Microtonal music with ABC
(microabc tutorial)

Hudson Lacerda <hfml@brfree.com.br>

September 21, 2008

Contents

‘1 Introduction

2 Software requirements

LUnderstanding the basic concepts

3.1 ABCand micCrotones i e e e e e
3.2 Macros and preproCeSSOTS . . . v v v v v v v e e e e e e e e e e
3.3 microabc is a generator of macros‘
3.4 microabc as a PreprocesSOrt e e e e e e e e e e e e e e e
3.5 MIDI Iimitations e e e e

4 The steps\

5 Examples

5.1 Quick start e e e e e
5.1.1 Bach'schoral
5.1.2 Make changes, learn MOTE o o ot e e
52 A scale of harmonics — microabc output MOdeS
5.2.1 The microabc input file
5.2.2 The ABC file with macros e
5.2.3 Microtonal mode
5.2.4 Chromatic mode, timidity++ and Scala
5.2.5 Diatonic mode e e e e
52,6 Literal mode e e
53 Anexample in 19-EDO oottt
5.3.1 The microabc file e
5.3.2 PostScript‘ ...
533 MIDI o o
534 Thecode e e
5.3.5 Macro definitions filest
5.3.6 The ABC file with macros e
5.3.7 Preprocessing e e
5.3.8 Getting the MIDI filel o oo
5.3.9 Getting the PostScript score file oo
5.3.10 Customisation of the accidentals in the PostScript score file
5.4 Sagittal notation — using microabc as preprocessoﬂ
54.1 Just Intonatiorﬂ
5.4.2 Equal divisions of OCEAVE . o o o

5.5 Using Sagittal notation for arbitrary scales 21

5.5.1 Pick out a scale — make the microabc inputfile 22

5.5.2 The microabc test file 23

5.5.3 Create your own *.abp MUSIiC file o o v oot 25

5.6 Approximating Sagittal pitches to arbitrary scale§ 26

5.7 More possibilities 27

6 HTTP addresses 27

1 Introduction

How to make microtonal music using a computer? How to obtain a score with a special, customised,
microtone notation? How to get an audible “previewing” of a microtonal composition? Is all that
teasible today with 100% free software? The answer for the last question is yes, thanks to some
ABC music notation softwares. Answers for the other questions will be addressed through this text.
microabc was written to make it easy to get microtonal music scores and MIDI files with ABC tools.

2 Software requirements
First, you will need to obtain some pieces of software!!

o Get the (free/ libre/ open source) ABC software tools:

— abcpp, the ABC preprocessor.
— abc2midi, an ABC to MIDI converter.

- abecm2ps, a music typesetter that generates PostScript files.
e Get a program to compute musical scales:

— Scala (free of charge).
e Get a PostScript interpreter and previewer:

— ghostscript.

— ghostsview.

e Get a MIDI player with Standard MIDI Tuning support:
- timidity++.

e And do not miss microabc, of course!

You should be aware that abcpp must be compiled with sufficient room for the macros generated
by microabc. Find the definition of MAX_MACROS in the source code and (re)define it as 512 or like
then compile the program. In order to work with “normal” versions of abcpp, several samples in
this tutorial use a limited pitch range.

The sample commands in this tutorial were tested on a Debian GNU+Linux operating system.
For other systems, they may need a few adaptations.

3 Understanding the basic concepts

One needs to know a set of concepts, in order to get started to microabc.

1URISs for the sites from which the programs can be obtained are provided at the end of this document.

2Tip for Windows wusers: download the “ABC command line tools for Windows” package from
http://abcplus.sourceforge.net/#abctools

3For abcepp version 1.3.2, the line 43 of abcpp.c may be changed to, for instance:
#define MAX_MACROS 512 /* # of #defined macros */

http://abcplus.sourceforge.net/#abctools

3.1 ABC and microtones

To use microabc, a basic knowledge of ABC music notation is required. ABC is a music notation
system using characters, originally devised by Chris Walshaw. There are several computer programs
to convert ABC to music scores and MIDI files. ABC is easy — you can learn to use it in a short time *

There are a few ABC programs with support for microtonalism. abecm2ps and abc2midi provide
rich features to get microtonal PostScript scores and MIDI files

Both abecm2ps and abc2midi represent microtonal pitches with a fraction associated to an acci-
dental. It is assumed that the fraction is a fraction of a conventional tempered semitone. For instance,
~1/2C is the pitch C raised by 1/2 semitone, while _14/100E is the pitch E lowered by 14 cents.

With abc2midi, one can temper the fifth and the octave for pitches with conventional accidentals.
That W]ay, one can use a scale with up to 35 pitches per octave (using simple and double flats and

6

sharps).® The following ABC example uses that feature.
X:1

Jfmaxshrink 1

Jhcontinueall

T:microabc tutorial

T:abc2midi temperamentlinear

M:4/4

L:1/4

Q:1/4=90

K:C

fm————————— Pythagorean tuning ---------------———-—————————-

%%&MIDI temperamentlinear 1200.0 701.955001

[V:11 GAGG | G2 z2 ||

[V:2 merge] EF ED | E2 x2 ||

[V:3 merge] CC CB, | C2 x2 ||

fm————————= 1/4-comma meantone temperament -—---------——---—--
%%&MIDI temperamentlinear 1200.0 696.578428

[V:11 GAGG | G2 z2 ||

[V:2] EF ED | E2 x2 ||

[v:d] CCCB, | C2x2 ||

=== 22-equal divisions of octave —----——--————————-—-
%%&MIDI temperamentlinear 1200.0 709.090909

[V:11 =C D "B, "C | =D _E _F "D | =E2 22 ||

(v:2] z3 || [v:3] z3 ||

h—————————= Standard 12-equal divisions of octave —————————-
%/&MIDI temperamentnormal

[V:1] "E =F "D _E | [C=EGI3 z || [V:2] z2 || [V:3] Z2 ||

% In ABC, notes are represented by letters, and rests are represented by z. C is the middle C; notes of the upper octave
are written in small letters (¢ d e...). Additional commas (,) or apostrophes (’) render the notes of the lowers or upper
octaves. Durations are represented by appending multipliers: C3 lasts three times more than C, while A/4 lasts a half of
the duration of A/2, which duration is a half of duration of A. The length of a note with no multipliers is defined by an
instruction such as L:1/4; here, the base note length is a quarter note. Accidentals are represented by: __ (double flat),
_ (flat), = (natural), ~ (sharp) and "~ (double sharp). They are written left side the note letters as in “C. A tune is started
by a line with X: followed by a number (for indexing purposes). The field T: defines the music title. The time signature
is set with M: (e.g. M:6/8). A line as K:F#m defines the key signature (here, F-sharp minor) and closes the “tune header”;
the following lines are the music notes. Notes can be assigned to a voice specified with V:identifier. The tune ends
with a blank line. A good introduction and reference for ABC is “Making Music With ABC Plus” by Guido Gonzato. Visit:
http://abcplus.sourceforge.net/#ABCGuide.

®jcabc2ps and BarFly provide some (limited) support for microtonalism. Also, tclabc includes a program named
tkabc, which is a graphical interface to write ABC files — tkabc supports the same quarter-tone accidentals as abem2ps.

fabc2midi (since 2006-09-26) supports temperaments of the linear class, thanks to the command
%#%MIDI temperamentlinear octave_cents fifth_cents, where octave and fifth sizes are given in cents.

4

http://abcplus.sourceforge.net/#ABCGuide

To generate a MIDI file, save the ABC code above as temperlin.abc and run the command:
abc2midi temperlin.abc
The PostScript score is generated with:

abcm2ps temperlin.abc -0=

microabc tutorial
abc2midi temperamentlinear

QL

iy
e -

[.
(iR FiE e

However, there are limitations in both programs: abecm2ps only includes glyphs for conventional
and quarter-tone accidentals (in a Tartini-Couper style; see example below). Any other accidentals
are indefinite, hence the user should provide the PostScript definitions for their glyphs. In turn,
abc2midi cannot deal freely with microtonal accidentals in chords, because normally the notes inside
a chord go into a same MIDI channel, and the pitch bend messages (which assign the tuning to the
notes) are applied to all simultaneous notes sharing a same channel” Another difference is that
abecm2ps only accepts fractions which numerator and denominator are lesser than 256.

To handle such limitations and differences between abecm2ps and abc2midi, and to provide shorter
ways to represent pitches like _137/10004, and also to compute the proper fractions for each note, it
seems to be a good idea to use a preprocessor and a tool to generate the macro definitions required
for a given tuning.

X:1

T:microabc tutorial

T:abcm2ps built-in microtonal accidentals
M:none

L:1/4

hhstretchlast

K:C

y __B _3/B_B_/B=B "/B "B "3/B "B |

microabc tutorial
abcm2ps built-in microtonal accidentals

I

he be de te e Fe He %
r i i i i i i a » i

Y, I

<

7Since 2006-10-03, abc2midi supports microtonal chords provided that a number of MIDI channels be reserved with
the command %%MIDI makechordchannels n, where n is the number of additional channels to allocate for the current
voice.

3.2 Macros and preprocessors

microabc is a generator of macros, that is, a definition of a character string to be replaced with
another character string. A preprocessor is a tool which (among other features) can carry out macro
replacements. This works much like the “Find/Replace” feature present in text editors.

For instance, let us suppose that we want to use a short macro name to be replaced with the string
hhbegintext. For the abecpp preprocessor, we could define a macro like this:

#define %%BT %lkbegintext

Given the definition above, all occurrences of %%BT in the input file will be replaced with
hkbegintext. You can try with macros just now, by using abcpp.
First, create a text file named macroin.txt with this content:

#define SCALE CDEFGABc

#define CHORD [CEGc]

A C-major scale in written in ABC as:
SCALE

A C-major tonic chord is written as:
CHORD

Then, run abcpp on the file macroin. txt, by using this command:
abcpp macroin.txt macroout.txt

abcpp will read the file macroin.txt, and convert it in a new file named macroout.txt, replacing
all defined macro names with their corresponding replacement texts:

A C major scale in written in ABC as:
CDEFGABc

A C major tonic chord is written as:
[CEGc]

3.3 microabc is a generator of macros

microabc was primarily intended to be a program to generate macro definitions to represent micro-
tonal music in ABC. Let us try its basic features with a few short examples.
Create a file ex1.txt with this content:

range: -5 7
alias: O

0

1

2

Now run microabc on that file:
microabc < exl.txt

microabc will print on the screen a list of macro definitions based on the file ex1.txt, including
these lines:

#define [1,,] =G,
#define [2,,] °G,
#define [0,] =A,
#define [1,] ~A,
#define [2,] =B,
#define [0] =C
#define [1] ~°C
#define [2] =D
#define [0’] °D
#define [1’] =E
#define [2’] =F
#define [0’’] °F
#define [1’’] =G

Please note that, by default, the macro names are generated with square braces, and the replace-
ments are conventional ABC pitches in a chromatic sequence, with =C as the central pitch (our first scale
degree, named [0]). Such chromatic sequences (mappings) are useful, for instance, when retuning
MIDI files with the program Scala.

Note that there are 5 macros before [0], and 7 macros after it. This is the result of the command
range: -5 7 of the input file.

Please note yet that the macros use the given numbers 0, 1 and 2, with additional commas (,) or
apostrophes (’) for lower or upper instances (normally used for octaves).

Finally, the command alias: 0 was used to tell microabc that the first column (starting from 0)
in the input file contains the strings for the macro names. One can create several macro definitions
(“aliases”) for each pitch (same replacement), thus the name of the command ®

Of course, to use the definitions generated with microabc, we will want to store the output in a
tile. This can be done by either of these commands:

microabc < exl.txt > exl.abh
microabc -iexl.txt -oexl.abh

3.4 microabc as a preprocessor

Although preprocessing was not its initial goal, microabc can be used as a specialised preprocessor.
In special, microabc preprocessor provides considerable support for the Sagittal Notation System@
That feature is presented in the section 5.4/ (page [19).

3.5 MIDI limitations

One should be aware that MIDI has severe limitations to represent microtonal music.

One way to accomplish microtonal pitches is by using Pitch Bend messages to change the tuning
of the note; unfortunately that message affects all notes which share a same MIDI channel. Thus, the
number of differently tuned pitches played simultaneously is limited by the number of channels in
use. Sophisticated algorithms can optimise the use of pitch bend messages, redirecting each note to
a suitable MIDI channel. This can be done with Scala, when using its *.seq file format, but there
are not currently any ABC programs with such a feature. abc2midi usually outputs each voice to a

8The complete list and description of microabc commands is distributed along with the program, in both
text (microabc.txt) and HTML (microabc.html) formats. The latter one can also be read online at the address
http://br.geocities.com/hfmlacerda/abc/microabc.html.

9Sagittal Notation System website is http://users.bigpond.net.au/d.keenan/sagittal/.

http://br.geocities.com/hfmlacerda/abc/microabc.html
http://users.bigpond.net.au/d.keenan/sagittal/

different channel, therefore chords in a same voice share a same channel, so there is no easy way to
tune the individual notes in a chord.!% 1!

Another approach is to map every MIDI pitch to a given frequency. For MIDI devices with such
capability, one can have available up to 128 different frequencies. There is not the problem with
simultaneous notes in a same channel. That can be fine in several cases, specially when the scale
has not too many degrees in an octave, for instance: 19-EDO or 24-EDO.2 But with 31 degrees in
an octave (e.g. 31-EDO), the range is reduced to four octaves only (128/31 = 4.129). The frequency
mapping usually is device-specific. However there is the Standard MIDI Tuning specification, which
set the frequencies by using System Exclusive messages (those messages can be inserted in a MIDI
tile). Standard MIDI Tuning is not supported by some MIDI devices, thus it is not recommended to
use in MIDI files for distribution. An alternative is to use the program Scala to retune files which
assume a frequency mapping, converting them to files which use Pitch Bend messages instead.

One should also know that 14bit MIDI Pitch Bend gives a precision of 1/4096 semitone; that
corresponds to 0.024414 cents. Standard MIDI Tuning is more precise: 1/16384 semitone or 0.0061035
cents.

Such MIDI limitations force users of ABC programs to choose between those two main approaches
to obtain micro-tuned MIDI files. microabc provides the chromatic and diatonic modes for frequency
mapping (ABC with conventional accidentals or with no accidentals respectively), and the microtonal
mode to use pitch bend messages (ABC with microtonal accidentals).

4 The steps

With abcpp — These are the traditional steps to write microtonal music with microabc:

1. Define the scale in a microabc text file;

2. Generate the file(s) containing the macros definitions, by running microabc;
3. Write the music in ABC code with macros;
4

. Concatenate or include the macros definitions file(s) with the ABC code and generate pure ABC
tile(s), by running abcpp;

5. Run abcm2ps to get the score as a PostScript file and/or run abc2midi to get a MIDI file.

Without abcpp — To use microabc as preprocessor, the steps are:

1. Define the scale in a microabc text file;
2. Write the music in ABC code with macros;
3. Preprocess the music file with microabc to obtain ABC file(s) for MIDI and/or PostScript;

4. Run abecm2ps to get the score as a PostScript file and/or run abc2midi to get a MIDI file.

Sagittal — To use microabc as a preprocessor for Sagittal notation, the steps are simply these:

1. Write the music in ABC code with Sagittal pitches (between square braces);
2. Preprocess the music file with microabc to obtain ABC file(s) for MIDI and/or PostScript;

3. Run abem2ps to get the PostScript score file and/or run abc2midi to get a MIDI file.

9The program abc2alias included in microabc package can split ABC chords in a set of temporary voices. However it
is still somewhat limited understanding ABC syntax, so that the user may need to change a bit the ABC source to get the
proper results. Nonetheless, abc2alias can be very useful if used with care. See inside the tools/ folder.

1See also the footnote |7 at page 5.

12“EDO” stands for “Equal Divisions of Octave”.

5 Examples

5.1 Quick start

Just start doing. This example requires only these programs:

e microabg;
e abcm2ps;
e abc2midi;
e Any MIDI player;

e Any PostScript viewer.
5.1.1 Bach’s choral
Here is the sample music, from a J. S. Bach’s choral:

microabc tutorial
Nun lob’, mein Seel’, den Herren

TTo¢

T —
L
Ne
v
jn[flﬂl:
(
==

%’
1

J.S.Bach
04 —— — -+ S %
T e e e e e . = e 2
A LARAU IR - IR A AT OAL
glod) J1) Il)g | d)] = 2ol
% i - oi f
‘ T

it
.
=

I

- N

And here is its corresponding code, written as ABC with Sagittal macros:

%hformat sagittal.fmt
hhformat sagittal-mixed.fmt
hhpostscript sagmixed
hhcontinueall

Jkmaxshrink .8

hfkmicroabc: equaltemp: 19

X:1
T:microabc tutorial
T:Nun lob’, mein Seel’, den Herren
C:J.S.Bach
L:1/4
M:3/4

K:A exp [F#][C#][G#‘] ¥ key signature
b

%hstaves {(1 2) (3 4)}

yA

V:1 clef=treble % Voice 1

%4MIDI nobeataccents

%%MIDI program 16
%AMIDI trim 1/5
|: [A] | [Al2 [:G#] | [:F#12 [E] | [A] [B]2 | [:C#‘]2 \
:c#] | [:c#¢] [B] [:c#‘] | [:c#]12 [B] | [A] [B]2 | [A]2 :|
V:2 clef=treble ¥ Voice 2
%AMIDI nobeataccents
%%&MIDI program 16
%AMIDI trim 1/5
. [E] | [:F#]12 [E] | [DIC:c#]1([B,] | [EJL:F#][E] | [E]2 \
(E]/C:F#1/ | [:G#12 [E#] | [:F#]12 [:G#] | [Al2 [:G#] | [E]2 :|
V:3 clef=bass % Voice 3
%4MIDI nobeataccents
%%&MIDI program 16
%4AMIDI trim 1/5
| [:c#] | [:c#12 [:c#] | [A,]12 [:G#,]1 | [A,]12 [:G#,]1 | [A,]12\
[:c#] | [:c#]2 [B,] | [A,]2 [E] | [E] [:F#] [E] | [:C#]2 :|
V:4 clef=bass 7% Voice 4
%%MIDI nobeataccents
%%&MIDI program 16
%4MIDI trim 1/5
l: [A,] | [:F#,]12 [:C#,
[(A,] | [E#,]2 [:C#,] |

1 1 [,]2 [D,] | [:C#,] [D,] [E,] | [A,,]2\
[:F#,] [Ee,] [D,] | [:C#,] [D,]1 [E,] | [A,,]2 :|

The code above (saved as bach. abp) can be converted to PostScript and MIDI with the commands:

microabc -E -Pbach.abp -obach.abc
microabc -E -Mbach.abp -obach-midi.abc
abcm2ps -0= bach.abc

abc2midi bach-midi.abc

Use the PostScript viewer and the MIDI player to enjoy the results.
Then start to make changes in the code to learn more. ..

5.1.2 Make changes, learn more

The MIDI file of the Bach’s choral was generated in 19-EDO. Note the line with
Jkmicroabc: equaltemp: 19. You may make experiments with various equal temperaments, by re-
placing 19 with other numbers. Or else disable that command to get fifths of 3/2 (Pythagorean just
intonation) — to do this, simply remove one character % of the start of that line.

You may also get a score in pure Sagittal notation, just removing the line %%postscript sagmixed
or changing sagmixed to sagpure.

Take some time trying to understand the code. Focus the attention on the lines of notes. Notice
that the accidentals are not shown in the score for pitches starting with a colon, like in [:C#]. Also
notice that a f§ is represented with a small letter “e”, in [Ee,]. Experiment to change the code and
see the effects of your changes.

As an additional exercise, if you know a bit of Sagittal, use Pythagorean tuning (fifths of 3/2) and
then change some accidentals to get pure thirds in the chords.

To learn more about how to use Sagittal with microabc, read the section 5.4 (page 19). See also
the section 5.5 (page[21), and the microabc documentation. To learn more about the Sagittal Notation
System itself, visit http://users.bigpond.net.au/d.keenan/sagittal/

The following sections illustrate in some detail the main features of microabc.

10

http://users.bigpond.net.au/d.keenan/sagittal/

5.2 A scale of harmonics — microabc output modes

As an example to illustrate the microabc microtonal, chromatic, diatonic and literal modes, we will take
the first odd elements of the harmonic series up to 23rd harmonic, reduced to the range of an octave.
That scale can be obtained by executing the following commands in the program Scala:

harm 1 23
norm
show

Here is the resulting scale:

0: 1/1 0.000 unison, perfect prime

1: 17/16 104.955 17th harmonic

2: 9/8 203.910 major whole tone

3: 19/16 297.513 19th harmonic

4: 5/4 386.314 major third

5: 21/16 470.781 narrow fourth

6: 11/8 551.318 undecimal semi-augmented fourth
7: 23/16 628.274 23rd harmonic

8: 3/2 701.955 perfect fifth

9: 13/8 840.528 tridecimal neutral sixth
10: 7/4 968.826 harmonic seventh

11: 15/8 1088.269 classic major seventh
12: 2/1 1200.000 octave

5.2.1 The microabc input file

We will make the input file for microabc by adding these commands above the scale data generated
by Scala:

alias:0 {column 0 gives the aliases}
scl:1 {column 1 gives the intervals of the scale for microtonal mode}
range:-40 40 {pitch range (ambitus)}

Then, we edit the output of Scala accordingly: we will use the numbers 0-11 as aliases (without
the colons of the Scala output), and we will remove the last line (octave, 2/1, which is the pitch class
0 again, octave up)E Let us save this as harmonic.txt:

{--—-—--- begin---------- }
alias:0 {column O gives the aliases}
scl:1 {column 1 gives the intervals of the scale for microtonal mode}
range:-40 40 {pitch range (ambitus)}
0 1/1 0.000 unison, perfect prime
1 17/16 104.955 17th harmonic
2 9/8 203.910 major whole tone
3 19/16 297.513 19th harmonic
4 5/4 386.314 major third
5 21/16 470.781 narrow fourth
6 11/8 5561.318 undecimal semi-augmented fourth
7 23/16 628.274 23rd harmonic

BBUnlike Scala files, the input format for microabc starts with pitch 1/1 and ends with the last pitch before the octave
(or other equivalence interval). To use a different equivalence interval, insert a sclmod:<interval> line.

11

8 3/2 701.955 perfect fifth

9 13/8 840.528 tridecimal neutral sixth

10 7/4 968.826 harmonic seventh

11 15/8 1088.269 classic major seventh
{---—-—-- end----------- }

5.2.2 The ABC file with macros

To try with our example, let us write a music file. Remember, the pitches are defined as the numbers
0-11 delimited by square braces (provided by microabc); octaves up or down are represented like in
ABC, with apostrophes or commas.¥ Let us save this as harmonic. abp.

X:1
T:microabc tutorial

T:harmonics

M:6/8

L:1/8

Q:1/8=90

01

%%MIDI program 16

V:2

%#%MIDI program 16

K:none

%jhcontinueall

%hhmaxshrink 0.9

V:1

(0’101°1[2°1(3°1[4°1(5°] | [6°1[7°1[8°1[9°]1[10°][11"]
(0] [1]1[2]1[3]1[4]1(5] | [e]l(7](8](9][10][11] |
(o,101,102,1(3,104,1(5,]1 | [6,1(7,]1(8,1[9,1[10,1[11,] |]
V:2

(o,,lé6- | [0,,16 |

(o,,l16- | [0,,16 |

(0,,16- | [0,,]6 |]

b

<

5.2.3 Microtonal mode

The command scl:1 included in the input file (section 5.2.1, page 11) is sufficient to activate the
microtonal mode. To generate the macro definitions for MIDI files, execute:

microabc < harmonic.txt > harm4mid.abh

You may be interested in to see inside the generated file harm4mid.abh, to know the definitions.
It will contain lines like these, where you can see microtonal ABC pitches at the resolution of 1/4096
semitone:

#define [9,] _2436/4096A,
#define [10,] ~2819/4096A,
#define [11,] _481/4096B,
#define [0] =C

#define [1] _3893/4096D
#define [2] ~160/4096D

4The delimiters can be changed with the command delim:, and the octave modifiers with the command updown:.

12

#define [3] ~3994/4096D
#define [4] _561/4096E
#define [5] _1197/4096F
#define [6] ~2102/4096F
#define [7] _2938/4096G
#define [8] ~80/4096G
#define [9] _2436/4096A
#define [10] ~2819/4096A
#define [11] _481/4096B
#define [0’] =c

#define [1’] _3893/4096d

Let us create the ABC code and the MIDI file:ﬁ

cat harmdmid.abh harmonic.abp | abcpp > harmdmid.abc
abc2midi harm4mid.abc

To get a score in microtonal mode, we need to quantise those accidentals from 1/4096 semitone to
a smaller denominator. abem2ps supports quarter-tones (1/2 semitone), but we may choose a finer
resolution: 1/4 semitone, since microabc can provide the required glyphs for the accidentals.

The command below will create a file with the macros for our scale quantised to eighth-tones
(harm4ps.abh). Please note the command-line options den:4, which sets the denominator to 1/4 semi-
tone, abcm2ps :4 which sets the same quantisation for abem2ps, and psacc:1 which tells microabc to
create the glyphs for the microtonal accidentals:

microabc den:4 abcm2ps:4 psacc:1 < harmonic.txt > harmédps.abh
These commands will create the ABC code and the PostScript score file from it:

cat harmé4ps.abh harmonic.abp | abcpp > harmdps.abc
abcm2ps -0= harméps.abc

The score should look like this:

microabc tutorial

harmonics

D= 90
/ . L e 4 de fo i@ .
A—6—+ v + ¥ } 7y T &):
DH—8—1 ——1— ; . > @
3 i AR
-/.: j

e ke ger . ke

== A ,_iﬁr,_h_n

| . :

o):

15DOS/Windows users should use type instead of cat in the command line.

13

5.24 Chromatic mode, timidity++ and Scala

It was said before (section 3.5, page 7) that the microtonal mode is not very suitable to obtain MIDI
tiles with abc2midi when chords are used. In such circumstances, a better solution may be using the
chromatic mode and retune the MIDI file with Scala, or playing it with timidity++, or yet creating it
with Standard MIDI Tuning rnessagesJT6

The following commands will create the macro definitions in chromatic mode, and then generate
the ABC and MIDI files:

microabc chromatic:1 < harmonic.txt > harmchrm.abh
cat harmchrm.abh harmonic.abp | abcpp > harmchrm.abc
abc2midi harmchrm.abc

The option chromatic:1 in the command line will cancel the effect of the scl:1 command from
the file harmonic.txt, that is, the microtonal mode will be disabled and the chromatic mode will
be enabled. As a consequence, the tuning information will be ignored — but we need using that
information to retune or play the MIDI file.

To play the file with timidity++, we need firstly export the scale in a format suitable for that
program. A frequency table will be output to the file harmonic.tbl with the command:'7 18

microabc timidity:harmonic.tbl < harmonic.txt > /dev/null

Now we can hear the MIDI file with timidity++, using the option -Z to load the frequencies file:?
timidity harmchrml.mid -Z harmonic.tbl

We can also use timidity++ to generate a .wav file by adding the option ~0wi20
timidity harmchrml.mid -Z harmonic.tbl -Ow

Our alternative approach is retuning the MIDI file. We can export the tuning from the microabc
input, in the Scala file format:

microabc scala:harmonic.scl < harmonic.txt > /dev/null

This command calls Scala to retune the MIDI file — supposed to be named harmchrml.mid — as a
new file called harm-scl.mid:

scala harmonic.scl --example/midi harmchrml.mid harm-scl.mid --exit

Still using the ABC code generated with the chromatic mode, we could create a MIDI file with
Standard MIDI Tuning messages. This option is illustrated in the section 5.3 (page 16).

16 Another solution can be using the program abc2alias (included in microabc package) to expand the chords to
temporary voices (voice overlay).

7DOS/Windows users should exclude the part “> /dev/null” from the commands; some data will be printed on the
screen.

8Prequency tables for timidity++ may be also created using Scala. For instance, by issuing this command:
scala harmonic.scl --set synth 117 "--send/file %scl(.tbl)" --exit

YPlaying the file with timidity++, using a frequency table, will result in a finer tuning, compared with other approaches.

To obtain a compressed audio file in 0GG Vorbis format, run timidity++ with option -0Ov.

14

5.2.5 Diatonic mode

The diatonic mode is not necessary in the present example of scale of harmonics. Nonetheless, it will
be used for the purpose of illustration.

The following commands will generate a score using a diatonic mapping of the pitches of our
scale (the microabc option diatonic:1 is to set the diatonic mode):

microabc diatonic:1 < harmonic.txt > harmdiat.abh
cat harmdiat.abh harmonic.abp | abcpp > harmdiat.abc
abcm2ps -0= harmdiat.abc

The resultant score (below) uses only the natural pitches, without any accidentals. The diatonic
mode can be used to create non-conventional staves. Note that, in this specific case in which there
are 12 notes per octave, every octave instance spans on 6 staff lines?' Such property could be used
to simulate a sort of “keyboard-view” like those present in some MIDI sequencer programs.

microabc tutorial

harmonics
o B
'h: 90 -,.0_:2:5:5::
0@ T
g eeBEEE CEEEEs .
~—o— . | I — . | o I
AN V4 O | | | |
) o
)6
V4 O
O
¢ @ = =i = =

5.2.6 Literal mode

The remaining microabc mode allows setting arbitrary replacement strings for the aliases. We will
not show, at this point, any useful examples — we will rather simply inspect which macro definitions
are generated when we use the second column of the input file (index 1: that column with the
intervals of the scale) as replacement text/22

microabc replace:1 < harmonic.txt | less
The result printed on the screen should contain lines such as these ones:

#define [9,] 13/8
#define [10,] 7/4
#define [11,] 15/8
#define [0] 1/1
#define [1] 17/16
#define [2] 9/8
#define [3] 19/16
#define [4] 5/4
#define [5] 21/16

2L An additional observation is that — as a coincidence — the pitch class [0] lies on the same helper line in both treble
and bass clefs (see the first note in the upper voice, at measures 3 and 5).
2DOS/Windows users should use more instead of less in the command line.

15

#define [6] 11/8
#define [7] 23/16
#define [8] 3/2
#define [9] 13/8
#define [10] 7/4
#define [11] 15/8
#define [0°] 1/1
#define [1°] 17/16

The microabc literal mode has a few variants, used when the replacement text is in a special
format: replaceabc: and replacesagittal:, respectively for ABC and Sagittal formats?

Also, there is the option replaceupdn: to insert “octave” modifiers (like > and , in ABC) in the
replacements. In the example above, the replacement text does not contain such modifiers: any
instance of pitch class [0] is replaced with 1/1, any instance of pitch class [11] is replaced with 15/8
and so on.

5.3 An example in 19-EDO

Let us suppose we want to write a music in 19 equal divisions of octave. The score can be accom-
plished using the conventional accidentals flat, natural and sharp, but we need tune the pitches for
MIDI files. Of course, we want to write only one ABC input code to obtain both PostScript and MIDI
outputs.

5.3.1 The microabc file

A solution is to use macros for each pitch instead of simple ABC pitches. The replacement for each
macro should be different, depending on output format: one for PostScript generation, another for
MIDI generation. By default, the microabc macros are delimited by square braces [and].

5.3.2 PostScript

For PostScript, we want “common” pitches and accidentals. Therefore: C can be represented as the
macro [C]; "Cas ["C]; D as [.D]; and so on, that is: all macro names will be the corresponding ABC
pitch names between square braces.

5.3.3 MIDI

For MIDI, the things are not so simple, because normally we have 12 chromatic pitches per octave,
but our scale has 19. The frequencies for all pitches need to be set, to get a tuned MIDI file. Let us
use abc2midi’s %/%MIDI snt command for Standard MIDI Tuning@

5.3.4 The code

Below is the basic microabc code for our scale, tut.txt. It sets a scale with 19 steps of size, which is
an equal temperament defined by 19 divisions of a octave (2/1). The pitch names are like ABC pitch
names, listed at columns 0 and 1. Enharmonic pitches share a same line in the following list, and
here they are considered as synonyms (“aliases”).

BSagittal format does not work with abcepp; it will work only when using microabc as preprocessor. See section [5.4] at
page(19.

#Standard MIDI Tuning is not implemented in several MIDI devices, but it is supported by the program timidity++.
If you are creating MIDI files for distribution, you may prefer retune them with Scala using Pitch Bend messages, which
are more portable. The microabc command scala: allows you to export a *.scl file. To retune a MIDI file with Scala,
issue a command like this:
scala scalefile.scl --example/midi inputfile.mid outputfile.mid --exit

16

size:19
equaltemp: 19 2/1
aliasabc: 0 1
range:-20 20

{3

=C C
“C __D
_D ~°C
=D D
"D __E

_E °°D
=E E
"E _F

=F F

5.3.5 Macro definitions files

In microabc, macros can have several aliases (synonyms), but only one meaning, that is, only one
replacement. To maintain a strict correspondence between macros and pitches for a PostScript score
(enharmonic pitches should be differentiated in a score), microabc needs to be ran twice, and the
outputs concatenated. The first run sets the macro definitions for the first (indexed by 0) column of
the input file; the second run sets the macros for the enharmonic pitches (second column of input).
In this example, the replacement is one of the list columns, taken as an ABC pitch.

The command cat concatenates the files into tut-ps.abh (MS-DOS users should use type instead).

microabc -itut.txt aliasabc:0 replaceabc:0 -otut-ps.abl
microabc -itut.txt aliasabc:1 replaceabc:1 -otut-ps.ab2
cat tut-ps.abl tut-ps.ab2 > tut-ps.abh

The macros for MIDI are easier to obtain, because both input columns 0 and 1 mean a same pitch
(enharmonic differentiation is irrelevant here). Our microabc input file already has selected both
columns with aliasabc: 0 1 (above overridden for PostScript score). The additional command
option snt: generates the file tut.snt for Standard MIDI Tuning.

microabc -itut.txt -otut-mid.abh snt:tut.snt

5.3.6 The ABC file with macros

The next step is to write the music in ABC notation with macros, stored in the file tut.abp. Remember
that all pitches must be between square braces (they are macro names, and microabc macro names

17

are delimited by square braces), and note the #include command to insert the Standard MIDI Tuning
definitions from the file tut.snt2% Here is our scale:

X:1

T:microabc tutorial

T:19-edo

#include "tut.snt"

M:6/8

L:1/8

K:C

[(c][~cl1[_D] [=D]["DI[_E] I\
[=E12 z [E]J["E][F] |\
["F1[_Gl[=G] ["GI[_AI[=A] I\
["A]J[_BI[=B] ["B13 | [c]13 z3 |]
5.3.7 Preprocessing

The ABC code with macros (tut.abp) needs to be preprocessed and converted to pure ABC code.
ABC file for PostScript score generation:

cat tut-ps.abh tut.abp | abcpp > tut-ps.abc
ABC file for MIDI file generation:

cat tut-mid.abh tut.abp | abcpp > tut-mid.abc

5.3.8 Getting the MIDI file

The MIDI simulation is generated by abc2midi, with the following command:

abc2midi tut-mid.abc -o tut.mid

The synthesizer timidity++ can p}gy the MIDI file with Standard MIDI Tuning messages and convert
it to other formats like .wav or .ogg.?

5.3.9 Getting the PostScript score file

Use abecm2ps to convert the ABC code into a graphical PostScript score:

abcm2ps tut-ps.abc -0 tut.ps

The output can be previewed with ghostview, and then printed or converted to PDF or other
formats.

BIf you want to use Scala to retune the MIDI file, create a *.scl file with:
microabc -itut.txt scala:tut.scl
Then, remove the line
#include "tut.snt"
of the sample source given in this section and follow the instructions in the footnote number 24 (page[16) to retune the
MIDI file according to the scale file tut.scl.
2See page [14.

18

5.3.10 Customisation of the accidentals in the PostScript score file

Just to show another interesting feature of abcm2ps — the insertion of PostScript instructions to
(re)define symbols, let us customise the score glyphs for the accidentals sharp and flat. Put this code
in the original ABC file (tut.abp), before the music, then follow again the steps of the sections [5.3.7
and 5.3.9;

hhpostscript /shO{ gsave exch .45 add exch T .85 SLW

YY%postscript -1.2 -8.4 M 0 15.4 RL

hhpostscript 1.4 -7.2 M 0 15.4 RL stroke

hhpostscript -1 0 translate .9 1 scale

%hpostscript -2.6 -3 M5.41.6 RL 0 -2.2 RL -5.4 -1.6 RL 0 2.2 RL fill
hhpostscript -2.6 3.4 M5.4 1.6 RL O -2.2 RL -5.4 -1.6 RL 0 2.2 RL fill

%hpostscript grestore}!

%hpostscript /ft0{ gsave T .95 SLW
hhpostscript -1.8 2.5 M

hhpostscript 6.4 3.3 6.5 -3.6 0 -6.6 RC
hhpostscript 4.6 3.9 4.5 7.6 05.7RC
hhpostscript currentpoint fill M
hhpostscript 0 7.1 RM O -7.1 RL stroke
%lhpostscript grestore}!

Here is the resulting score:

microabc tutorial

19-edo
n *
Yy N — | | PR P
8 T T roe e e s fareiede e——r
Y, ﬂ'47 ' T 1

5.4 Sagittal notation — using microabc as preprocessor

microabc can do a specialised form of preprocessing. Unlike abcpp, macro definitions are not de-
clared with #define statements. The definitions are based on the microabc input file itself (option -i),
which defines the working mode, the scale, the aliases and other options — or the definitions are built-
in, in the case of using the Sagittal microtonal notation. To omit the input file, use the option -i-.

The command line options -p, -M and -P preprocess the file given as argument. The option -S
enables the support for Sagittal notation.

5.4.1 Just Intonation

You find below the sample music file sagit.abp. It uses the format file sagittal-pfb.fmt, which is
included in microabc package@ Note that the octaves are indicated with , (down) and (up) -
the latest is a grave accent, not the apostrophe (’) used in ABC.

Y abem2ps expects that the format file be stored in the current directory or in the “default format directory” which
you can know by issuing abcm2ps -V. The directory for format files can also be indicated with the abecm2ps option -D.
For details, please consult the abem2ps documentation.

The use of sagittal-pfb.fmt assumes that the Sagittal PostScript Type 1 font is installed in your system. You can
alternatively try with sagittal.fmt which embeds the font in the output PostScript file, or yet, use the flag -e when
running microabc.

19

hhformat sagittal-pfb.fmt
hhstretchlast

X:1

T:microabc tutorial

T:Sagittal preprocessing

K:C

%%text Pure intonation (fifth=2:3, octave=1:2)

V:1

[(CI[E\'] [GI[B!!'!)] [DILF/IN‘] [ACY/T[B\!'“] I\
(ceeliB\!'‘] [AC'/<1[F/IN‘] [D1[B!'1)] [GI[EN!'] | [C]l4 z4 |]
V:2

[(C,18 | [Cl8 | [C,]14 z4 |]

To get a MIDI file, preprocess with the option -M:*

microabc -i- -S -Msagit.abp > sagit-mid.abc
abc2midi sagit-mid.abc

And to get a PostScript score, use the option -pi30

microabc -i- -S -Psagit.abp > sagit.abc
abcm2ps -0= sagit.abc

The score will look like this:

microabc tutorial
Sagittal preprocessing

Pure intonation (fifth=2:3, octave=1:2)

) e N 2 \e e o
"JI A AN I '!‘I I' @-' !
h—a—"r bo— R
Q) & Al —

©
Y2
7 A O

5.4.2 Equal divisions of octave

The conversion of Sagittal pitches for MIDI is, by default, done in just intonation, based on pythagorean

nominals — with fifths of 2:3 and octaves of 1:2.

Equal divisions of octave can be set with the microabc command equaltemp:, which can be given
in an input file, from the command line or even from the music source file (.abp), in this format:

hfkmicroabc: equaltemp:24

The MIDI file will be generated in microtonal mode, that is, using MIDI Pitch Bend messages. It has the limitation of
do not support chords. Splitting the chords into multiple voices can be made with abc2alias. You may alternatively use

a special command for abc2midi (see note [7 at page|5).
3If you do not want to use abecm2ps format files, call microabc with the flag -e:
microabc -i- -S -e -Psagit.abp > sagit.abc

20

hhformat sagittal-pfb.fmt
hhstretchlast
%jhcontinueall

X:1

T:microabc tutorial

T:equal divisions of octave
M:none

L:1/2

%#%MIDI program 16

%%&MIDI trim 1/4

K:C

hfkmicroabc: equaltemp:24
"~24-ED0"\

[Cel [C~]1[C/N\][D\U/] [Dv] [De] z
J%microabc: equaltemp:31
"~31-EDO"\

[Ce] [C~] [C/N\] [D\U/] [Dv] [De] |

Just like in the previous example, these commands will convert the file edo . abp into edo-midi.abc
(for abe2midi) and edo.abc (for abem2ps):

microabc -i- -S -Medo.abp > edo-midi.abc
microabc -i- -S -Pedo.abp > edo.abc

The score and the MIDI file are obtained with:

abcm2ps -0= edo.abc
abc2midi edo-midi.abc -o edo.mid

microabc tutorial
equal divisions of octave

/ 24-EDO 31-EDO
S - - - — - - -
D— ! ! 0 I » — ! ! 0 I ”
) q < /T\GL ,ﬂ.«é v v [q =i ,T\g. 'ﬂ‘é \'4 v g

This example (edo.abp) uses the “same” pitches in two different tunings: 24-EDO and 31-EDO.
The difference is noticeable in the MIDI file: C/N\ and D\U/ are equivalent in 24-EDQO, but not in
31-EDO.

5.5 Using Sagittal notation for arbitrary scales

This is an example which may be used as reference for many applications. It uses Scala to aid with
Sagittal notation. The MIDI file is created in chromatic mode, and then retuned with Scala. As the
scale size is small, there is no a “range versus chord” conflict 3!

31See section 3.5, page 7|

21

5.5.1 Pick out a scale — make the microabc input file

Start the program Scala and create or load a scale. For instance, click the button Open, select the file
barlow_17.scl and then click on OK.

