1}}
\end{aligned}
$$

Frequency responses are given as

$$
\left.H(z)\right|_{z=e^{j \omega T} T}=\frac{\alpha}{\alpha+1-e^{-j \omega T}}
$$

at low frequency ($\omega \mathrm{T} \ll 1$),

$$
e^{-j \omega T} \approx 1-j \omega T
$$

the above equation can be simplified as

$$
\left.H(z)\right|_{z=e^{j \omega T}} \approx \frac{\alpha}{\alpha+j \omega T}=\frac{p}{p+j \omega}=\left.H_{A}(s)\right|_{s=j \omega}
$$

which is the same as the original analog filter response.
In general the filter frequency response can be calculated as

$$
\left.H(z)\right|_{z=e^{j o \tau} T}=\frac{\alpha}{\alpha+1-\cos (\Omega \pi)+j \sin (\Omega \pi)}=\frac{\alpha}{\sqrt{(\alpha+1-\cos (\Omega \pi))^{2}+\left(\sin (\Omega \pi)^{2}\right.}} e^{-j \tan -1 \frac{\left(\frac{\sin (\Omega \pi)}{\alpha+1-\cos (\Omega \pi)}\right)}{\alpha}}
$$

3) For Bilinear transformation, we have

$$
\begin{aligned}
& \frac{1}{s}=\frac{T}{2} \frac{1+z^{-1}}{1-z^{-1}} \Rightarrow s T=2 \frac{1-z^{-1}}{1+z^{-1}} \\
& H(z)=\left.H_{A}(s)\right|_{s T=1-z^{-1}}=\frac{\alpha}{\alpha+2 \frac{1-z^{-1}}{1+z^{-1}}}
\end{aligned}
$$

Frequency responses are given as

$$
\left.H(z)\right|_{z=e^{j \omega T}}=\frac{\alpha}{\alpha+2 j \tan \left(\frac{\omega T}{2}\right)}
$$

at low frequency $(\omega \mathrm{T} \ll 1)$,

$$
2 j \tan \left(\frac{\omega T}{2}\right) \approx j \omega T
$$

the above equation can be simplified as

$$
\left.H(z)\right|_{z=e^{j \omega T}} \approx \frac{\alpha}{\alpha+j \omega T}=\frac{p}{p+j \omega}=\left.H_{A}(s)\right|_{s=j \omega}
$$

which is the same as the original analog filter response.
In general the filter frequency response can be calculated as
$\left.H(z)\right|_{z=e^{j 0 T}}=\frac{\alpha}{\alpha+2 j \tan \left(\frac{\Omega \pi}{2}\right)}=\frac{\alpha}{\sqrt{\alpha^{2}+\left(2 \tan \left(\frac{\Omega \pi}{2}\right)\right)^{2}}} e^{-j \tan \left(\frac{2 \tan \left(\frac{\Omega \pi}{2}\right)}{\alpha}\right)}$
4) For the mid-point transformation: we have

$$
\begin{aligned}
& \frac{1}{s}=\frac{T z^{-1 / 2}}{1-z^{-1}} \Rightarrow s T=z^{1 / 2}-z^{-1 / 2} \\
& H(z)=\left.H_{A}(s)\right|_{s T=z-1}=\frac{\alpha}{\alpha+z^{1 / 2}-z^{-1 / 2}}
\end{aligned}
$$

Frequency responses are given as

$$
\left.H(z)\right|_{z=e^{j \omega T}}=\frac{\alpha}{\alpha+2 j \sin \left(\frac{\omega T}{2}\right)}
$$

at low frequency $(\omega \mathrm{T} \ll 1)$,

$$
2 j \sin \left(\frac{\omega T}{2}\right) \approx j \omega T
$$

the above equation can be simplified as

$$
\left.H(z)\right|_{z=e^{j \omega T}} \approx \frac{\alpha}{\alpha+j \omega T}=\frac{p}{p+j \omega}=\left.H_{A}(s)\right|_{s=j \omega}
$$

which is the same as the original analog filter response.
In general the filter frequency response can be calculated as

$$
\left.H(z)\right|_{z=e^{j 0 T} T}=\frac{\alpha}{\alpha+2 j \sin \left(\frac{\Omega \pi}{2}\right)}=\frac{\alpha}{\sqrt{\alpha^{2}+\left(2 \sin \left(\frac{\Omega \pi}{2}\right)\right)^{2}}} e^{-j \tan ^{-1}\left(\frac{2 \sin \left(\frac{\Omega \pi}{2}\right)}{\alpha}\right)}
$$

Bode Plots for all transformations as well as original analog filter:

