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SUMMARY The conventional algorithms in the echo canceling system
have drawback when they are faced with double-talk condition in noisy en-
vironment. Since the double-talk and noise signal are exist, then the error
signal is contaminated to estimate the gradient correctly. In this paper, we
define a new class of adaptive algorithm for tap adaptations, based on the
correlation function processing. The computer simulation results show that
the Correlation LMS (CLMS) and the Extended CLMS (ECLMS) algo-
rithms have better performance than conventional LMS algorithm. In or-
der to implement the ECLMS algorithm, the Frequency domain Extended
CLMS (FECLMS) algorithm is proposed to reduce the computational com-
plexity. However the convergence speed is not sufficient. In order to im-
prove the convergence speed, the Wavelet domain Extended CLMS (WE-
CLMS) algorithm is proposed. The computer simulation results support the
theoretical findings and verify the robustness of the proposed WECLMS al-
gorithm in the double-talk situation.
key words: echo canceling, LMS algorithm, double-talk, correlation func-
tion, frequency domain, wavelet domain

1. Introduction

Adaptive FIR filters by using the conventional LMS or
NLMS algorithms [1] are very popular for their simplic-
ity and predictable, and therefore these adaptive filter al-
gorithms are utilized for echo canceling. However, in the
noisy double-talk environment when both the near-end and
the far-end signals are presented, the error signal used for
tap adaptations will be uncorrelated with the echo signal and
therefore, tap adaptations processes are severely damaged.

The conventional algorithm usually stops adaptation
whenever double-talk sensor detects this condition and it
keeps freezing the tap coefficient data during the double-
talk condition. Stopping the tap adaptation is just a passive
action to handle the double-talk condition and it causes low-
ering speed of adaptations and/or totally mislead when the
echo path changed in the period of halting tap adaptation.
Other works for challenging the problem of double-talk sit-
uation in the echo canceling can be found in [2], [3] and [4]
that cause much more complexity adding to a simple LMS
algorithm. In this paper, we introduce a new class of al-
gorithm to continue the adaptation even in the presence of
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double-talk without freezing taps and/or misleading the per-
formance. The proposed method is called correlation LMS
(CLMS) algorithm [5], which utilizes the correlation func-
tions of the input signal instead of the input signal itself, to
process and find the echo path impulse response. The idea
behind this is that we suppose the far-end signal is not corre-
lated with the near-end signal. So the gradient for tap adap-
tation that is obtained from autocorrelation function does not
carry the undesired near-end signal to misadjust the adaptive
digital filter for echo path identification. The simulation re-
sults show that the CLMS algorithm outperforms the LMS
algorithm when the double-talk signal is existing. In this
class, the Extended CLMS (ECLMS) [6] is defined to im-
prove the performance of the CLMS in which the MSE is
obtained by the sum of lagged squared errors. And also, the
Frequency domain Extended CLMS (FECLMS) algorithm
[7] is defined to reduce the computational complexity of the
ECLMS algorithm. Although the results of computer sim-
ulation show the improvement of the performance, the con-
vergence speed is not enough. In order to improve the con-
vergence speed, the Wavelet domain Extended CLMS (WE-
CLMS) [8] algorithm is proposed. The computer simulation
results support the theoretical findings and verify the robust-
ness of the proposed WECLMS algorithm in the double-talk
situation. This paper is organized as follows. In Sect. 2 a
class of adaptive algorithms based on the correlation func-
tion are proposed. In Sect. 2.1 the noisy double-talk condi-
tion in echo canceller is explained. In Sect. 2.2 CLMS al-
gorithm is presented. In Sect. 2.3 the extended CLMS algo-
rithm is presented. The frequency domain extended CLMS
algorithm is derived in Sect. 2.4. Section 2.5 presents the
wavelet domain structure for the proposed new class of al-
gorithm. Section 2.6 shows the computational complexity of
the proposed algorithms. Then the simulation results appear
in Sect. 3. The conclusion to this work is given in Sect. 4.

2. The Proposed Algorithm

2.1 Double-Talk Condition

In the echo canceling system shown in Fig. 1, the acoustic
impulse response of the teleconference room is estimated by
an adaptive algorithm such as LMS algorithm. The output
of the FIR filter, ỹ(n), is presented by:
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Fig. 1 Echo canceller system.

ỹ(n) =
N−1∑
i=0

hix(n − i) (1)

where N is the number of tap, h is the tap coefficient of the
adaptive FIR filter and x(n) is the far-end signal at sample n.

The echo signal is obtained from echo impulse re-
sponse, r, as follows (N is the acoustic impulse response
length):

y(n) =
N−1∑
i=0

rix(n − i) (2)

The error signal, e(n), is calculated as below:

e(n) = d(n) − ỹ(n) (3)

where d(n) is microphone signal that usually contains the
echo signal. The LMS algorithm is as follows:

hi(n + 1) = hi(n) + 2µ0e(n)x(n − i) (4)

where µ0 is the step size for tap coefficients adaptation. If
the near-end signal s(n) and the noise signal v(n) from the
near-end, are also presented during the echo canceling, then
the microphone signal contains both the echo and the noisy
near-end signals:

d(n) = y(n) + s(n) + v(n) (5)

We call this condition as double-talk condition in the noisy
environment. It is well known that the error signal in this
case contains uncorrelated component with input and echo
signals. Therefore, the algorithm in (4) is failed to track the
correct echo impulse response.

2.2 The CLMS Algorithm

In Fig. 2, our new structure is shown [5]. In this structure,
we assume the double-talk exists. Since the new structure
is based on the processing of autocorrelation function of the
input signal (Loudspeaker in the near-end) and the cross-
correlation of the input and microphone signal, therefore we
should, first, estimate them. The autocorrelation function
for the input signal data, x(n) with time-lag k, is defined as
below:

Rxx(n, k) =
n∑

j=0

x( j)x( j − k) (6)

Fig. 2 Correlation LMS algorithm.

Also the cross-correlation between the desired and the input
signal is calculated as follows:

Rdx(n, k) =
n∑

j=0

d( j)x( j − k) (7)

Substituting from (2), (5) and (6) into (7) and assuming that
there is no correlation between the far-end and the near-end
signals [5] Rsx(n, k) ≈ 0, and also there is no correlation
between the far-end signal and the near-end noise signal
Rvx(n, k) ≈ 0, the cross-correlation will be obtained as fol-
lows:

Rdx(n, k) �
N−1∑
i=0

riRxx(n, k − i) (8)

To estimate Rdx(n, k), we need to process the autocorrelation
values of the input by an adaptive filter. It can be defined as
follows:

R̃dx(n, 0) �
N−1∑
i=0

hi(n)Rxx(n, i) (9)

where, R̃dx(n, 0) is the output of the filter which is estima-
tion of the cross-correlation for time-lag k = 0. The mean
squared error (MSE) between the desired cross-correlation
function Rdx(n, 0) and its estimated value R̃dx(n, 0) (assum-
ing only for the mean component k = 0) is defined as:

J = E[e2(n)] (10)

where

e(n) = Rdx(n) − R̃dx(n) (11)

The gradient vector of MSE is:

∇̂J =
∂J
∂h
= −2E



e(n)Rxx(n, 0)
e(n)Rxx(n, 1)

...
e(n)Rxx(n,N − 1)


= −2E[e(n)Pxx(n)] (12)

Then we obtain the steepest descent algorithm as follows:

h(n + 1) = h(n) + 2µ E[e(n)Pxx(n)] (13)
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where

h(n) = [h0(n), h1(n), · · · , hN−1(n)]T

Pxx(n) = [Rxx(n, 0),Rxx(n, 1), · · · ,Rxx(n,N − 1)]T

As with LMS algorithm, here we substitute the instanta-
neous MSE instead of its statistical expectation. The corre-
lation LMS (CLMS) algorithm, which is normalized to the
power of the input correlation function to ensure sufficient
conditions for convergence, then becomes:

h(n + 1) = h(n) +
2µ0

1 + PT
xx(n)Pxx(n)

e(n)Pxx(n) (14)

where µ0 is the step size for tap coefficients adaptation. It
will be shown in simulation section that the CLMS algo-
rithm has good performance comparing with the LMS al-
gorithm in the noisy double-talk situation. However, the
CLMS algorithm does not give a sufficient convergence
characteristic yet. Then, we extend the CLMS algorithm
in order to obtain a sufficient convergence characteristic.

2.3 The Extended CLMS Algorithm

In extended CLMS algorithm [6], we assume the double-
talk condition exists. The autocorrelation function and the
cross-correlation function are given by Eqs. (6) and (7), re-
spectively. Also we assume that there is no correlation be-
tween the far-end and the near-end signals. In the extended
CLMS algorithm, we estimate all components of the cross-
correlation. Therefore, based on Eq. (8), the output of the
adaptive filter is defined here by:

R̃dx(n, k) =
N−1∑
i=0

hi(n)Rxx(n, k − i) (15)

where R̃dx(n, k) is the estimation value of Rdx(n, k). In con-
trast with Eq. (9) that only the main component of the cross-
correlation was estimated, in Eq. (15), we try to estimate all
lags up to N. In contrast with the cost function in the CLMS
algorithm, the cost function in the ECLMS algorithm is de-
fined by the sum of the lagged squared errors as follows:

J = E[eT (n)e(n)] (16)

where the error signal vector is shown by:

e(n, k) = [e(n, 0), e(n, 1), · · · e(n,N − 1)]T (17)

with

e(n, k) = Rdx(n, k) − R̃dx(n, k) (18)

The gradient vector of MSE is:

∇̂J =
∂

∂h
E
[
eT (n)e(n)

]
= −2E [Qxx(n)e(n)] (19)

where

Qxx(n)=



Rxx(n, 0) Rxx(n, 1) · · · Rxx(n,N − 1)
Rxx(n, 1) Rxx(n, 0) · · · Rxx(n,N − 2)

...
...

. . .
...

Rxx(n,N − 1) Rxx(n,N − 2) · · ·Rxx(n, 0)


Here Qxx(n) is a Toeplitz matrix. Therefore we obtain the
steepest descent algorithm as follows:

h(n + 1) = h(n) + 2µE [Qxx(n)e(n)] (20)

As like as the LMS algorithm, here we substitute the in-
stantaneous MSE instead of its statistical expectation. The
adaptation for ECLMS algorithm, which is normalized to
the power of the input correlation function to ensure suffi-
cient conditions for convergence, then becomes:

h(n + 1) = h(n) +
2µ0Qxx(n)e(n)

1 + tr[Qxx(n)Qxx(n)]
(21)

where µ0 is the step size for tap coefficients adaptation and
tr[·] means the trace operator. In order to adapt the tap co-
efficients according to the ECLMS algorithm, we need to
compute Rxx(n, k) and Rdx(n, k). Then we have used the fol-
lowing recursion formulas for these computations:

Rxx(n, i) = (1 − α)Rxx(n − 1, i) + αx(n)x(n − i) (22)

Rdx(n, i) = (1 − β)Rdx(n − 1, i) + βd(n)x(n − i) (23)

where α and β are limited to 0 < α, β < 1.
In the CLMS algorithm the gradient search algorithm

is simply obtained by the correlation function of the in-
put signal. In order to achieve the Wiener solution, in
the ECLMS algorithm we estimate all components of the
cross-correlation function by using the Toeplitz matrix of
the auto-correlation function, therefore the cost function in
the ECLMS algorithm can be defined by the sum of the
lagged squared errors. The computer simulation results have
shown the improvement of the performance than the CLMS
algorithm as it was expected. However, for large number of
tap coefficient, the ECLMS algorithm is very complex in the
computation. So that, here we propose a fast implementa-
tion of this algorithm in the frequency domain.

2.4 The Frequency Domain ECLMS Algorithm

In order to reduce the computational complexity of the
ECLMS algorithm, we propose the frequency domain
ECLMS (FECLMS) algorithm [7], which has been shown
in Fig. 3. First, we take N-point of the fast Fourier trans-
form (FFT) of Eqs. (6) and (7) based on the time-lag, k, in
the fast Fourier transform kernel as below:

Fxx(n, p) =
N−1∑
k=0


n∑

j=0

x( j)x( j − k)

Wkp (24)

Fdx(n, p) =
N−1∑
k=0


n∑

j=0

d( j)x( j − k)

Wkp (25)

where W shows complex exponential e− j(2π/N), Fxx(n, p)
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Fig. 3 Echo canceller by using FECLMS algorithm.

shows the FFT of Rxx(n, k) at the sample-time n, and p is
the frequency variable of the FFT. Fdx(n, p) shows the FFT
of Rdx(n, k).

After the necessary substitutions from Eqs. (2) and (5)
into Eq. (25) using Eq. (24), the FFT of the cross-correlation
function, Fdx(n, p), between d(n) and x(n) signal will be ob-
tained as follows:

Fdx(n, p) � HpFxx(n, p) (26)

where Hp is pth element of the FFT of the echo impulse
response vector r = [r0, r1, · · · , rN−1]. Then on the basis of
Eq. (26), the adaptive filter in which the input signal is the
FFT of the autocorrelation function of the far-end signal is
defined by:

F̃dx(n, p) = H̃p(n)Fxx(n, p) (27)

where H̃p(n) is the adaptive filter tap coefficient in the fre-
quency domain and F̃dx(n, p) is the estimation value of
Fdx(n, p). Next, we define the cost function for adapting
tap coefficients as follows:

J(n, p) = E[ε∗(n, p)ε(n, p)] (28)

where

ε(n, p) = Fdx(n, p) − F̃dx(n, p) (29)

The superscript * shows the Hermitian transposition. To ob-
tain the gradient value of Eq. (28), we differentiate Eq. (28)
with respect to tap coefficient H̃p(n):

∇J(n, p) =
∂

∂H̃p(n)
E[ε∗(n, p)ε(n, p)]

= −2E[ε(n, p)F∗xx(n, p)] (30)

From Eq. (30) we derive the steepest descent Frequency Do-
main ECLMS algorithm (FECLMS) as follows:

H̃p(n + 1) = H̃p(n) +
2µ fε(n, p)F∗xx(n, p)

1 + tr[Fxx(n, p)Fxx(n, p)]
(31)

where µ f is convergence parameter and tr[·] means the trace
operator.

As we can see, the structure of the FECLMS algorithm
is similar to the ECLMS algorithm, but we process the al-
gorithm in the frequency domain. In FECLMS algorithm,
the fast Fourier transform (FFT) of the correlation function
is obtained corresponding to the lag-time, not sampling time
in the FFT kernel as usually used in conventional methods.
And also, we do not need a Toeplitz matrix to estimate all
the components of the cross-correlation function, such as in
ECLMS algorithm. So that, the computational complex is
reduced. The computer simulation results have shown that
the FECLMS algorithm has almost same robustness with the
ECLMS algorithm, however the computational complexity
is reduced.

2.5 Discrete Wavelet Domain Algorithm

As we know, the Fourier transform has been used very pop-
ular. However there is a problem with the Fourier trans-
form, when very short-duration and high-frequency bursts
occur, it will be hard to detect. The wavelet transform pro-
vides a solution to the problem by using an analysis window,
which depends on both time and frequency. That means
the wavelets can keep track of time and frequency informa-
tion. The wavelets can be used to “zoom in” on the short
bursts mentioned previously, or to “zoom out” to detect long
[9], slow oscillations. Therefore, we propose a new im-
plementation of ECLMS algorithm in the wavelet domain
called wavelet transform extended correlation LMS algo-
rithm (WECLMS) [8]. The discrete wavelet transform can
be defined as [10]:

Wφ( j0, q) =
1√
M

∑
x

f (x)φ j0,q(x) (32)

Wϕ( j0, q) =
1√
M

∑
x

f (x)ϕ j0,q(x) (33)

for j ≥ j0 and

f (x) =
1√
M

∑
q

Wφ( j0, q)φ j0,q(x)

+
1√
M

∞∑
j= j0

∑
q

Wϕ( j, q)ϕ j,q(x) (34)

where

φ j,q(x) = 2 j/2φ(2 j x − q) (35)

ϕ j,q(x) = 2 j/2ϕ(2 j x − q) (36)

Here, Wφ( j0, q) are called the approximation or scaling coef-
ficients; Wϕ( j, q) are called the detail or wavelet coefficients;
φ(x) is called scaling function and ϕ(x) is called wavelet
function; q determines the position of φ(x) along the x-axis;
j determines φ(x)’s width - how broad or narrow it is along
the x-axis. The Inverter Discrete Wavelet Transform is de-
fined as Eq. (34).
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Fig. 4 Echo canceller by using WECLMS algorithm.

In Fig. 4, the structure of the WECLMS algorithm is
shown. As shown in Fig. 4, first, we take the N-point Dis-
crete Wavelet Transform (DWT) of the cross-correlation
function and the autocorrelation function by Eqs. (32) and
(33), respectively. The coefficients vector (N/2-point) can
be written as:

DWT [Rdx(n, k)] = [WLdx(n),WHdx(n)] (37)

DWT [Rxx(n, k)] = [WLxx(n),WHxx(n)] (38)

where
WLdx(n) = [WLdx(n, 0),WLdx(n, 1), · · · ,WLdx(n,N/2 − 1)]
WHdx(n) = [WHdx(n, 0),WHdx(n, 1), · · · ,WHdx(n,N/2 − 1)]
WLxx(n) = [WLxx(n, 0),WLxx(n, 1), · · · ,WLxx(n,N/2 − 1)]
WHxx(n) = [WHxx(n, 0),WHxx(n, 1), · · · ,WHxx(n,N/2 − 1)]
WLdx(n) is an approximation of the cross-correlation func-
tion. WHdx(n) is a detail part of cross-correlation function.
WLxx(n) is an approximation of the autocorrelation function.
WHxx(n) is a detail part of autocorrelation function.

As like as the ECLMS algorithm the error signal is
shown by:

eL(n) =WT
Ldx(n) −GLxx(n) ∗HL(n) (39)

eH(n) =WT
Hdx(n) −GHxx(n) ∗HH(n) (40)

where The “∗” means the convolution operator. The eL(n),
eH(n) are vertical vector errors for estimation of the approx-
imation and detail of the cross-correlation function, respec-
tively. HL(n), HH(n) are the estimation of the room impulse
response in wavelet domain for the low-pass band and high-
pass band, respectively. And

GLxx(n)=



WLxx(n, 0) WLxx(n, 1) · · · WLxx(n,N/2 − 1)
WLxx(n, 1) WLxx(n, 0) · · · WLxx(n,N/2 − 2)

.

.

.
.
.
.

. . .
.
.
.

WLxx(n,N/2 − 1) WLxx(n,N/2 − 2) · · · WLxx(n, 0)



GHxx(n) =



WHxx(n, 0) WHxx(n, 1) · · · WHxx(n,N/2 − 1)
WHxx(n, 1) WHxx(n, 0) · · · WHxx(n,N/2 − 2)

.

.

.
.
.
.

. . .
.
.
.

WHxx(n,N/2 − 1) WHxx(n,N/2 − 2) · · · WHxx(n, 0)



GLxx(n) and GHxx(n) are both Toeplitz matrix. We can up-
date the tap coefficients as:

HL(n + 1) = HL(n) +
2µLGLxx(n)eL(n)

1 + tr[GLxx(n)GLxx(n)]
(41)

HH(n + 1) = HH(n) +
2µHGHxx(n)eH(n)

1 + tr[GHxx(n)GHxx(n)]
(42)

where µ0 is the step size for tap coefficients adaptation and
tr[·] means the trace operator.

Then we use the HL and HH to do the Inverse Discrete
Wavelet Transform (IDWT) by Eq. (34).

IDWT (HL,HH) = h̃ (43)

Finally, we copied h̃ from correlation filter into the tap coef-
ficients of the digital filter (DF in Fig. 4), to cancel the echo
signal.

In the WECLMS algorithm, the correlation functions
are decomposed by the high-pass and low-pass filters and
down sample by 2. Therefore, we can adapt the estimation
impulse response by using the different step-sizes in two
bands, simultaneously. So that, the convergence speed is
improved. Also the computational complexity is reduced,
because of the downsampling process.

2.6 The Computational Complexity

In this section, we briefly discuss the computational com-
plexity of the correlation-based algorithms. Consider first
the standard LMS algorithm with N tap weight operating
on real data. In this case, N multiplications are performed
to compute the output and a further N multiplications are
performed to update the tap weights, making for a total of
2N multiplications per iteration. For all kind of correlation-
based algorithms, first we need extra 2N multiplications to
compute the correlation functions Rxx(n, k) and Rdx(n, k) in
Eqs. (22), (23) respectively. Then, as shown in Fig. 2, we
also need extra N multiplications to compute the output of
Digital Filter ỹ(n). So for all kind of correlation-based al-
gorithms, totally we need extra 3N multiplications, com-
pared with the LMS algorithm. In CLMS algorithm we need
N multiplications to estimate the cross-correlation function
R̃dx(n, k) in Eqs. (9) and N multiplications to update the tap
coefficients in Eqs. (13), totally we need 5N multiplications.
In the ECLMS algorithm considering tap coefficients adap-
tation computations as well as calculation for the estimation
of the cross-correlation R̃dx(n, k) between d(n) and x(n), we
need 2N2 multiplications, in totally we need 2N2+3N multi-
plications. On the other hands in the FECLMS algorithm we
need three N-point FFTs and only 2N multiplications to es-
timate the cross-correlation function and the tap coefficients
adaptation. So that in total the number of multiplication for
the FECLMS algorithm is as follows:

3 × N
2

log2 N + 2N + 3N (44)

In the WECLMS algorithm we need three N-point DWT
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Table 1 The ratios of the computational loads.

N CLMS
ECLMS

FECLMS
ECLMS

WECLMS
ECLMS

32 0.031 0.148 0.781
128 0.008 0.049 0.572
256 0.004 0.027 0.535
512 0.002 0.015 0.517

process. As we know the computation of the wavelet de-
composition can be write as 2(L+ 1)N, where L is the num-
ber of nonzero values of the scaling function (For Haar,
L = 2, and for the Daubechies2, L = 4). We only need
N2 multiplications to estimate the cross-correlation func-
tion and the tap coefficients adaptation, because of the down
sampling process. So that in total the number of multiplica-
tion for the WECLMS algorithm is as follows:

3 × 2 × (L + 1) × N + N2 + 3N (45)

As we can see, the CLMS algorithm is just 2.5 times com-
plexity than the LMS algorithm. The ECLMS algorithm is
very complex compare with the LMS algorithm, however
the FECLMS algorithm is proposed to reduce the computa-
tional complexity.

In Table 1, the ratios of the computational loads for the
CLMS, FECLMS and WECLMS to the ECLMS algorithms
are given with respect to various number of tap coefficients
N. For this comparison we need only to compare the com-
putational loads in the different parts of the proposed algo-
rithms.

So, for instance in N = 512 the WECLMS algorithm
requires 51.7% of the computational loads for the ECLMS
algorithm. The computational complexity is reduced. The
FECLMS algorithm requires only 1.5% of computational
loads for the ECLMS algorithm. This makes the hardware
implementation of the FECLMS algorithm a realistic matter
using a fewer chips of DSP or in considering of the mass
production, it requires less LSI area.

3. Simulation Results

The acoustic echo impulse response, ri, of the room is as-
sumed to have exponential decaying shape that decreases to
−60 dB after N samples as follows:

ri = Randn[exp(−8i/N)] (46)

To measure the performance of the convergence of the al-
gorithm, we use the ratio of distance of weight and impulse
response, DW(n), which is defined as follows:

DW(n)=10 log10


N−1∑
i=0

∥∥∥∥ri − h̃i(n)
∥∥∥∥2 /

N−1∑
i=0

‖ri‖2
 (47)

In order to show the capability and robustness of the pro-
posed new class of algorithm, we have performed several
computer simulations by using the real speech data. Here,
we use two independent speech signals, one is in English
and another is in Japanese. The far-end signal x(n) is the
voice of a woman at her 20’s and pronounced as “Good

Fig. 5 The input speech signal from far-end.

Fig. 6 The double-talk speech signal from near-end.

Fig. 7 Comparison between LMS, CLMS, ECLMS, FECLMS and WE-
CLMS in noisy single-talk condition.

morning and welcome to IF I ONLY KNEW. . . ” in English.
The double-talk signal s(n) is the voice of a woman at her
30’s and pronounced as “KA RE GA IZEN KA RA, KAGA
KU GIJYUTSU. . . ” in Japanese. The sampling frequency
is 8 kHz for both. The waveforms of the speech signals are
shown in Fig. 5 and Fig. 6. The noise v(n) is a Gaussian
noise signal with zero mean. In the single-talk condition
the signal to noise ratio (SNR) is 30 dB (compared with the
far-end signal x(n) and noise signal v(n)) and in the double-
talk condition SNR is 10 dB (compared with the double-
talk signal s(n) and noise signal v(n)). In LMS, CLMS,
ECLMS and FECLMS algorithm we set the step size equal
to 0.01. In WECLMS algorithm, we use two different step
sizes (µL = 0.001, µH = 0.01) to estimate the room impulse
response in the two bands.

In Fig. 7, the convergence characteristics for LMS and
proposed algorithms in noisy single-talk condition have
been shown. The CLMS algorithm converges to −8 dB,
the ECLMS algorithm reaches to −16 dB, the FECLMS al-



CHEN et al.: A NEW CLASS OF ACOUSTIC ECHO CANCELLING BY USING CORRELATION LMS ALGORITHM
1939

Fig. 8 Comparison between LMS, CLMS, ECLMS, FECLMS and WE-
CLMS in noisy double-talk condition.

Fig. 9 Switching from single to double talk with the same echo path.

gorithm converges to −18 dB, the LMS algorithm reaches
to −31 dB. The WECLMS algorithm is better than the
CLMS, ECLMS and FECLMS algorithm and it converges
to −22 dB. In Fig. 8, the proposed algorithms are compared
with LMS algorithm in the noisy double-talk condition. As
it shown in Fig. 8, the LMS algorithm hardly converges and
totally blown up in the double-talk situation. The CLMS
gives a better convergence than the LMS algorithm, and it
converges to about −6 dB. The ECLMS algorithm reaches
to −16 dB, the FECLMS algorithm converges to −18 dB.
The WECLMS algorithm, which is the best among all al-
gorithms, shows a steady convergence under noisy double-
talk condition and it converges to −22 dB. Here, the con-
vergence speed was also improved. Then, we note that the
new class of algorithms is robust in the double-talk condi-
tion. In the next simulation in Fig. 9, we started with the
noisy single-talk condition, then, at 10000-th iteration, we
changed to double-talk condition, but the acoustic echo im-
pulse response has not been changed here. We can see the
robustness of proposed algorithm. These algorithms can
continue the adaptation even after changed the single-talk
to the double-talk condition. In Fig. 10, we started with
the single-talk condition. Then, at 10000-th iteration, we
changed the echo path impulse response and imposed the
double-talk condition at the same time. As it shown in
Fig. 10, the WECLMS algorithm has superior convergence
characteristics comparing with the LMS, CLMS, ECLMS
and FECLMS algorithm. In Fig. 11, we started with the
noisy single-talk condition by using the LMS algorithm,
then, at 10000-th iteration, we changed to double-talk con-
dition by using the WECLMS algorithm, but the acoustic

Fig. 10 Switching from single to double talk with the echo path changed.

Fig. 11 Switching from single to double talk with the same echo path by
using the different algorithm.

echo impulse response has not been changed here. We can
see that there is no performance degradation being caused in
this procedure.

4. Conclusion

In this paper, a new class of acoustic echo cancelling by us-
ing the correlation LMS algorithm for double-talk condition
is presented. These algorithms are robust for tap adaptation
in an echo canceller in the presence of the noisy double-talk
condition. In the proposed CLMS algorithm the gradient
search algorithm is simply obtained by the correlation func-
tion of the input signal. In the extended CLMS (ECLMS)
algorithm, the cost function for tap adaptation is the sum
of the lagged MSE of the correlation function. Then, an
implementation of the ECLMS algorithm in the frequency
domain is proposed. The frequency domain implementa-
tion is obtained using the fast Fourier transform where in its
kernel the lag time of the correlation function is used as the
time variable. In order to improve the convergence speed, an
new implementation of the ECLMS algorithm in the wavelet
domain is also proposed. The results of the computer sim-
ulation have shown superiority of the performance of the
proposed algorithms over the conventional algorithm (LMS
algorithm) in the double-talk condition. Also, a 22 dB con-
vergence has been obtained as compared with other conven-
tional algorithm, which totally does not converge in double-
talk.
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