Now, we need to name the pitches. Let us use a Sagittal notation for just intonation, with short
mixed names. Execute these commands in the Scala prompt (the bottom line of the interface):

set notation sajil
set sagittal short mixed
show

The result is shown below. Save these lines in a text file

0: 1/1 C B#\ unison, perfect prime

1: 25/24 Db\ C#_ classic chromatic semitone, minor chroma
2: 27/25 C#/ Db= large limma, BP small semitone
3: 9/8 D major whole tone

4: 32/27 Eb D#\ Pythagorean minor third

5: 11/9 Eo D#f undecimal neutral third

6: 32/25 E/ Fb= classic diminished fourth

7: 4/3 F E#\ perfect fourth

8: 25/18 Gb\ F#_ classic augmented fourth

9: 36/25 F#/ Gb= classic diminished fifth

10: 3/2 G perfect fifth

11: 25/16 Ab\ G#_ classic augmented fifth

12: 18/11 Av G#q undecimal neutral sixth

13: 27/16 A Pythagorean major sixth

14: 16/9 Bb A#\ Pythagorean minor seventh

15: 50/27 B_ Cb\ grave major seventh

16: 48/25 B/ Cb= classic diminished octave

17: 2/1 C B#\ octave

We need editing the file to adapt it for microabc.

First, delete the last line. It is just the pitch 0 an octave higher@

Note the presence of equivalent pitches, like C and B#\. There are a few pitches with no equiva-
lents: D, G and A/. For such pitches, fill the fourth column with a dot (.)E

Note yet that the pairs of equivalents {C B#\}, {B_ Cb\} and {B/ Cb=} do not specify the different
octaves. Add a comma (,) to B#\ to make clear that the B#\, is of the lower octave. Then add a grave
accent (¢) to Cb/ and Cb= to indicate the higher octave: Cb/ Cb=".

The next step is to tell microabc how to interpret the data. Insert these instructions above the
scale data:

scl:1
aliassagittal:2 3
chromatic:1

scl:1 means that the column 1 (start counting by zero) contains the tuning.
aliassagittal:2 3 tells microabc that the columns 2 and 3 contains the pitch names in Sagittal.

32Tip: To copy the text, do click with the right button of the mouse on the text window of Scala and select the option
Edit with Qedit...

%The equivalence interval (formal octave) is defined, in microabc with the instruction sclmod:<interval>.

3For certain scales, Scala shows some intervals in cents, adding the word “cents”. A similar procedure may be then
necessary in order to assure the correspondence of columns for microabc.

22

chromatic:1 selects the chromatic mode. Its effect is that, when generating the MIDI file, the pitches
will be mapped to the chromatic scale (rather than be tuned with pitchbends). The MIDI file will be
retuned later with Scala.

Save the file as blwl7.txt. Here are its contents:

scl:1
aliassagittal:2 3
chromatic:1

0: 1/1 C B#\, unison, perfect prime

1: 25/24 Db\ C#_ classic chromatic semitone, minor chroma
2: 27/25 C#/ Db= large limma, BP small semitone
3: 9/8 D . major whole tone

4: 32/27 Eb D#\ Pythagorean minor third

5: 11/9 Eo D#f undecimal neutral third

6: 32/25 E/ Fb= classic diminished fourth

7: 4/3 F E#\ perfect fourth

8: 25/18 Gb\ F#_ classic augmented fourth

9: 36/25 F#/ Gb= classic diminished fifth

10: 3/2 G . perfect fifth

11: 25/16 Ab\ G#_ classic augmented fifth

12: 18/11 Av G#q undecimal neutral sixth

13: 27/16 A . Pythagorean major sixth

14: 16/9 Bb A#\ Pythagorean minor seventh

15: 50/27 B_ Cb\‘ grave major seventh

16: 48/25 B/ Cb=° classic diminished octave

5.5.2 The microabc test file

We want to see and to listen to the “Barlow’s 11-limit rational 17-equal, Barlow, On the Quantification
of Harmony and Metre” scale, to test and check our microabc input file.
Let microabc create a test file blw.abp:

microabc -tblw.abp < blwl7.txt

Now, preprocess the test file. One command generates ABC code for abc2midi. The other command
generates ABC code for abecm2ps (without using blwl7.txt).

microabc -Mblw.abp < blwl7.txt > blw-midi.abc
microabc -i- -S -Pblw.abp > blw.abc

Now, let us convert the ABC files to MIDI and PostScript. Put a copy of the file sagittal.fmtﬁ
in the same directory where the ABC files are, and execute:

abc2midi blw-midi.abc
abcm2ps blw.abc -0=

Recall that the MIDI file was not generated in the Barlow’s scale, but in chromatic mapping. To tune
it, load the scale file barlow_17.scl into Scala and access the menu Tools | Retune MIDI-file...,
then select the input file blw-midil.mid and choose the output file name blw.mid. Finally, click the
0K button. Running Scala with this command line does the same:

Fsagittal.fmt is included in the microabc package. It is used by abcm2ps to provide the Sagittal font. If you prefer
do not deal with format files, add the flag -e to the microabc command line in the previous step:
microabc -i- -8 -e -Pblw.abp > blw.abc

23

scala barlow_17.scl --example/midi blw-midil.mid blw.mid --exit

Check the resulting PostScript and MIDI files. You may find the MIDI file just boring, but the
PostScript file contains information of interest, for example: the score covers the complete range
(ambitus) available.

Now, let us generate a test file just covering just one octave, and without the equivalent pitches.
Modity the file blw17.txt according to this:

1. Change “aliassagittal:2 3” to “aliassagittal:2”; that will omit the equivalent pitches.
2. Add a line with “range:0 17”; that will limit the range to the central octave.
The first four lines of blwl7.txt will now be:

scl:1
aliassagittal:2
range:0 17
chromatic:1

Redo the process of generation of the test file and its conversion to PostScript and MIDI files:

microabc -tblw.abp < blwl7.txt

microabc -Mblw.abp < blwl7.txt > blw-midi.abc

microabc -i- -S -Pblw.abp > blw.abc

abc2midi blw-midi.abc

abcm2ps blw.abc -0=

scala barlow_17.scl --example/midi blw-midil.mid blw.mid --exit

The example below uses “aliassagittal:2 3” to show the equivalents:

COMMAND LINE: microabc —tblw.abp
MICROABC INPUT FILE:

MICROABC MODE: chromatic
SCALA *.scl INPUT FILE:

SCALA *.scl OUTPUT FILE:

SCALA *.kbm OUTPUT FILE:
TIMIDITY OUTPUT FILE:

SCALE SIZE: 17

RANGE: 0 17 (18)

NUMBER OF DEFINITIONS: 33

Test file generated by microabc

microabc (C) 2006—-2007
Hudson Lacerda

%You may want issue the third command as:
microabc -i- -8 -e -Pblw.abp > blw.abc

24

5.5.3 Create your own *.abp music file

If the testings with the test file succedded, we are ready to write some music.¥’
Scala will help us to write a scale. Issue show/notation in the command prompt (or press F7),
then copy the pitches:

C Db\ C#/ D Eb Eo E/ F Gb\ F#/ G Ab\ Av A Bb B_ B/ C.1

Note that Scala uses numbers to indicate the octaves. Replace the last pitch C.1 with C* as we
are using characters ¢ and , as octave modifiers@ Then enclose all pitches between brackets [and
1, and add an ABC header. The example below includes also a few chords:

%hformat sagittal-pfb.fmt
%hformat sagittal-mixed.fmt
hhpostscript sagmixed

X:1

T:microabc tutorial

T:Barlow’s 17-tone scale

M:none

K:C

[C] [Db\] [c#/] [D] [Eb] [Eo]l [E/] [F] [Gb\]
(F#/]1 [G] [Ab\] [Av] [A] [Bb] [B_] [B/] [C‘] Il
x4 \

[[Db\] [Gb\] [B/] [Eo ‘] [Ab\ ‘118 \
[[C][F]1[Bbl[Eo‘]I[Ab\‘118 \

[[Bb,] [F]1[Db\‘]1[Eb‘][Av‘]]8 |]

Here is the resulting score:

microabc tutorial
Barlow’s 17—-tone scale

[4) .
"4 X K
y X X K K K 1Y
Cr—+ — 5 , = s = ‘ e-
o &' VDJ 4” ! v 7 1
o) \ \ \
S N i il\l T dl\) dl\‘ 5 S y =
‘ o 2 a 7 17 i, 7
|4 |4 |4 r
/) bo bo Ve
"4 U o N ®) NI2Y) = @)
y 4 TP B W
[fan e P
D IR O O
) A4 o =Y bo

37Be sure to remove the “range:” limitation of the file b1w17.txt!

3 Although in this section we are using Sagittal pitch names, we are not preprocessing for MIDI with the flag -S. Hence,
the Sagittal pitches from the *.abp files are not interpreted as such, but as ordinary macros: variants like [Ce] for [C],
or even [:Ce,,] for [C,,] will not work without the flag -S. However, do not use -S to generate MIDI with arbitrary
scales: microabc would ignore the user-defined scale and interpret the Sagittal pitches in the default way. If you want to
add variants, add more sagittalalias: columns to the microabc input file. Be rigorous to use the pitch names exactly
as defined.

25

5.6 Approximating Sagittal pitches to arbitrary scales

Besides the direct assignment of Sagittal pitches, it is possible to approximate a Sagittal pitch to the
nearest pitch in an arbitrary scale. In the next example, we will use Sagittal notation for the George
Secor’s 17-tone well temperament, which is an alternative to 17-EDO.

I secorl7wt.scl
!

George Secor’s well temperament with 5 pure 11/7 and 3 near just 11/6
17

!

66.74120
144 .85624
214.44090
278.33864
353.61023
428.88181
492.77955
562.36421
640.47925
707.22045
771.11819
849.23324
921.66136
985.55910
1057.98722
1136.10226
2/1

Here is the microabc instructions file (approx.txt):

{ approx.txt }
inputscl: secorl7wt.scl
sagittalapprox: 17
sagittalbasefreq: 440 A
basefreq: 440 13

key: -13

According to the approx.txt file, microabc reads the tuning from secor17wt.scl. The instruction
“sagittalapprox: 17” tells microabc that the pitches of the scale are close to the pitches of 17-EDO;
therefore, Sagittal notation for 17-EDO will be used as base for the approximations@ Commands
“sagittalbasefreq: 440 A” and “basefreq: 440 13” adjust the reference frequencies. In this ex-
ample, the tuning is “transposed downwards” by 13 steps (key: -13). The line containing only the
character 1 is just to create some “pitch name” in the scale; otherwise, microabc would not store the
scale.

Below is the music file approx. abp.

¥The argument for sagittalapprox: can be the number of octave divisions (an integer) or the fifth size (as ratio or in
cents).

26

X:1

T:microabc tutorial
T:Approximating Sagittal pitches
Q:1/4=96

K:C

V:1

%%&MIDI program 7

|: [Bb][C‘I[D][E‘]- [E‘]J4 | [A][CS
|: [Bb][C‘I[D][E‘]- [E‘]J4 | [A][CS
V:2

%%MIDI program 79

%%MIDI makechordchannels 3

|: [[Bol[CJ[DILE‘]]I8 | [[AJ[C‘I[D‘]I[E‘]I8 :I\
|: [[Bb]J[C‘J[D‘I[E‘]]8 | [[AJ[C‘][D‘][E‘]]8 :|

To preprocess the music, use the flag -S. Here are the commands to obtain a MIDI file:

4

[DTIE‘]- [E]4 I\
[DT[E‘]- [E‘]4 :|

_

microabc -iapprox.txt -S -Mapprox.abp -oapprox-midi.abc
abc2midi approx-midi.abc

and to generate a PostScript score:

microabc -i- -5 -e -Papprox.abp -oapprox-ps.abc
abcm2ps approx-ps.abc -0=

microabc tutorial
Approximating Sagittal pitches

J=96

2] | .] . .
(s Do i Do e
NV — ——— . - .
o — w w
JQ]] Pa ©)
y i—— T <. — ..) RS o) LS. o]
[fan) « V O vV <)
Dl

5.7 More possibilities

There are many other interesting things to do with microabc and ABC music tools. The reader is
invited to read the documentation of the programs, and to browse their sample files directories.

6 HTTP addresses

“Making Music With ABC Plus” (Guido Gonzato):
http://abcplus.sourceforge.net/#ABCGuide

“Sagittal — A Microtonal Notation System” (David Keenan & George Secor):
http://users.bigpond.net.au/d.keenan/sagittal/

abc2midi: http://ifdo.pugmarks.com/~seymour/runabc/top.html

abcm2ps and tclabc: http://moinejf.free.fr

abcpp: http://abcplus.sourceforge.net

ghostscript and ghostview: http://wuw.cs.wisc.edu/~ghost

microabc: http://br.geocities.com/hfmlacerda/abc/microabc-about.html

Scala: http://www.xs4all.nl/~huygensf/scala

timidity++: http://timidity.sourceforge.net

27

http://abcplus.sourceforge.net/#ABCGuide
http://users.bigpond.net.au/d.keenan/sagittal/
http://ifdo.pugmarks.com/~seymour/runabc/top.html
http://moinejf.free.fr
http://abcplus.sourceforge.net
http://www.cs.wisc.edu/~ghost
http://br.geocities.com/hfmlacerda/abc/microabc-about.html
http://www.xs4all.nl/~huygensf/scala
http://timidity.sourceforge.net

	Introduction
	Software requirements
	Understanding the basic concepts
	ABC and microtones
	Macros and preprocessors
	microabc is a generator of macros
	microabc as a preprocessor
	MIDI limitations

	The steps
	Examples
	Quick start
	Bach's choral
	Make changes, learn more

	A scale of harmonics -- microabc output modes
	The microabc input file
	The ABC file with macros
	Microtonal mode
	Chromatic mode, timidity++ and Scala
	Diatonic mode
	Literal mode

	An example in 19-EDO
	The microabc file
	PostScript
	MIDI
	The code
	Macro definitions files
	The ABC file with macros
	Preprocessing
	Getting the MIDI file
	Getting the PostScript score file
	Customisation of the accidentals in the PostScript score file

	Sagittal notation -- using microabc as preprocessor
	Just Intonation
	Equal divisions of octave

	Using Sagittal notation for arbitrary scales
	Pick out a scale --- make the microabc input file
	The microabc test file
	Create your own *.abp music file

	Approximating Sagittal pitches to arbitrary scales
	More possibilities

	HTTP addresses

