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Abstract. We prove indeterminacy of competitive equilibrium in sequential
economies, where limited commitment requires the endogenous determination
of solvency constraints preventing debt repudiation (Alvarez and Jermann [3]).
In particular, we show that, for any arbitrary value of social welfare in between
autarchy and (constrained) optimality, there exists an equilibrium attaining
that value. Our method consists in restoring Welfare Theorems for a weak
notion of (constrained) optimality. The latter, inspired by Malinvaud [15],
corresponds to the absence of Pareto improving feasible redistributions over
finite (though indefinite) horizons.

Keywords. Limited commitment; solvency constraints; Malinvaud efficiency;
Welfare Theorems; indeterminacy; financial fragility; market collapse.

JEL Classification Numbers. D50, D52, D61, E44, G13.

1. Introduction

In this paper, we consider a large class of sequential economies with limited
commitment over an infinite horizon under uncertainty. Asset markets are sequen-
tially complete and endogenous solvency constraints prevent debt repudiation at
equilibrium. In particular, as in Kehoe and Levine [10, 11], Kocherlakota [12] and
Alvarez and Jermann [3, 4], traders might only borrow up to the point at which
they are indifferent between honoring their debt obligations and reverting to per-
manent autarchy. The notion of competitive equilibrium is inherited from Alvarez
and Jermann [3]. Accordingly, debt limits are taken as given by individuals and
they are the largest values such that repayment is always individually rational (i.e.,
they are not-too-tight).

A relevant feature of equilibria with not-too-tight debt constraints is that they
may be (constrained) inefficient. This happens when the equilibrium price sequence
involves low enough interest rates. In particular, the autarchic allocation can always
be decentralized as an equilibrium and it is (constrained) inefficient when the mar-
ginal rate of substitution between present and future consumption of unconstrained
individuals is sufficiently low.

Another (perhaps less known) feature of equilibrium with not-too-tight debt
constraints is that it might be indeterminate. A classic example is the stationary
symmetric two-agent economy with cyclic individual endowments (similar to an
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example provided by Bewley [7], recently elaborated in the limited commitment
framework by Azariadis [5]). In this economy, autarchy is (constrained) inefficient
when the high-endowment is relatively large with respect to the low-endowment,
that is, when agents are very far from consumption smoothing in the absence of
financial markets. In this case, there exists a unique (constrained) efficient equi-
librium different from autarchy, allowing agents to get as close as possible to con-
sumption smoothing, and a continuum of (constrained) inefficient non-stationary
equilibrium allocations converging to autarchy. This type of examples suggests that
there is a tight relation between inefficiency and indeterminacy.

We show that this conjecture can be made a precise statement (and can formally
be proved) in the following sense. Given any arbitrary value of social welfare in
between autarchy and (constrained) optimality, there exists an equilibrium with
not-too-tight debt constraints attaining that value. In other terms, there is a con-
tinuum of equilibria with welfare declining from (constrained) efficiency to autarchy.

We adapt the canonical method based on Welfare Theorems to characterize the
set of competitive equilibria. In particular, we introduce a weak form of (con-
strained) optimality: Malinvaud, or short-run, optimality corresponds to the ab-
sence of a feasible welfare-improving reallocation restricted to a finite number of
periods (as in Malinvaud [15, 16], Balasko and Shell [6] and Aliprantis, Brown
and Burkinshaw [2]). More intuitively, it is achieved when allocations satisfy the
canonical first-order conditions, or Euler equations, for a social planner problem,
though a social condition of transversality might fail. This criterion of optimality
is weak in the sense that, whereas an efficient allocation is always Malinvaud op-
timal, inefficient allocations (autarchy included) may be Malinvaud optimal. We
then show that any equilibrium is a Malinvaud optimum (First Welfare Theorem)
and, conversely, any Malinvaud optimum can be sustained as an equilibrium for
some balanced distribution of initial assets (Second Welfare Theorem). Malinvaud
optima, in turn, can be generated as limits of solutions to artificial social planner
problems under the restrictions imposed by the notion of short-run optimality. In
fact, an approximation method allows us to prove that there exists a large set of
Malinvaud optimal allocations with social welfare declining from (constrained) op-
timality to autarchy. By Welfare Theorems, this structure is inherited by the set of
equilibrium allocations under limited commitment. Hence, equilibria are globally
indeterminate. Limited commitment produces an unavoidable fragility of financial
markets, leading to a complete collapse (autarchy).

Indeterminacy of equilibria might be understood as the consequence of a dynamic
complementarity between current and expected future credit constraints. When
individuals expect a fall in future debt limits (i.e., they believe to be less likely to
smooth out consumption through asset markets), the current value of participation
goes down and incentives to default increase. Since current debt limits adjust
endogenously to market conditions, they fall immediately as a response to lower
participation incentives (or a loss of reputation). Indeterminacy is produced by a
failure of social transversality (i.e., low implied interest rates), as in overlapping
generations economies, where a change in expectations might lead to a contraction
of trades (across generations) and a convergence to autarchy. The relation between
indeterminacy and inefficiency is there controversial (see, for instance, Kehoe and
Levine [9]).
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The paper is organized as follows. In sections 2 and 3, we lay out the fundamen-
tals of a general multi-agent economy with uncertainty and we define a notion of
competitive equilibrium with sequential trades and not-too-tight debt constraints.
In section 4, we present our Indeterminacy Theorem. In section 5, we introduce
Malinvaud efficiency and provide a partial characterization of Malinvaud optima. In
section 6, we establish Welfare Theorems relatively to this weak form of efficiency.
All proofs are collected in the appendix.

2. Fundamentals

2.1. Time and uncertainty. Time and uncertainty are represented by an event-
tree S, a countably infinite set, endowed with ordering º. For a date-event σ in S,
t (σ) in T = {0, 1, 2, . . . , t, . . .} denotes its date and

σ+ = {τ ∈ S (σ) : t (τ) = t (σ) + 1}
is the non-empty finite set of all immediate direct successors, where

S (σ) = {τ ∈ S : τ º σ}
is the set of all date-events τ in S (weakly) following date-event σ in S. The initial
date-event is φ in S, with t (φ) = 0, that is, σ º φ for every σ in S; the initial
date-event in S (σ) is σ in S. This construction is canonical (Debreu [8, Chapter
7]).

2.2. Vector spaces. We essentially adhere to Aliprantis and Border [1, Chapters
5-8] for terminology and notation. The reference vector space is L = RS , the space
of all real-valued maps on S, with typical element

v = (vσ)σ∈S .

The vector space L is endowed with the canonical order: an element v of L is
positive if vσ ≥ 0 for every σ in S; it is strictly positive if vσ > 0 for every σ in
S; finally, it is uniformly strictly positive if, for some ε > 0, vσ ≥ ε for every σ in
S. For a positive element v of L, we simply write v ≥ 0 and, when v in L is also
non-null, v > 0. Finally, the positive cone of any (Riesz) vector subspace F of L is
{v ∈ F : v ≥ 0}.

For an element v of L, v+ in L and v− in L are, respectively, its positive part
and its negative part, so that v = v+ − v− in L and |v| = v+ + v− in L. Also, for
an arbitrary collection

{
vj

}
j∈J of elements of L, its supremum and its infimum in

L, if they exist, are denoted, respectively, by
∨

j∈J
vj and

∧

j∈J
vj .

An element v of L is bounded if, for some ε > 0, |vσ| ≤ ε for every σ in S; it is
summable if ∑

σ∈S
|xσ| is finite;

it is eventually vanishing if {σ ∈ S : |vσ| > 0} is a finite subset of S. The (Riesz)
vector subspace of L, consisting of all eventually vanishing elements v of L, is
denoted by C. Finally, unless otherwise explicitly stated, the vector space L is
endowed with the product topology.
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2.3. Individuals. There is a finite set J of individuals. For every individual i in
J , the consumption space Xi is the positive cone of the commodity space L. A con-
sumption plan xi in Xi is interior (respectively, bounded) if it is uniformly strictly
positive (respectively, bounded). An allocation is a distribution of consumption
plans across individuals. The space of allocations is

X =
{
x ∈ LJ : xi ∈ Xi for every i ∈ J }

.

An allocation x in X is interior (respectively, bounded) if every consumption plan
xi in Xi is interior (respectively, bounded).

2.4. Endowments. For every individual i in J , the endowment ei in Xi is interior
and bounded. In particular, there exists a sufficiently small 1 > ε > 0 satisfying,
at every date-event σ in S,

ε ≤
∧

i∈J
ei
σ ≤ (#J )

∨

i∈J
ei
σ ≤

1
ε
.

This hypothesis imposes a uniform lower bound on the endowment of individuals
and, across individuals, an upper bound on the aggregate endowment.

2.5. Preferences. For every individual i in J , the per-period utility function ui :
R+ → R is bounded, continuous, continuously differentiable, strictly increasing and
strictly concave. (As far as smoothness is concerned, more precisely, the per-period
utility function is continuously differentiable on R++.) For every individual i in J ,
the utility function U i : Xi → R is given by

U i
(
xi

)
=

∑

σ∈S
πi

σui
(
xi

σ

)
,

where πi is a strictly positive summable element of L. Also, for any date-event σ
in S, at any consumption plan xi in Xi,

U i
σ

(
xi

)
=

1
πi

σ

∑

τ∈S(σ)

πi
τui

(
xi

τ

)
.

This is the continuation utility beginning from date-event σ in S.

2.6. Uniform impatience. We impose a uniform bound on the marginal rate
of substitution of perpetual future consumption for current consumption. This
hypothesis implies a uniform form of impatience across individuals and date-events.
Basically, there exists a sufficiently small 1 > η > 0 satisfying, for every individual
i in J , at every date-event σ in S,

πi
σ ≥ η

∑

τ∈S(σ)

πi
τ .

2.7. (Weak) Inada conditions. This additional hypothesis serves to ensure in-
teriority. For every individual i in J , at every date-event σ in S,

ηui (0) + (1− η)ui

(
1
ε

)
< ui (ε) ,

where 1 > ε > 0 is given by the bounds on endowments and 1 > η > 0 by the
hypothesis of uniform impatience.

4



2.8. Subjective prices. At an interior consumption plan xi in Xi, the subjective
price pi in P i is defined by

(
pi

σ

)
σ∈S =

(
πi

σ∂ui
(
xi

σ

))
σ∈S .

The subjective price pi in P i is a strictly positive summable element of L.

2.9. Feasible allocations. An allocation x in X is feasible if it exhausts aggregate
resources and satisfies participation constraints, that is,

∑

i∈J
xi =

∑

i∈J
ei

and, for every individual i in J , at every date-event σ in S,

U i
σ

(
xi

) ≥ U i
σ

(
ei

)
.

The space of all feasible allocations is denoted by X (e). Notice that feasibility
reflects both material constraints and participation constraints.

Under the maintained assumptions on preferences and endowments, every fea-
sible allocation is, as a matter of fact, an interior allocation. The particular form
of (weak) Inada conditions, which is a joint restriction on preferences and endow-
ments, guarantees interiority of consumptions, subject to participation constraints,
avoiding unbounded per-period utilities and, hence, simplifying the presentation.

Lemma 1 (Interiority). Every feasible allocation is interior.

3. Equilibrium

Trade occurs sequentially. In every period of trade, given revealed uncertainty,
a full spectrum of elementary Arrow securities is available, yielding unitary payoffs
in the following period of trade, contingent on the occurrence of events. The asset
market is, thus, sequentially complete. It simplifies to represent implicit prices of
contingent commodities in terms of present values. They are denoted by p in P , the
space of all strictly positive elements of L. At every date-event σ in S, a portfolio,
with deliveries v in L at the following date-events, has a market value, in terms of
current consumption, given by

1
pσ

∑
τ∈σ+

pτvτ .

An individual i in J participates into financial markets. The holding of securities
is represented by a financial plan vi in V i, the space of all unrestricted elements
of L. Positive values correspond to claims, whereas negative values are liabilities.
This participation occurs subject to sequential budget constraints, imposing, at
every date-event σ in S,

∑
τ∈σ+

pτvi
τ + pσ

(
xi

σ − ei
σ

) ≤ pσvi
σ.

Accumulated wealth serves to finance current consumption, in excess to current
endowment, and current net asset positions (claims or liabilities). Participation into
financial markets is further restricted by quantitative limits to private liabilities.
These debt limits are given by f i in F i, the set of all positive and bounded elements
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of L. Individual i in J can issue debt obligations subject to debt constraints given,
at every date-event σ in S, by

−f i
σ ≤ vi

σ.

From the perspective of the individual, these debt limits are given exogenously.
As in Kehoe and Levine [10], Kocherlakota [12] and Alvarez and Jermann [3],

commitment is limited. Individuals might not honor their debt obligations, even
though the material availability of future endowments would suffice for a complete
repayment. When debt is repudiated, assets are seized and the individual is ex-
cluded from future participation into financial markets, though maintaining claims
into future uncertain endowment. Thus, unhonored debt induces a permanent re-
verse to autarchy. At equilibrium, debt limits serve to guarantee that, on the one
side, debt repudiation is not profitable for individuals and, on the other side, the
maximum sustainable development of financial markets is enforced. This is the
notion of equilibrium with not-too-tight debt constraints provided by Alvarez and
Jermann [3].

Formally, an allocation x in X is an equilibrium allocation if there exist a price p
in P , debt limits f in F and financial plans v in V satisfying the following properties:

(a) For every individual i in J , the plan
(
xi, vi

)
in Xi × V i is optimal subject

to budget and debt constraints, given initial claims, that is, it maximizes
intertemporal utility subject, at every date-event σ in S, to budget con-
straint, ∑

τ∈σ+

pτ v̄i
τ + pσ

(
x̄i

σ − ei
σ

) ≤ pσ v̄i
σ,

and to debt constraints,

− (
v̄i

τ + f i
τ

)
τ∈σ+

≤ 0,

given initial wealth vi
φ in R.

(b) Commodity and financial markets clear, that is,
∑

i∈J
xi =

∑

i∈J
ei and

∑

i∈J
vi = 0.

(c) For every individual i in J , debt limits are not-too-tight, that is, at every
date-event σ̄ in S,

J i
σ̄

(−f i
σ̄; f i

)
= U i

σ̄

(
ei

)
,

where
J i

σ̄

(
wi

σ̄; f i
)

= sup U i
σ̄

(
x̄i

)

subject, at every date-event σ in S (σ̄), to budget constraint,
∑

τ∈σ+

pτ v̄i
τ + pσ

(
x̄i

σ − ei
σ

) ≤ pσ v̄i
σ,

and to debt constraints,

− (
v̄i

τ + f i
τ

)
τ∈σ+

≤ 0,

given initial wealth wi
σ̄ in R. (By convention, the supremum over an empty

set is negative infinity.)
6



Notice that, at equilibrium, for every individual i in J , at every date-event σ in
S,

U i
σ

(
xi

)
= J i

σ

(
vi

σ; f i
) ≥ J i

σ

(−f i
σ; f i

)
= U i

σ

(
ei

)
.

Hence, an equilibrium allocation x in X is, as a matter of fact, an element of X (e),
the space of feasible allocations.

We adopt a restrictive notion of equilibrium: first, we require debt limits to
be positive and bounded; second, we exclude speculative bubbles. Negative debt
limits, that are allowed by Alvarez and Jermann [3], would impose to individuals
the holding of positive wealth along some contingencies, an unnatural requirement
in our view. Kocherlakota [13] shows some properties of homogeneity of the budget
set. Negative and unbounded debt limits would sustain speculative bubbles at
equilibrium. Also, notice that, at equilibrium, for every individual i in J , debt
limits f i in F i need be consistent (according to the terminology borne out by
Levine and Zame [14]), that is, at every date-event σ in S,

pσf i
σ ≤ pσei

σ +
∑

τ∈σ+

pτf i
τ .

Hence, the maximum amount of debt can be honored by means of current endow-
ment and by issuing future debt up the maximum amount.

4. Indeterminacy

Debt contracts are enforced by the threat of exclusion from financial markets
and might sustain (limited) risk-sharing at equilibrium. However, the underlying
mechanism is merely reputational and, in a sense, fragile. Competitive equilibrium
is indeterminate.

We relate multiplicity of equilibria to social welfare. Given welfare weights θ in
Θ, social welfare, at allocation x in X, is measured by the weighted sum of utilities,

Wθ (x) =
∑

i∈J
θiU i

(
xi

)
,

where

Θ =

{
θ ∈ RJ+ :

∑

i∈J
θi = 1

}
.

Efficient values obtain when the planner maximizes social welfare subject to feasi-
bility, encompassing material and participation constraints, that is,

W ∗
θ = max

z∈X(e)
Wθ (z) .

Clearly, when autarchy is inefficient, W ∗
θ > Wθ (e) for all welfare weights θ in Θ.

Indeterminacy Theorem. Given welfare weights θ in Θ, for any arbitrary value
ξ in Ξ = [0, 1], there exists an equilibrium allocation x in X (e) with social welfare
satisfying

Wθ (x) = ξW ∗
θ + (1− ξ) Wθ (e) .

Welfare weights account for a merely distributive multiplicity, typically reflecting
the allocation of initial claims inherited from the unrepresented past. The index ξ in
Ξ, instead, measures the degree of market confidence, or of market soundness, or of
credit expansion, decreasing from the maximum sustainable development of finan-
cial markets (efficiency) to the complete collapse of financial markets (autarchy).
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Equilibrium exhibits a global form of indeterminacy. Though debt limits are gen-
erated by fundamentals by means of participation constraints, financial fragility is
an intrinsically unavoidable phenomenon.

To prove the Indeterminacy Theorem, we amend the classical method of anal-
ysis that exploits Welfare Theorems. In particular, we introduce a weak form of
efficiency, referred to as Malinvaud efficiency. This requires the absence of welfare-
improving feasible redistributions over finite horizons only. We then show that
Malinvaud efficient allocations form a large set, with social welfare decreasing from
efficiency to autarchy. We finally prove that any equilibrium allocation is Malin-
vaud efficient (First Welfare Theorem) and that any Malinvaud efficient allocation
emerges as an equilibrium allocation for some distribution of initial claims across
individuals (Second Welfare Theorem). As a matter of fact, the multiplicity of
Malinvaud optima reflects upon competitive equilibrium.

5. Malinvaud Optima

5.1. Malinvaud efficiency. Malinvaud efficiency is inherited from studies on cap-
ital theory (e.g., Malinvaud [15, 16]) and overlapping generations economies (e.g.,
Balasko and Shell [6]). The canonical notion of Pareto efficiency requires the ab-
sence of a welfare improvement, subject to material and participation constraints.
Thus, an allocation x in X (e) is Pareto efficient if it is not Pareto dominated by
an alternative allocation z in X (e). The notion of Malinvaud efficiency, instead,
imposes weaker restrictions, as it simply requires the absence of a welfare improve-
ment, subject to material and participation constraints, only over any arbitrary
finite horizon. Consistently, an allocation x in X (e) is Malinvaud efficient if it is
not Pareto dominated by an alternative allocation z in X (e) ∩ C (x), where

C (x) =

{
z ∈ X :

∑

i∈J

∣∣zi − xi
∣∣ ∈ C

}

is the set of all allocations z in X that modify allocation x in X only over a
finite horizon. (Remember that C is the set of all eventually vanishing elements of
L.) Clearly, any Pareto optimum is a Malinvaud optimum. However, Malinvaud
optimality is a largely weaker requirement: for instance, any autarchic allocation
is a Malinvaud optimum.

Malinvaud efficiency admits a characterization in terms of supporting price. This
is an elaboration on the common duality argument, developed in the literature
on capital theory and, more recently, for economies of overlapping generations by
Aliprantis, Brown and Burkinshaw [2]. The (algebraic) dual of the vector subspace
C of L can be identified with L itself, under the duality operation given, for every
(v, f) in C × L, by

f (v) = f · v =
∑

σ∈S
fσvσ.

Lemma 2 (First-order conditions). An allocation x in X (e) is Malinvaud efficient
if and only if there exists a price p in P satisfying, at every allocation z in X∗ (e)∩
C (x), for every individual i in J ,

(s) U i
(
zi

)
> U i

(
xi

)
only if p · (zi − xi

)
> 0,
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where X∗ (e) is the set of all allocations z in X such that, for every individual i in
J , at every date-event σ in S,

U i
σ

(
zi

) ≥ U i
σ

(
ei

)
.

Equivalently, an allocation x in X (e) is Malinvaud efficient if and only if there
exists a price p in P satisfying, for every individual i in J , at every date-event σ
in S,

(c-1)

(
pτ

pσ

)

τ∈σ+

≥
(

pi
τ

pi
σ

)

τ∈σ+

and

(c-2)
∑

τ∈σ+

(
pτ

pσ

) (
U i

τ

(
xi

)− U i
τ

(
ei

))
=

∑
τ∈σ+

(
pi

τ

pi
σ

) (
U i

τ

(
xi

)− U i
τ

(
ei

))
,

where pi in P i is the subjective price at interior consumption plan xi in Xi.

Restriction (s) coincides with an admittedly abstract characterization of Malin-
vaud optima in terms of supporting positive linear functionals, whereas conditions
(c-1)-(c-2) uncover an equivalent formulation in terms of more treatable first-order
conditions. For the sake of simplicity, the above characterization might be inter-
preted as referring to a canonical social planner problem. Restrictions (c-1)-(c-2)
correspond, in this analogy, to the Euler equations induced by the maximization
of (weighted) social welfare subject to material constraints and to participation
constraints. They basically rule out the circumstance of a constrained individual
exhibiting a marginal rate of substitution strictly above the marginal rate of substi-
tution of an unconstrained individual. This, indeed, would expose to an arbitrage
opportunity, as a substitution of future consumption for current consumption of
the unconstrained individual, balanced by the opposite substitution for the con-
strained individual, would not violate participation constraint, as utility of the
unconstrained individual is strictly above the autarchic utility, and would produce
a welfare improvement. The remarkable implication of this full characterization
is that a Malinvaud optimum does not impose any restriction in terms of social
transversality or, alternatively, does not rule out any arbitrage opportunity at in-
finitum. A substitution of current consumption for perpetual future consumption
might still generate a welfare improvement, subject to feasibility.

5.2. Multiplicity. We here provide a partial characterization of Malinvaud op-
tima. In particular, we prove that there exists a continuum of such optima with
social welfare decreasing from Pareto efficiency to autarchy. (Obviously, when the
autarchy is Pareto efficient, this multiplicity disappears.) Malinvaud optima are
parameterized by welfare weights θ in Θ and an index ξ in Ξ = [0, 1] measuring
the failure of Pareto optimality. Hence, the set of Malinvaud optima contains a set
that is isomorphic to Θ× Ξ.

Proposition 1 (Multiplicity). Given welfare weights θ in Θ, for any arbitrary
value ξ in Ξ = [0, 1], there exists a Malinvaud efficient allocation x in X (e) with
social welfare satisfying

(*) Wθ (x) = ξW ∗
θ + (1− ξ) Wθ (e) .
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The difficulty for the understanding of the structure of Malinvaud optima stems
from the fact that they cannot be directly obtained as solutions of a well-defined
social planning programme. This notwithstanding, a very simple characterization
emerges by means of artificial truncated planner problems, along with a limit argu-
ment. These truncations obtain by imposing additional restrictions on the amount
of redistributed resources that can be implemented out of some finite horizon. For
a given truncation, the severity of these additional restrictions determines the value
of the social planner problem: under the most severe restrictions, the redistribu-
tion vanishes out of a finite horizon and, hence, the autarchy is the only feasible
allocation (indeed, a decrease of consumption in the last period of the truncation
cannot be compensated by an increase of consumption in the following periods and,
hence, by induction, no redistribution is the only feasible policy); under the least
severe restrictions, any feasible allocation can be implemented and, hence, a Pareto
optimum obtains. It follows that, for any given truncation, some properly chosen
degree of severity of additional constraints would yield a given social welfare in be-
tween autarchy and Pareto efficiency. Taking the limit over finite horizons, a limit
allocation emerges with a given social welfare value (as this can be assumed to be
constant along the sequence). This limit allocation is Malinvaud efficient because,
as the finite horizon extends along the sequence of truncations, first-order condi-
tions are satisfied along larger and larger horizons. We remark that other forms of
truncations are practicable and would deliver analogous conclusions: for instance,
adding restrictions only beginning from some contingency or distributing restric-
tions across contingencies. Moreover, we believe that an analogous method could
prove it applicable in other economies exhibiting a failure of social transversality
(for instance, for a global characterization of competitive equilibria in economies of
overlapping generations).

6. Welfare Theorems

We here show equivalence between equilibrium allocations and Malinvaud effi-
cient allocations. Indeed, any equilibrium allocation is Malinvaud efficient (First
Welfare Theorem) and any Malinvaud efficient allocation emerges as an equilib-
rium allocation for some balanced distribution of initial claims (Second Welfare
Theorem). As a matter of fact, we prove that Malinvaud efficiency exhausts all
restrictions on equilibrium prices and allocations.

Proposition 2 (First Welfare Theorem). Any equilibrium allocation is a Malinvaud
efficient allocation.

The First Welfare Theorem is almost immediate. Indeed, first-order conditions
for a Malinvaud optimum coincides with those for an equilibrium under limited
commitment (see Alvarez and Jermann [3]). At equilibrium, the marginal rate of
substitution of an individual falls below the market rate of substitution only if this
individual is constrained in issuing further debt obligations, for otherwise a budget-
balanced (marginal) substitution of future consumption for current consumption
would yield an increase in welfare.

Proposition 3 (Second Welfare Theorem). Any Malinvaud efficient allocation is
an equilibrium allocation.

The proof of the Second Welfare Theorem cannot rely on a traditional separation
argument alone. Indeed, separation yields potential equilibrium prices fulfilling
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first-order conditions (lemma 2). Such prices, however, might not belong to the
dual of the commodity space (restricted by the aggregate endowment) and, thus,
might not deliver a well-defined intertemporal accounting. In order to provide their
Second Welfare Theorem for Pareto efficient allocations, Alvarez and Jermann [3]
assume that prices belong to the dual of the (restricted) commodity space (the
hypothesis of high implied interest rates) and recover financial plans at equilibrium
as the present value of future contingent net trades. We cannot count on this
simple method and need an alternative proof. Furthermore, differently from Alvarez
and Jermann [3], as well as from Kocherlakota [13], we impose positivity of debt
limits (individuals cannot be restricted to hold positive amounts of wealth along
the infinite horizon), which poses additional difficulties.

To recover financial plans, we move from a basic observation. We evaluate wel-
fare gains, with respect to the autarchic utility, in terms of current consumption, by
using marginal utilities. Participation guarantees that these welfare gains are posi-
tive across date-events. Also, they fulfill sequential budget constraints at subjective
prices (marginal utilities). As market rates of substitution differ from individual
marginal rates of substitution only when welfare gains vanish, the process of welfare
gains also satisfies sequential budget constraints at market prices. This yields an
upper bound on the amount of wealth held at equilibrium, as welfare gains are pos-
itive (hence, fulfil debt limits) and sustains the given consumption plan subject to
sequential budget constraints. As financial plans need be balanced at equilibrium
across individuals, the negative of the sum of welfare gains poses a lower bound
to financial plans. Therefore, having identified a suitable interval, we construct
an adjustment process that increases debt, when more debt is budget-feasible, and
decreases debt, when outstanding debt is budget-unfeasible. This process admits a
fixed point and, at the fixed point, sequential budget constraints are balanced and
financial markets clear.

Optimality of consumption plans, subject to budget constraints and debt con-
straints, is ensured by first-order conditions at a Malinvaud optimum. Hence, it
only remains to reconstruct suitable debt limits. Here, we follow Alvarez and Jer-
mann [3]. When an individual is at the autarchic utility, outstanding debt coincides
with the maximum amount of debt. When an individual is not at the autarchic
utility, we compute the maximum amount of sustainable debt, which depends on
the future contingent plan for debt limits. Beginning with sufficiently large debt
limits, this process of adjustment generates a decreasing sequence of debt limits
and, in the limit, we obtain not-too-tight debt constraints. The identification of
suitable upper bounds requires some elaboration.

7. Conclusion

We have shown that equilibria of economies with limited enforcement and not-
too-tight debt limits are indeterminate. In particular, we have developed a method
that exploits Welfare Theorems for deriving a full characterization of equilibria.
These theorems are established for a weak form of optimality, corresponding to the
absence of a feasible Pareto improving redistribution over a finite number of time
periods. These weak optima, in turn, are characterized by means of sequences of
planning objectives with limited amounts of redistributions in the long-run. The
method shows that, at equilibrium, social welfare ranges from two extreme out-
comes: constrained Pareto optimality and autarchy.
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This paper bears very important consequences on the understanding of the type
of equilibria that may emerge in economies where contract enforcement is limited
and the no default option is implemented by imposing individual specific debt con-
straints. In particular, these equilibria suffer from a severe form of financial fragility:
a change in expectations at any given equilibrium, where asset trades guarantee an
optimal amount of consumption smoothing across states and time periods, might
generate a contraction of net trades, in some cases leading to financial collapse.
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Proofs

Proof of lemma 1. At a feasible allocation, for every individual i in J , partici-
pation constraints impose, at every date-event σ in S,

ui
(
xi

σ

)− ui

(
1
ε

)
+

1
πi

σ

∑

τ∈S(σ)

πi
τui

(
1
ε

)
≥

U i
σ

(
xi

) ≥ U i
σ

(
ei

)

≥ 1
πi

σ

∑

τ∈S(σ)

πi
τui (ε) .
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Therefore, exploiting uniform impatience and (weak) Inada conditions,

ui
(
xi

σ

) ≥ ui

(
1
ε

)
+

1
η

(
ui (ε)− ui

(
1
ε

))
> ui (0) ,

which produces a uniformly strictly positive lower bound on consumptions. ¤

Proof of lemma 2. Sufficiency of a supporting price p in P (i.e., condition (s))
for Malinvaud efficiency is obvious, as it is proved by the traditional argument for
the canonical First Welfare Theorem. Therefore, we show that restrictions (c-1)-
(c-2) imply condition (s). Consider any alternative allocation z in X∗ (e) ∩ C (x)
and suppose that, for some individual i in J ,

0 < U i
(
zi

)− U i
(
xi

) ≤
∑

σ∈S
pi

σ

(
zi
σ − xi

σ

)
.

Define, at every date-event σ in S,

vi
σ =

1
pi

σ

∑

τ∈S(σ)

pi
τ

(
zi
τ − xi

τ

)
.

Notice that vi is an element of C. A simple decomposition yields, at every date-
event σ in S,

(*)
∑

τ∈σ+

pi
τvi

τ + pi
σ

(
zi
σ − xi

σ

) ≥ pi
σvi

σ.

Furthermore, notice that convexity of preferences and participation constraints im-
ply that, at every date-event σ in S,

vi
σ < 0 only if U i

σ

(
ei

) ≤ U i
σ

(
zi

)
< U i

σ

(
xi

)
.

Therefore, restrictions (c-1)-(c-2), along with inequality (*), guarantee that, at
every date-event σ in S,

∑
τ∈σ+

pτvi
τ + pσ

(
zi
σ − xi

σ

) ≥ pσvi
σ.

Consolidating across date-events, and noticing that vi is an element of C, one
obtains

p · (zi − xi
)

=
∑

σ∈S
pσ

(
zi
σ − xi

σ

)

≥ pφvi
φ

=

(
pφ

pi
φ

) ∑

σ∈S
pi

σ

(
zi
σ − xi

σ

)

> 0,

thus proving the claim.
Assume now that the allocation x in X (e) is Malinvaud-efficient and define a

price p in P by means, at every date-event σ in S, of
(

pτ

pσ

)

τ∈σ+

=
∨

i∈J

(
pi

τ

pi
σ

)

τ∈σ+

.

This price p in P obviously satisfies condition (c-1). The necessity of condition
(c-2) straightforwardly obtains by means of the argument in Alvarez and Jermann
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[3, Proposition 3.1]. As conditions (c-1)-(c-2) imply restriction (s), this completes
the proof. ¤

Proof of proposition 1. The proof is decomposed in several separate steps. First,
we construct a sequence of truncated planner problems, by adding additional aux-
iliary constraints on the transfers across individuals; truncated optima exist and,
at given welfare weights θ in Θ, social welfare might be measured by ξ in Ξ by con-
trolling for the severity of additional constraints on transfers. Second, we generate
a sequence of truncated optima, maintaining a constant value of social welfare, and
we consider the limit allocation of these truncated planner problems. Third, we
prove that the limit allocation is in fact a Malinvaud optimum.

Truncation. Given any t in T , consider a collection of t-truncated planner problems:

max
x∈X(e)

∑

i∈J
θi

(
U i

(
xi

)− U i
(
ei

))

subject to, at every date-event σ in (S/St),

(†)
∑

i∈J

∣∣xi
σ − ei

σ

∣∣ ≤ ε,

where, for every t in T ,
St = {σ ∈ S : t (σ) ≤ t} .

Constraints are given as a continuous correspondence of ε in R+ with non-empty
convex and compact values. (Indeed, notice that the map x 7→ |x| is convex. In
addition, if allocation x in X (e) satisfies constraints (†) at ε in R++, then allocation

x−
(

ε− ε∗

ε

)+

(x− e) ∈ X (e)

satisfies constraints (†) at ε∗ in R+.) Hence, by the Maximum Theorem, the max-
imum is achieved and the value function is continuous in ε in R+.

Observe that, when ε in R+ is sufficiently large, the truncated problem delivers
a Pareto efficient allocation; when ε in R+ vanishes, the truncated problem delivers
the autarchy, as this is the only feasible allocation x in X (e) satisfying additional
constraints (†). Hence, by the Intermediate Value Theorem, restriction (*) is sat-
isfied by some value of ε in R+. Let xt be an allocation in X (e) that solves the
t-truncated planner problem at the value of ε in R+ fulfilling restriction (*). ¤

Limit. The sequence of allocation {xt}t∈T in X (e), at no loss of generality, con-
verges to some allocation x in X (e) in the product topology. Also, by continuity
of preferences, restriction (*) is satisfied by the limit allocation x in X (e). ¤

Malinvaud optimality in the limit. We show that the limit allocation x in X is Ma-
linvaud efficient. To this purpose, suppose that it is Pareto dominated by an alter-
native allocation z in X (e)∩C (x). For every individual i in J , let F i be the finite
subset of all date-events in S at which the reallocation is not terminated, that is,

σ ∈ (S/F i
)

if and only if
(
zi
τ

)
τ∈S(σ)

=
(
xi

τ

)
τ∈S(σ)

.

For every sufficiently small 1 > λ > 0, the allocation x + λ (z − x) lies in X (e)
and Pareto dominates allocation x in X (e) by strict convexity of preferences. In
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particular, by strict convexity of preferences, for every individual i in J , at every
date-event σ in F i,

(**) U i
σ

(
xi + λ

(
zi − xi

))
> U i

σ

(
ei

)
.

For every sufficiently large t in T , the allocation xt +λ (z − x) lies in X (e). Indeed,
balancedness follows by construction; participation constraints are insured by con-
tinuity, because of (**), at all date-events σ in F i, and trivially, at all date-events
σ in

(S/F i
)
. Finally, as it can assumed that

⋃

i∈J
F i ⊂ St,

additional restrictions (†) are satisfied in every t-truncated planner problem along
the sequence for every sufficiently large t in T . This yields a contradiction. ¤

The sequence of steps proves the proposition. ¤

Proof of proposition 2. Using lemma 2, Malinvaud efficiency follows from the
simple first-order characterization of equilibrium that is provided by Alvarez and
Jermann [3, Propositions 4.5-4.6]. ¤

Proof of proposition 3. The proof is rather involved, so that we decompose it
in several steps.

Recovering financial plans. To simplify notation, we introduce the positive linear
operator T : L → L that is defined, at every date-event σ in S, by

T (v)σ =
1
pσ

∑
τ∈σ+

pτvτ .

For an individual i in J , let gi in L be given, at every date-event σ in S, by

gi
σ =

(
πi

σ

pi
σ

) (
U i

σ

(
xi

)− U i
σ

(
ei

))
.

Notice that, by uniform impatience and feasibility, gi is a bounded and positive
element of L. Furthermore, observe that, by convexity of preferences, at every
date-event σ in S,

πi
σ

(
U i

σ

(
xi

)− U i
σ

(
ei

)) ≥ πi
σ

(
ui

(
xi

σ

)− ui
(
ei
σ

))
+

∑
τ∈σ+

πi
τ

(
U i

τ

(
xi

)− U i
τ

(
ei

))

≥ pi
σ

(
xi

σ − ei
σ

)
+

∑
τ∈σ+

πi
τ

(
U i

τ

(
xi

)− U i
τ

(
ei

))
.

This, exploiting first-order conditions at a Malinvaud optimum, yields

T
(
gi

)
+

(
xi − ei

) ≤ gi.

Finally, define g =
∑

i∈J gi and observe that g is a positive bounded element of L.
Define H as the set of all h in [0, g]J satisfying

∑

i∈J
hi = g.
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The set H is non-empty, convex and compact (in the product topology). Define a
correspondence f : H → H by means of

f (h)σ = arg minĥσ∈Hσ

∑

i∈J
ĥi

σ

(
T

(
gi − hi

)
σ

+
(
xi − ei

)
σ
− (

gi − hi
)
σ

)
.

Basically, if a financial plan lies in the interior of the budget constraint at some
date-event, current debt is increased. By construction, given any h in H, at every
date-event σ in S, there exists an individual i in J such that

T
(
gi − hi

)
σ

+
(
xi − ei

)
σ
≤ (

gi − hi
)
σ

,

as ∑

i∈J

(
T

(
gi − hi

)
+

(
xi − ei

))
= 0 =

∑

i∈J

(
gi − hi

)
.

As the correspondence f : H → H is closed with non-empty convex values, by
Kakutani Fixed Point Theorem, it admits a fixed point h in H. At a fixed point,
for every individual i in J , at any date-event σ in S,

T
(
gi − hi

)
σ

+
(
xi − ei

)
σ

>
(
gi − hi

)
σ

implies hi
σ = 0.

Hence,
gi

σ ≥ T
(
gi

)
σ

+
(
xi − ei

)
σ
≥ T

(
gi − hi

)
σ

+
(
xi − ei

)
σ

> gi
σ,

which is a contradiction. Thus, at a fixed point, for every individual i in J ,

T
(
gi − hi

)
+

(
xi − ei

) ≤ (
gi − hi

)
.

This suffices to prove budget-feasibility, as, for every individual i in J ,

T
(
gi − hi

)
+

(
xi − ei

)
=

(
gi − hi

)
.

To conclude, for every individual i in J , the financial plan vi = gi − hi in V i is
bounded, balances budget sequentially and satisfies, at every date-event σ in S,

U i
σ

(
xi

)
= U i

σ

(
ei

)
only if vi

σ = gi
σ − hi

σ ≤ gi
σ ≤ 0.

Furthermore, across individuals, financial plans v in V satisfy market clearing, that
is, ∑

i∈J
vi = 0.

We treat such financial plans as given in the remaining parts of this proof. ¤

Individual optimality. For every individual i in J , consider the set of all date-events
at which this individual is at the autarchic utility, that is,

Si =
{
σ ∈ S : U i

σ

(
xi

)
= U i

σ

(
ei

)}
.

Also, define the space F i
(
xi, vi

)
of all debt limits f i in F i satisfying, at every

date-event σ in S,
vi

σ + f i
σ ≥ 0

and, at every date-event σ in Si,

vi
σ + f i

σ = 0.

We here show that consumption plan xi in Xi is optimal, subject to budget and
debt constraints, given initial claims, at all debt limits f i in F i

(
xi, vi

)
.
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Peg any date-event σ in S. Observe that, as budget is balanced,
1
pσ

∑
τ∈σ+

pτf i
τ −

1
pσ

∑
τ∈σ+

pτ

(
vi

τ + f i
τ

)− (
xi

σ − ei
σ

) ≤ −vi
σ.

Furthermore, considering any alternative budget feasible consumption plan zi in
Xi satisfying debt constraints,

− 1
pσ

∑
τ∈σ+

pτf i
τ +

1
pσ

∑
τ∈σ+

pτ

(
wi

τ + f i
τ

)
+

(
zi
σ − ei

σ

) ≤ wi
σ.

Using first-order conditions, one obtains
1
pσ

∑
τ∈σ+

pτf i
τ −

1
pi

σ

∑
τ∈σ+

pi
τ

(
vi

τ + f i
τ

)− (
xi

σ − ei
σ

) ≤ −vi
σ

and
− 1

pσ

∑
τ∈σ+

pτf i
τ +

1
pi

σ

∑
τ∈σ+

pi
τ

(
wi

τ + f i
τ

)
+

(
zi
σ − ei

σ

) ≤ wi
σ.

Therefore, adding up terms, it follows that

(‡)
∑

τ∈σ+

pi
τ

(
wi

τ − vi
τ

)
+ pi

σ

(
zi
σ − xi

σ

) ≤ pi
σ

(
wi

σ − vi
σ

)
.

For every t in T , let

St = {σ ∈ S : t (σ) = t} and St = {σ ∈ S : t (σ) ≤ t} .

Consolidating inequalities (‡) up to period t in T , and using the fact the initial
claims are given,∑

σ∈St

pi
σ

(
zi
σ − xi

σ

) ≤
∑

τ∈St+1

pi
τ

(
vi

τ − wi
τ

) ≤
∑

τ∈St+1

pi
τ

(
vi

τ + f i
τ

)
,

where the last inequality follows from debt constraints. By concavity of utility, this
suffices to prove optimality, as the right hand-side vanishes in the limit, because pi

in P i is a summable element of L and vi + f i is a bounded element of L. ¤

Recovering debt limits. Given debt limits f i in F i, at every date-event σ̄ in S, let
Bi

σ̄

(
wi

σ̄; f i
)

be the set of all plans
(
x̄i, v̄i

)
in Xi×V i satisfying, at every date-event

σ in S (σ̄), budget constraint,
∑

τ∈σ+

pτ v̄i
τ + pσ

(
x̄i

σ − ei
σ

) ≤ v̄i
σ,

and debt constraints,
− (

v̄i
τ + f i

τ

)
τ∈σ+

≤ 0,

given initial wealth wi
σ̄ in R.

Consider the set

Di =
{(

wi, f i
)

: Bi
σ̄

(
wi

σ̄; f i
)

is non-empty at every σ̄ ∈ S} ⊂ V i × F i.

This domain is non-empty, closed and convex. Define a value function J i : Di → L
by means of

J i
σ̄

(
wi

σ̄; f i
)

= max
{
U i

σ̄

(
x̄i

)
:
(
x̄i, v̄i

) ∈ Bi
σ̄

(
wi

σ̄; f i
)}

;

It is straightforward to verify that this value function is well-defined, as the max-
imum is achieved, and fulfils the following properties: (i) it is bounded; (ii) it is
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concave; (iii) it is weakly increasing in f i in F i and strictly increasing in wi in V i

on its domain Di; (iv) for every f̄ i in F i, it is continuous on the restricted domain
{(

wi, f i
) ∈ Di : f i = f̄ i

}

and upper hemicontinuous on the restricted domain{(
wi, f i

} ∈ Di : f i ≤ f̄ i
}

;

(v) for every f i in F i
(
xi, vi

)
, by construction,

(
vi, f i

)
is an element of the domain

Di and, by the previous argument for optimality, at every date-event σ̄ in S,

J i
σ̄

(
vi

σ̄; f i
)

= U i
σ̄

(
xi

)
.

We now show some properties of differentiability of the value function. Given
any f i in F i

(
xi, vi

)
and any wi in V i satisfying wi ≥ vi−xi,

(
wi, f i

)
is an element

of the domain Di and, by optimality, at every date-event σ in S,

J i
σ

(
wi

σ; f i
) ≥ ui

(
xi

σ +
(
wi

σ − vi
σ

))
+

1
πi

σ

∑
τ∈σ+

πi
τJ i

τ

(
vi

τ ; f i
)

≥ ui
(
xi

σ +
(
wi

σ − vi
σ

))
+

1
πi

σ

∑
τ∈σ+

πi
τU i

τ

(
xi

)
.

By the well-known result in convex analysis, given any f i in F i
(
xi, vi

)
, the value

function admits a (partial) derivative at
(
vi, f i

)
in Di and, at every date-event σ

in S,
∂J i

σ

(
vi

σ; f i
)

= ∂ui
(
xi

σ

)
.

Thus, given any f i in F i
(
xi, vi

)
, consider any

(
wi, f i

)
in Di satisfying, at some

date-event σ in S, J i
σ

(
wi

σ; f i
) ≥ U i

σ

(
ei

)
and wi

σ ≤ vi
σ. Concavity delivers

U i
σ

(
ei

)− U i
σ

(
xi

) ≤
Jσ

(
wi

σ; f i
)− Jσ

(
vi

σ; f i
) ≤ ∂ui

(
xi

) (
wi

σ − vi
σ

)

≤ ξ
(
wi

σ − vi
σ

)
,

where
ξ =

∧

σ∈S
∂ui

(
xi

σ

)
> 0.

Thus, rearranging terms,

vi
σ −

U i
σ

(
xi

)− U i
σ

(
ei

)

ξ
≤ wi

σ.

Also, by uniform impatience and boundedness of per-period utility, there exists a
sufficiently large φ > 0 satisfying

φ >
∨

σ∈S

U i
σ

(
xi

)− U i
σ

(
ei

)

ξ
.

It follows that, given any f i in F i
(
xi, vi

)
, for every

(
wi, f i

)
in Di,

(‡) J i
σ

(
wi

σ; f i
) ≥ U i

σ

(
ei

)
only if wi

σ ≥ vi
σ − φ.

We shall exploit this fundamental inequality to recover debt limits.
We define an implicit operator Gi : F i

(
xi, vi

) → F i
(
xi, vi

)
by setting, at every

date-event σ in S,
J i

σ

(−Gi
(
f i

)
σ

; f i
)

= U i
σ

(
ei

)
.
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To prove that this operator is well defined, pegging any date-event σ in S, observe
that

J i
σ

(
0; f i

) ≥ J i
σ (0; 0) ≥ U i

σ

(
ei

)

and
J i

σ

(−gi
σ; f i

) ≤ ui (0) +
1
πi

σ

∑
τ∈σ+

πi
τU i

τ

(
xi

)
< U i

σ

(
ei

)
,

where

0 ≤ gi
σ = sup

{−wi
σ ∈ R : Bi

σ

(
wi

σ; f i
)

is non-empty
} ≤ ei

σ +
1
pσ

∑
τ∈σ+

pτf i
τ ,

as utility satisfies (weak) Inada conditions. Hence, by the Intermediate Value The-
orem, Gi

(
f i

)
exists in L. Also, it is positive and bounded, as first-order conditions

imply
1
pσ

∑
τ∈σ+

pτf i
τ ≤ 1

pσ

∑
τ∈σ+

pτ

∑

j∈J
f j

τ

=
1
pσ

∑
τ∈σ+

pτ

∑

j∈J

(
vj

τ + f j
τ

)

=
∑

j∈J

1
pσ

∑
τ∈σ+

pτ

(
vj

τ + f j
τ

)

=
∑

j∈J

1
pj

σ

∑
τ∈σ+

pj
τ

(
vj

τ + f j
τ

)

≤
∑

j∈J

( ∨

τ∈S

∣∣vj
τ + f j

τ

∣∣
)

1
pj

σ

∑
τ∈σ+

pj
τ

and uniform impatience yields

1
pj

σ

∑
τ∈σ+

pj
τ ≤

(
∂uj (ε)

/
∂uj

(
1
ε

))
1
πj

σ

∑
τ∈σ+

πj
τ ≤ η

(
∂uj (ε)

/
∂uj

(
1
ε

))
.

Finally, at every date-event σ in S,

J i
σ

(
vi

σ; f i
)

= U i
σ

(
xi

) ≥ U i
σ

(
ei

)
= J i

σ

(−Gi
(
f i

)
σ

; f i
)

and, at every date-event σ in Si,

J i
σ

(
vi

σ; f i
)

= U i
σ

(
xi

)
= U i

σ

(
ei

)
= J i

σ

(−Gi
(
f i

)
σ

; f i
)
.

Hence, Gi
(
f i

)
is an element of F i

(
xi, vi

)
. Finally, observe that the operator

Gi : F i
(
xi, vi

) → F i
(
xi, vi

)
is (weakly) monotone.

Construct debt limits f̄ i in F i
(
xi, vi

)
so that

f̄ i
σ = −vi

σ, at every date-event σ ∈ Si,

and
f̄ i

σ ≥ −vi
σ + φ, at every date-event σ ∈ (S/Si

)
.

We claim that Gi
(
f̄ i

)
in F i

(
xi, vi

)
satisfies Gi

(
f̄ i

) ≤ f̄ i. Indeed, exploiting re-
striction (‡), at every date-event σ in

(S/Si
)
,

Gi
(
f̄ i

)
σ
≤ −vi

σ + φ ≤ f̄ i
σ;
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at every date-event σ in Si,

Gi
(
f̄ i

)
σ

= −vi
σ = f̄ i

σ.

Now, by induction, construct a sequence
((

Gi
)n (

f̄ i
))

n∈T in F i
(
xi, vi

)
. Such a

sequence is weakly decreasing and bounded, as

f̄ i ≥ (
Gi

)n (
f̄ i

) ≥ (
Gi

)n+1 (
f̄ i

) ≥ −vi.

Hence, it converges to some f i in F i
(
xi, vi

)
in the product topology. By upper

hemicontinuity of the value function, at every date-event σ in S,

J i
σ

(−f i
σ; f i

) ≥ U i
σ

(
ei

)
.

Suppose that there exists ε > 0 such that, at some date-event σ in S,

Jσ

(−f i
σ; f i

)
> J i

σ

(−f i
σ − ε; f i

)
> U i

σ

(
ei

)
.

For every sufficiently large n in T ,
(
Gi

)n+1 (
f̄ i

)
σ
≤ f i

σ + ε and, therefore,

U i
σ

(
ei

) ≥ J i
σ

(
− (

Gi
)n+1 (

f̄ i
)
σ

;
(
Gi

)n (
f̄ i

))

≥ J i
σ

(
−f i

σ − ε;
(
Gi

)n (
f̄ i

))

≥ J i
σ

(−f i
σ − ε; f i

)

> U i
σ

(
ei

)
,

a contradiction. Hence, f i in F i are not-too-tight debt limits at equilibrium. ¤
The proof is now complete. ¤
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