

REAL TIME DATA PROCESSING

 BY

 T. LAVANYA SITA G. SUSHMA REDDY K. CHAITANYA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,

OSMANIA UNIVERSITY COLLEGE OF ENGINEERING, HYDERABAD

 SUPERVISED BY

 REPORT OF PROJECT UNDER THE INDUSTRIAL ATTACHMENT

PROGRAM

CONTENTS

TOPIC PAGE No.

1. INTRODUCTION 1

2. PROBLEM DEFINITION 5

3. DESIGN 6

4. DATA FLOW DIAGRAMS 7

5. FEATURES OF LINUX 12

6. FEATURES OF IRIX 14

7. IMPLEMENTATION 19

8. TESTING 24

9. OBSERVATIONS 25

10. CONCLUSIONS 26

11. BIBLIOGRAPHY 27

ABSTRACT

 Real-Time Systems are those whose proper operation

depends not only on the correctness of the results but also their

timeliness. To meet the growing needs of real-time applications, several

operating systems have evolved which incorporate features suitable for

real-time applications. Our project deals with developing a program that

reads an image from an external device (simulated by a periodic timer)

and processes and displays it before the arrival of the next image.

 This has been implemented on both the Linux platform

(which supports soft real-time applications) and the IRIX platform

(which has multiprocessing capabilities and provides enhanced graphics

and real-time features). We have studied the real-time features available

in these operating systems and tried to incorporate them into our program

to deal with high data rates without loss of data.

INTRODUCTION

REAL-TIME SYSTEMS: Real-time systems are those that must respond to

external stimulus within a short time interval depending on the nature of the problem

being solved.

A real-time system must be capable of working in harsh environments like

rapidly changing computational loads rich in electromagnetic noise and elementary

particle radiation.

Real-time tasks can be classified into two types:

1) By predictability of their arrival

• