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On The Pricing of Credit Spread Options: a Two Factor HW-BK Algorithm  

João Garcia1, Helmut Van Ginderen and Reinaldo Garcia 

 

Summary 

 

In this article we describe what a credit spread option (CSO) is and show a 

tree algorithm to price it. The tree algorithm we have opted for is a two factor 

model composed by a Hull and White (HW) one factor for the interest rate 

process and a Black-Karazinsky (BK) one factor for the default intensity. As 

opposed to the tree model of Schonbucher 1999 the intensity process cannot 

become negative. Having as input the risk free yield curve and market 

implied default probability curve the model by construction will price 

correctly the associated defaultable bond. We then use Market data to 

calibrate the model to price an at the money (ATM) CSO call and then test it 

to price an out of the money (OTM) Bermudan CSO call on a CDS.  

Furthermore the discussions in this paper show in practice the difficulties and 

challenges faced by financial institutions in marking to market those 

instruments.      

 

1) Introduction 

                                                           
1 João Garcia is a Senior Quantitative Analyst at the Credit Modeling Group at Dexia Group in Brussels, 
Helmut Van Ginderen was head of the Risk Modeling Group at Dexia Bank in the time of the publication 
(and is currently a Senior Analyst at the Credit Research ABS in Fortis Bank in Brussels), and Reinaldo 
Garcia works at the Dept. of Energy, Transportation and Environment at DIW (German Institute for 
Economic Research in Berlin. Any comment for this paper should be sent to João Garcia at 
crisj@dexia.com. 
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In recent years the market for credit derivatives has experienced an extremely huge growth. 

These instruments are being actively used not only for hedging purposes but also as a way to 

improve return on capital.  

A bank might use credit derivatives to manage its portfolio of credit risk. Moreover with a 

credit derivative a bank can sell credit exposure and still keep a good relationship with an 

important client. For a bank credit (derivative) instruments have become the most efficient way to 

transfer credit risk. Moreover its use to optimize the allocation of regulatory capital might be seen 

as a way to arbitrage the regulators.  

There are two main approaches to modelling credit derivatives. In the first approach a credit 

derivative is modelled as a contingent claim on the assets of the firm. These are the so called firm 

value models and were initiated by Black and Scholes [1973] and Merton [1974], followed by 

Longstaff and Schwartz [1995] and Das [1995] among others. For a comparison among the 

different models we refer to Eom et alli [2000].  

The idea behind firm value models is that default occurs when the firm value process reaches 

a certain boundary (e.g. book value). These models are generally thought to give a good estimate 

of the pay-off (loss) distribution function of a portfolio of credits. It is one of the reasons why the 

Merton model has been rather successfully used in the CreditMetrics and KMV commercial 

packages for credit risk. Moreover the assumptions of the Merton model underlie the use of the 

multi-normal distribution function currently in use on the gaussian copula approach of basket 

pricing methodologies (see e.g. Garcia et alli [2002]). One of the problems faced by firm value 

models is that the firm value is not a direct observable process. This makes that default 

probabilities generated by the model will not necessarily match the ones implied from the CDS 

market.  

In the second approach, known as intensity based models, the time of default follows a point 

process with deterministic or stochastic intensity where the jump (to default) time is totally 
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unpredictable. This approach has been followed by Duffie and Singleton[1994], Jarrow and 

Turnbull[1995], Jarrow, Lando and Turnbull[1997], Schonbucher [1998] and Lando[1998], 

among others. 

Another way of distinguishing between the two approaches might be seen in the sort of 

numerical techniques used. In firm value models we find problems similar to the ones used when 

extendind the BS formula to include American options, dividends, stochastic interest rates and so 

on. While intensity models are more akin to the term structure modelling problems1. 

One of the most actively traded credit derivatives is a credit default swap (CDS). A CDS 

provides insurance in the event of default (called a credit event) of a particular company (called 

the reference entity). In this work we show an approximation to the pricing of a CSO option on an 

a CDS.   

In this paper we built on the work of Schonbucher [1999] which belongs to the class of 

intensity models. The additional features of this work are: i) we use the HW model for the interest 

rate and the BK model for the hazard rate process, while Schonbucher uses the HW model for 

both processes; ii) we show in practice the difficulties involved in the calibration of the 

algorithm; iii) after the calibration is done (using market data) we use the model to price a 

Bermudan CSO on a CDS and compare the price given by the model with the price given by a 

market maker; iv) we give a practical view of the problems financial institutions currently face 

when keeping track of marking to market of CSO’s.  

Although the model may certainly accommodate a correlation function between the dynamics 

of interest rates and hazard rates we will consider that both processes are not correlated. The main 

reason for it is that the CSO market is not yet mature. I.e. there is not data enough available to 

make the calibration to correlation reliable enough to be worthwhile the job. The calibration for 

correlation is a rather time consuming step and one needs data to make it reliable. Moreover as it 
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is mentioned in Schonbucher [1999] the impact of uncertainties in recovery rates is much higher 

than assumptions on correlation.  

The paper is organized as follows. In section 2 we will describe the model used for the credit 

process. In section 3 we describe a credit spread option (CSO) and how this instrument is related 

to the risk free and intensity rates processes. The integration of interest and hazard rates in a two 

factor Hull and White (HW) Black Karazinsky (BK) is briefly described in section 4. Section 5 

contains numerical results for an approximation of Bermudan CSO on a CDS and section 6 has 

the comments on the results. 

 

  

2) The Credit Event Process 

There are several very good references in the literature for a description of the default process 

as for example Schonbucher  [1999-2], Lando [1998], Duffie and Singleton [1995] and Jarrow et 

alli [1997]. For conciseness we have kept the description of the default process to the bare 

minimum necessary to follow the article. 

Instead of modelling the firm value we will model directly the time of default. We will 

assume that the default event follows a Poisson process with stochastic intensities (hazard rates). 

In the literature this is called a Cox process (see Bremaud [1998] or Lando [1998] for more 

details). 

Consider that Q(t,T) is the cumulative default probability viewed at time t for the period [t, 

T]. In a Cox process Q(t,T) is given by: 
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where λt(u) is the instantaneous forward rate of default at time u viewed at time t (the intensity of 

the Cox process). If one has Q(t,T) then λ(t,T) will be given by: 

 

( ) )2(),(ln),( TtQ
T
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In the following section we show how the hazard rate and the cumulative default probability 

are used to price a credit spread option. 

   

3) Credit Spread Options 

Credit spread options (CSO) are designed to give cheap protection in case of spread changes.  

As the bond market is less liquid than the CDS market, instead of buying a put option on a 

bond one might want to buy a call option on a CDS.  

Alternatively an investor might decide to sell a CDS instead of investing in a bond. The 

reason for it is that currently CDS’s give higher returns without the cost of funding which exists 

in the case of a bond investment. One of the possible hedges for the CDS position would be a 

CSO call option on a CDS.  

One should keep in mind that for the moment CSO’s are still rather exotic instruments traded 

over the counter only. Moreover the contracts are very rich in detail and we will be presenting 

one sort of structure only.    

In the next section we describe the algorithm for pricing an option on a defaultable bond, and 

then the algorithm is adapted to price an option on a CDS.  
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3.1) Credit Spread Put Options on a Bond 

Consider BD(t,T) the price at time t of a defaultable bond with maturity T. Assume that at 

time t the bond is being traded at a yield spread of yt above the yield on a risk free identical bond 

(BRF(t,T)).  A credit spread put option with expiry date Texp (Texp < T) gives the holder the right to 

sell the bond for a pre-specified yield spread K (the strike of the option) in case the yield spread yt 

goes higher than K.  

As is normal market practice in what follows we will be considering that at the time of 

default the bond will be worth a recovery factor (1-L) multiplied by the notional, where L is the 

loss factor. Any expected accrued interest is supposed to have been counted for in the recovery 

factor2. For a description of alternative models of recovery we refer to Schonbucher [1999-2].  

Consider that r(s) is the continuous short term interest rate at time s, and as before λ(s) is the 

hazard rate for the given entity at time s seen at the time of pricing (for simplicity the second 

index has been omitted). The price of the defaultable bond is given by3 
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If one assumes independence between the intensity process and the risk free rate process we have: 
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For the payoff of a CSO suppose K is the strike spread and Texp the expiry date. The payoff 

of the credit spread (put) option at the expiry date is given by: 

[ ] )5(),(),()( expexp
))((

exp
exp

+−⋅− −⋅= TTBTTBeTCSO DRF
TTK

payoff

 

 

where the index (x-y)+ means the maximum between x-y and zero. The price of the option at time 

t is given by: 

[ ] )6()()( expTCSOEtCSO payofft=
 

where as before Et is the expectation at time t under the equivalent martingale measure. 

 

 

3.2)  Credit Spread Option on a CDS 

A call option on a CDS gives the holder the right to buy a CDS with a certain strike rate K at 

(or until, depending on the nature of the option) a certain date Texp . With this instrument the 

buyer acquires the right of buying protection on the default of a general bond (which is detailed in 

the CDS contract).  

In this study we will assume that one can build a CDS synthetically by taking positions in a 

defaultable and a risk free floating rate note (FRN). An option on a CDS could then be 

approximated by using the algorithm of the last section taking into account for FRN’s instead of 

bonds. The results of the approximation are discussed in section 5.  

A long position on a CDS can be synthetically built by a short position in a defaultable FRN 

and a long position in a risk free FRN. In order to see it consider the cash flows of each side of 
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the position: in case there is no default the short side will pay the risk free forward rate plus the 

(CDS) spread, while from the long side one will receive risk free forward, generating a net 

position of the CDS spread. In case there is default the short side will deliver the recovered value 

of the defaulted FRN while receiving (in full) the notional, the net value for the short side is the 

loss in case of default (we refer to Schonbucher [1999-2] for more details).  

In this way a call on a CDS rate is identical to a put on a defaultable FRN note, and we use 

the eq. 5 above just that in place of a bond we have a FRN. In this case the call on the CDS is 

then given by: 

 

[ ] )7(),(),()( expexp
))((

exp
exp
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In this work the risk free and the intensity processes will be modelled using a HW and a BK 

process respectively. In the next section we describe the algorithms.  

  

 

4) Hull – White and Black - Karazinsky Models 

 

In order to price a credit derivative security one in general needs at least a two-factor model: 

one for the interest rate and the other for the intensity process. In what follows we first show how 

to build the risk free and the intensity process separately, then we show how the two are 

integrated in a three dimensional like tree. 

In some cases the assumption of independence between interest rates and intensity makes it 

possible to de-couple the payoff of a derivative in a way that one would not need to build a tree 
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for the interest rate process. This is not however the most general case. For this reason in what 

follows we show how to develop a model which involves both a tree for the interest rate and a 

tree for the intensity process. 

The whole algorithm follows very closely the two factor process algorithm described in Hull 

and White [1994]. In the next section we give a brief description of the HW and BK models and 

how they are integrated in a two factor model for credit derivatives (see Schonbucher [1999] for 

more details).  

 

4.1) The Risk Free Interest Rate Tree 

 

In this article we will assume that the interest rate process will follow the HW model 

(basically an Ornstein Ullenbeck process [1999]). I.e. we assume: 

( ) )8()( dBdtratdr rrr ⋅+⋅⋅−= σθ
 

 

where r, ar and  σr are the (unobserved) instantaneous short rate, mean reversion and volatility 

respectively.   

The algorithm builds the dynamic of the interest rate process in a recombining trinomial tree 

structure. For each time step of length ∆t the short rate will assume values of the form r(t+∆t) = 

r(t) + k · ∆r, where k might be negative or positive integer and ∆r is given by: 

)9(3 tr r ∆⋅⋅=∆ σ
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The branching probabilities at the nodes are evaluated by the use of three constraints: the first 

two moments of the process and the fact that probabilities add up to 1. One more constraint on the 

whole tree might be added: it may not grow indefinitely otherwise probabilities might become 

negative.  

The steps in the building of the tree are then the following: 

a) suppose in eq. 8 that θr(t) is zero and build a symmetric tree for the r process; 

b) evaluate the value of θr(t) to be added at each node such that one might price 

correctly zero coupon bonds; 

c) evaluate the values of ar and σr which would price correctly swaptions or caps/floors 

or any derivative which might be linked with the securities one needs to price. 

 

The third step above is called calibration. Observe that by construction any values of mean 

reversion and volatility will lead to the correct prices of zero coupon bonds. The determination of 

the mean reversion and volatility to be used in each case is done by searching the values of the 

two parameters which give good prices of market available interest rate options.  

In principle one could also use the HW model above proposed to model the evolution of the 

hazard rate (the default intensity). Indeed this was the approach proposed by Schonbucher [1999]. 

The HW model however does not preclude the values in the tree nodes to become negative4. As 

default intensities are related to default probabilities (see eq.1) negative intensities would lead to 

negative default probabilities. 

In the next section we (briefly) describe the BK tree model.  

 

4.2) The Default Intensity Tree 

 

The default intensity process will obey the following stochastic differential equation: 
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( ) )10()ln()()ln( dBdtatd ⋅+⋅⋅−= λλλ σλθλ
 

 

where as before aλ and σλ are the mean reversion and volatility for the intensity process, λ is the 

intensity and ln is the natural logarithm. 

The steps in building the tree are basically the same as described above and we refer to 

Hull and White [1994] for details. There are however two important points worth mentioning. 

 The first is that (see item b) of 4.1 above) in order to evaluate θλ(t) one needs the 

cumulative probability of non-default5 curve. In our case we implied this cumulative probability 

from the CDS spreads observed at the CDS market. The algorithm used is based on the work of 

Martin et alli [2001] and we refer to Garcia et alli [2001] for its use in present valuing CDS’s. 

The second and not less important aspect is how to calibrate the model. One should 

remember that by construction any value of aλ and σλ will reproduce the cumulative probability 

given. I.e. by construction one prices exactly the defaultable bond associated with the cumulative 

default probability given as input. But in order to price options one still needs the option market 

to determine the values of the mean reversion and volatility (calibration). In here however there is 

no liquid option market for credit products. The approach we have used for the calibration is the 

following: we got from the market a price for an at the money (ATM) and an out of the money 

(OTM) CSO. The model was calibrated for the ATM and the parameters so determined have been 

used to price an OTM option. Later on we give a comment about this approach and we discuss an 

alternative methodology for the calibration. 

In the next section we show how the two trees are integrated.  

 

4.3) The Credit Tree (HW + BK) 
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The new integrated tree (called 3D tree in what follows) has the same number of time 

steps as the other two trees (called 2D trees). One should make sure that both 2D trees have the 

same time step interval. At each node in the new tree one may go to 9 possible nodes if there is no 

default or to one node in case of default (10 possible nodes in total).  

A node in the 3D tree will be represented by n3D(x,y,z), where the first index represents 

time step and the other two indexes are such that the interest rate comes from the node nRF(x,y) in 

the interest rate tree, and the default intensity from the node nD(x,z) in the intensity tree. 

The branching probabilities in the 3D tree are given in table 1 and the default probability 

in node nD(x,y,z) is given by: 

)12(1),,( ),( tzxn
default

DezyxP ∆⋅−−=
 

     

INSERT Table 1 in here 

 

 From table 1 it is clear we are assuming independence between the two process (see 

section 5 for a comment about it).  

 

 

4.4) Using the Tree to price a CSO 

 

In this section we go in more detail on how to price a CSO on a CDS. Consider one wants to 

evaluate a one-year call CSO with strike K on a six year CDS. As we have already mentioned we 

will approximate it by pricing a put option on a defaultable FRN. For simplicity consider that the 
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notional of the contract is N, the recovery rate supposed fixed is α. In what follows we will call 

the interest rate and the default intensity trees as 2D trees.  

The steps to be followed are the following: 

 

a) build a tree for the six year risk free FRN. Consider that nRF(x,y,z) and nRF(x,y) 

represents the node of the 3D and the 2D risk free FRN trees. Then we have: 

)13(),(),,( yxFRNzyxFRN RFRF =
 

in this way the value of the risk free FRN depends only on the values it has in the 2D tree 

nodes; 

 

b) build a tree for the defaultable FRN (represented as FRND). Consider that TFRN is the 

maturity of the FRND (in our case TFRN = 6). At time TFRN we have: 

)14(,,),,( zyCNzyxFRN
FRNTD ∀+=

 

 

where xTFRN is the time step corresponding to time TFRN (the maturity date of the FRN). C 

is the coupon of the floater. The remaining nodes in the tree are calculated by backward 

induction as follows: 

 

[ ]
)15()1(

))(),,(),,(()(),,(

),(

,

),(
1

),(

Ne

CxIezyxFRNzyxpezyxFRN

tzx

n
ji

tyxr
jinDjin

tzx
nD

n

nn

⋅⋅−+

⋅+⋅⋅⋅=

∆⋅−

∆⋅−
+

∆⋅− ∑
αλ

λ

 

 
 

14



where λ(xn,z) and r(xn,y) are the values of the default intensity and risk free rate at nodes 

(xn,z) and (xn,y) in their respective trees.  The p(xn,yi,zj) is in fact a short cut notation to 

the following more cumbersome notation p((xn,y,z)| (xn+1,yi,zj)) which means the 

probability in node (y,z) at time xn of going to node (yi,zj) at time xn+1. I(xn) is the 

indicator function which is 1 if there is a coupon payment at time xn and 0 otherwise. The 

first factor in the eq. 15 is the value of the bond in case there is no default while the 

second factor gives the value in case of default.  

c) build a tree for the CSO. Consider that TCSO (TCSO < TB ) the expiry time of the option 

and that this corresponds to node xCSO in the 3D tree. Assuming that the strike in the 

option is K at the expiry of the (put) option we have that: 

[ ] )16(),,(),,(),,( )( +−⋅− −⋅= zyxFRNzyxFRNezyxCSO csoTDcsoTRF
TTK

csoT
csoB

 

 

where as before the + sign means the maximum between 0 and the value between 

brackets. Assuming that in case of default of the FRND the option holder gets the 

recovery rate on the FRN then the remaining nodes in the tree are calculated as: 
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for the case of an European option. If the option is American (or Bermudan) we have: 
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In the above formulation one simplifying assumption has been made: the option premium is 

paid up front. We also decided to count the defaultable coupon as being the risk free forward rate 

plus the spread.  

A simplifying assumption is that the risk free forward rate will be evaluated using the current 

yield curve (it avoids the option to become path dependent). In this way the coupon of the FRND 

is given by: 

 

)19()()),,0(()( 1& −− −⋅+= nnnnn ttKttftC
 

 

where tn-1 and tn are the dates when the coupon rate is determined and paid respectively; f(0,tn-1,tn) 

is the forward rate observed at time zero for the period between tn-1 and tn, and K is the CDS 

strike rate in the option. 

Moreover we will be pricing a Bermudan CSO and allow the exercise dates to be taken on 

payment dates only. The reason for it is that the value of the floater immediately after the coupon 

payment is face value. Otherwise to be absolutely precise one would need to determine the value 

of the coupon of the floater making the option to be path dependent. .   

In the next section we give results of the pricing of  Bermudan call CSO on a CDS with the 

model being calibrated to market prices (observe that a call on a CDS rate is a put on the 

defaultable FRN).   

 

 

5) Results 
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In this section we show the results of pricing a Bermudan call CSO on a CDS. As already 

mentioned we have calibrated the HW interest rate tree for swaptions and then calibrated the 

intensity (BK) tree to an ATM American CSO and both prices have been taken from a market 

participant. 

The mean reversion and volatility for the interest rate tree are respectively 0.012 and 0.009. 

The risk free discount curve of the day is shown in table 2.  

    Table 2 In here 

 

In order to build the BK intensity tree one will need to imply default probabilities. In table 3 

we show the CDS credit spreads. The implied default probabilities are shown in table 4. 

     

    Table3 in here 

 

          Table 4 in here 

 

The prices for the ATM and the OTM CSO got from the market and from the tree are shown 

in table 5. Both market prices are the bid prices7 by a large financial institution.  

 

 

Table 5 in here 

 

As it can be seen from table 5 the bid price from the model for the OTM CSO is higher than 

the one given by the market. Should one then conclude that the model is inadequate? Is there any 

utility in the model? How to interpret the results? 

 
 

17



There are several reasons for the discrepancies in the prices between the model and the 

market.  

A first reason is that the credit derivatives market is still largely an OTC market. Even for the 

most liquid instrument (CDS’s) bid offer spreads are very large (more than 10%) and for the same 

referrence it can vary considerably from bank to bank. In our example the bid offer spread for the 

CDS was 30bp. The CDS curve used to imply the probabilities of default (table 3) was taken from 

the web site (a paid service) of a CDS market maker. Strictly speaking only the 3 and 5 year CDS 

quotes are considered to be liquid.  

The CSO quote was taken from a second market maker as the one who provided access to its 

CDS curve did not want to commit to CSO quotes. We did not have access to the bid-offer spread 

on the CSO’s quoted. Additionally the CSO quotes took one week to be given.  

A second reason for the discrepancy in prices is that the model might systematically 

overprice OTM CSO calls. Indeed if the market would be using a BS like approximation (see 

Schonbucher [2000] for a BS formula price for European CSO’s) we would have calibrated the 

model for a higher volatility (the ATM option) than then one used in pricing the OTM option 

(assuming smiles effects). Moreover as we assumed independence between interest rates and the 

intensity process, the current option might be more affected by the intensity process than by the 

interest rate process (see equation 4 for a hint on this point). As the BK process presents fatter tail 

distributions than the one expected by the BS process one again would expect higher prices for 

the OTM call. 

A third reason would be the effect of an error on the assumed recovery rate when implying 

default probabilities from the CDS quotes. A fourth source of error is the independency 

assumption between interest and intensity rates. Concerning the independence assumption (as 

already reported in Schonbucher [1999]) we believe the model to be a lot more sensible to 

uncertainties in the recovery rate. For academic completeness we add that we are aware of a study 
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from JP Morgan supporting the hypothesis that there is correlation between interest rates and 

default intensities.  

Given the limitations above we think that the model did not score that bad. More research is 

necessary to check if indeed the overpricing of OTM call options is systematic (and for how 

much) as we believe. If this is the case the practitioner can use this model to mark to market the 

CSO positions. 

Concerning the calibration process we note that we have used one option only. As we had 

only one ATM CSO available. This is linked to the difficulty in getting market quotes. 

Alternatively instead of getting market quotes (to be used for calibration) one could use the Black 

Scholes formula (see Schonbucher [2000]) for european CSO’s and calibrate the model to it. It 

happens that  the BS model depends on default intensity volatilities and those volatilities are not 

yet available in the market. In an internal study (not yet available for publication) we have 

implied default probabilities from historical CDS curves and from them we evaluated historical 

intensity default volatilities. The volatilities are then used in the European CSO formula and 

compared with market quotes. Again we observed differences of the order observed in this work.     

One last remark is the following: most of the questions above might only be answered when 

the credit derivatives market becomes more mature and data becomes available. In the present 

situation practitioners will have to continue coping with models that are only half understood in 

order to mark to market CSO exposures.   

 

 

6) Comments 

In this paper we have developed a two factor tree model to price Bermudan call CSO’s on a 

CDS. Some approximations are done in considering the CSO as options on the spread between a 

defaultable and a risk free FRN. Although we have assumed independence between interest and 
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default intensity rates, for completeness we have shown how to model the two processes and put 

them together. The model uses a HW tree for the interest rate dynamics and a BK tree for the 

intensity process.  

The HW tree has been calibrated to swaption prices.  

In the construction of the BK tree we have used a default probability curve that was implied 

from observed market CDS rates at the time of pricing. Once the BK tree is constructed it is then 

calibrated to an (ATM Bermudan) call CSO market quote. The parameters so determined are then 

used to price an (OTM Bermudan) call CSO.  

Although we have observed that the model overprices the bid price of the OTM option we 

can not say that the price is out of the bid offer spread. The CSO market is still very illiquid and 

prices might vary considerably from bank to bank. Several problems will be met when trying to 

model a CSO of which we will mention four: a) lack of reliable intensity volatilities or even CDS 

rates; b) uncertainties about recovery rates; c) lack of CSO quotes for which to calibrate the 

model; d) uncertainties about correlation parameters between interest and intensity rate processes.  

The way these uncertainties affects the price of a CSO will continue an area for future 

research. 

As a final remark this paper shows the difficulties faced by practitioners who have to mark to 

market portfolios of CSO’s. Most of them might be pricing via the hedge instruments and running 

the problems of imperfect hedges.     
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End Notes 

1 This analogy has been taken from Lando [1997]  

2 The L could also have been made deterministically dependent on time. We refer to Duffie and 

Singleton [1994] for more details.  

3 In what follows expectations are taken with respect to the equivalent martingale measure (see 

Musiela and Rutkovisky [1997]). We have assumed that a lot of technical conditions are 

observed. We refer to Duffie and Singleton [1994] or Schonbucher [1999-2] for the deduction of 

the equation presented.  

4 The HW model is still used by some market participants despite the fact the it might give 

negative rate (they have indeed very low probabilities). 

5 The probability in question is given by 1-Q(0,t) = exp(-λt) and it is the analogous of the discount 

factor curve used when building the risk free tree. 

6 As will be seen later on when pricing each probability in the table will still be multiplied by the 

probability of non-default. 

7 The CSO’s are very exotic instruments traded only OTC. Market players are very reluctant to 

show information like bid offer spread unless they are very sure that the deal will be done. It took 

some time until a market player gave the quotes used in this study.  
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Tables 

 

 

 Default Intensity Move 

 Up Middle Down 

Up pRF
up * pD

up pRF
up * pD

middle pRF
up * pD

down 

Middle pRF
middle * pD

up PRF
middle * pD

middle pRF
middle * pD

down 

 

Interest 

Rate 

Move Down pRF
down * pD

up PRF
down * pD

middle pRF
down * pD

down 

 

   Table 1 Branching probabilities in the 3 D tree6 
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Date Discount Factor 

16/8/2001 1.0000 

17/08/2001 0.9998747 

20/08/2001 0.9994978 

27/08/2001 0.9986182 

3/09/2001 0.9977382 

20/09/2001 0.9956654 

22/10/2001 0.9919294 

22/11/2001 0.9886339 

20/2/2002 0.9785173 

20/05/2002 0.9695015 

20/8/2002 0.9600748 

20/08/2003 0.9205583 

20/08/2004 0.8793688 

22/08/2005 0.8371468 

21/08/2006 0.7947228 

20/08/2007 0.7521805 

20/08/2008 0.7102778 

20/08/2009 0.6695355 

    

     Table 2 Risk Free Discount Factors Used in the Evaluations 
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Time (yr) 1 2 3 4 5 6 7 8 9 10 

Spread (bp) 175 241 264 276 285 293 300 302 304 306 

 

Table 3 CDS Rates Used in the Determination of the Default Probability Curve 
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Date Default Probability 

16/08/2001 0 

16/08/2002 0.0342510 

16/08/2003 0.0920711 

16/08/2004 0.1474603 

16/08/2005 0.1996514 

16/08/2006 0.2505164 

16/08/2007 0.3004684 

16/08/2008 0.3487388 

    

   Table 4 Cumulative Default Probability Curve 
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Strike (bp) Market Price (bp) HWBK Price (bp) 

285 (ATM) 160 - 

340 (OTM) 105 135 

        ATM = at the money(used for calibration), OTM = out of the money 

         Table 5 CSO prices used in evaluations 
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