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Abstract

Smoothing space curves has several applications
in reverse engineering, CAD modeling and anima-
tion. We propose a 3D curve smoothing algorithm
with the primary focus on smoothing boundaries
of point clouds obtained during reverse engineer-
ing laser scanned models.

While several point cloud denoising methods ex-
ist that handle the normal noise in the data, the
boundary curve may still contain tangential noise.
Our space curve smoothing algorithm can be used
to obtain models with smooth boundaries.
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1 Introduction

With the advent of high precision 3D scanners, the
process of reverse engineering objects by scanning
models is gaining importance in the field of design
and manufacturing. The data produced as a result
of scanning is often noisy with outliers. While
several methods exist, to smooth noisy scanned
data, most of them focus on smoothing the nor-
mal noise in the surface. However, the boundary of
the surface might have tangential noise that is not
smoothed. In order to obtain a smooth surface for
use in the process of manufacture and CAD appli-
cations it is essential to smooth the boundary curve
separately.

Apart from this, 3D curve smoothing is a well
studied problem and has several other applica-
tions in 3D surface registration and motion capture.
Space curves play an important role in computer
vision and image registration where feature curves
need to be matched. Noise in space curves often
poses difficulties [1]. Also, positional data that cor-
responds to the path followed during the motion of
a body is often a space curve. Such data, when
measured, might result in noisy space curves that

need smoothing for the purpose of analysis and for
other applications such as motion smoothing in vir-
tual reality [2].

We wish to extend the MLS projection operator
for surfaces, that projects each point near the sur-
face onto the surface, proposed by [3], to curves,
for smoothing space curves.

2 Previous Work

Previous approaches on curve smoothing involved
approximating the data with a single parametric
surface by minimizing theL2 norm. B-spline
curves and Bezier curves have been the represen-
tations of choice for such applications. In [1], a se-
quence of points are approximated using a B-spline
for smoothing curves for feature matching.

Another way to deal with noisy scattered data
is to minimize a combination of theL2 norm and
the smoothing norm (refer to [4]). The functional
that is minimized has two terms. One measures
the deviation of the data points from the fit, and
the other measures the non-smoothness of the fit.
However, these methods involve finding a global
parameterization for all the points. However, when
we have unorganized data, parameterizing data is a
non-trivial task.

Considerable work has been done to smooth tri-
angular meshes (refer to [5]), and to denoise point
clouds for reverse engineering [6, 7, 8, 9]. In [7],
the MLS projection is used to smooth point set sur-
faces. In [9], a modified MLS projection operator is
used, that is more robust for the purpose of smooth-
ing. Our method is inspired by the MLS projection
procedure for surfaces and aims to smooth bound-
aries of surfaces, that are space curves, to remove
tangential noise using a similar procedure.



Figure 1: MLS Projection procedure for surfaces

3 A Review of the MLS Projec-
tion for Surfaces

The MLS projection procedure was proposed by
[3] and [7] to deal with meshless surfaces. Given
a point set, the MLS projection operator projects
a pointr near the surface onto a unique manifold
surface implicitly defined by the set of points. This
surface can be defined as the set of fixed points of
this operator, that project onto themselves. Another
desirable property of this is that the resulting mani-
fold surface is guaranteed to be infinitely smooth, if
the weighting function in the moving least squares
process is infinitely smooth.

The MLS projection operator proceeds in two
steps. To project a pointr, the first step re-
quires finding an optimal local reference plane
for the neighborhood ofr by minimizing theL2

norm of the weighted perpendicular distance of
points pi in the neighborhood from the optimal
reference plane. Ifn is the normal to the plane
and t the distance of the plane fromr (figure 1),
N∑

i=1

〈n, pi − r − tn〉
2
θ(||pi−r−tn||) is minimized

with respect ton and t, where θ is a gaussian
weighting function defined asθ(x) = e(−x2/h), h

controlling the standard deviation. This is a non-
linear minimization process. A local parameteri-
zation is obtained by projecting each point in the
neighborhood onto this reference plane. The next
step involves fitting a local bi-quadratic polynomial
surfaceg using the moving least squares technique.

That is, we find ag to minimize
N∑

i=1

(g(xi, yi) −

fi)
2θ(||pi − q||) whereq = r + tn (q is the pro-

jection on the best fit plane),(xi, yi) are the para-
meter values ofpi in the local reference plane and
fi =< pi − q, n > is orthogonal to the local refer-
ence plane.This polynomial when evaluated at the
point q, gives the desired MLS projection.

4 MLS Projection Procedure
for Space Curves

In section 3 the MLS projection for surfaces, based
on the pioneering work of Levin [3] has been de-
scribed. This section aims at extending this proce-
dure to space curves.

Our method for MLS projection for curves is
similar to that for surfaces and has the following
steps. For every point r on the curve,

1. Find a local reference line : Find a lo-
cal neighborhoodNr consisting ofN points.
Supposeu is a unit vector in the direc-
tion of the optimal reference line andq is
the projection ofr on u (as shown in fig-
ure 2), for every pointPi belonging toNr,
N∑

i=1

||(pi − q) − 〈pi − q, u〉u||
2
θ(||pi − q||) is

minimized with respect toq and u where
θ is the Gaussian weighting function de-
fined asθ(x) = e(−x2/h). This is a non-
linear minimization process. Representing
u using spherical coordinates we haveu =
(cos γ cos φ, cos γ sinφ, sin γ) for someγ and
φ. This gives us two degrees of freedom forγ

andφ. Making use of the fact that the direc-
tion q − u is perpendicular tou, we have two
degrees of freedom for the pointq. Hence we
have four degrees of freedom during the min-
imization. We use the Powell minimization
method to get the optimal values forq andu.

Figure 2: MLS Projection procedure for space
curves

2. Now a local orthonormal basis,u, (r − q) and
(u × (r − q)) is formed. The neighborhood
is transformed to this local orthonormal basis
with q as the origin. For every pointpi, the
new point in the local coordinate system be-
comeqi = (< (pi − q), u >,< (pi − q), (r −
q) >,< (pi − q), (u × (r − q)) >)

3. Finally a quadratic curve is fit and the point



is projected onto the curve. Since the curve
might not be planar, we use a parametric
quadratic curveg(t) = (t, v(t), w(t)).

4. The curve evaluated att = 0 using the moving
least squares method gives the desired MLS
projection.

The value ofh, that determines the standard de-
viation of the weighting functionθ, plays an im-
portant role in this process. Figure 5 shows differ-
ent curves that result when smoothing is performed
with differenth. A higher value of h tries to make
the curve smoother while a lower value attempts to
adhere closer to the input.

This smoothing method, when applied by itself,
suffers from the fact that it cannot preserve sharp
features in the input. In the context of smooth-
ing boundaries, the boundary curve might contain
sharp features, though the interior of the surface
might not. For instance, if we have a rectangular
patch of an object segmented out, the corners of the
rectangle are smoothed when the above method is
used.To avoid this problem, we use user interven-
tion, to point out the sharp corners in the boundary.
Now the boundary smoothing process is carried out
for each individual piece of the boundary to pre-
serve sharp features.

Also, this method might not preserve the order
of the points when an ordered point set is given.
This is because, when the points are parameterized
locally by projection, the outliers may not be para-
meterized in the right order. However, this is not a
major concern when dealing with point clouds.

5 Results

Figures 3 and 4 show curves smoothed by this
process. In figure 5 the technique is illustrated for
a non-planar space curve. We have smoothed this
curve with different values of standard deviation
(h) and the results are shown in the figure. As seen
in the figure, using different values of standard de-
viation produces different level of smoothing.

Figure 6 show the technique applied to smooth
the boundaries of point clouds. The noisy boundary
curves are shown in figures 3 and 4. In the absence
of boundary information, an underlying triangula-
tion may be used to obtain the boundary. Several
well known triangulation algorithms exist for this
purpose in the absence of connectivity information.

(a) (b)

Figure 3: A noisy circular curve smoothed using
our method

(a) (b)

Figure 4: A noisy curve, smoothed using our
method

(a) (b)

(c) (d)

Figure 5: In figure (a), a noisy space curve is
shown. The subsequent figures show smoothed
curves with increasing value of standard deviation
(of 2.5, 4.5 and 6.5 times the average point spac-
ing respectively), that demonstrates the increasing
smoothing effect

6 Conclusion

We have provided a 3D curve smoothing algorithm
based on the MLS projection that can be used in



(a) Noisy data (b) Noisy data

(c) Tangential noise that is not
eliminated by normal smoothing

(d) Tangential noise that is
not eliminated by normal
smoothing

(e) Tangential noise eliminated
by our curve smoothing method

(f) Tangential noise elimi-
nated by our curve smooth-
ing method

Figure 6: The figure illustrates the boundary noise
after normal smoothing and the results obtained
when smoothing the tangential noise in the bound-
ary using our method

a variety of applications. Our algorithm is simple,
does not need an ordering of the input points and
can handle sharp corners in the input.
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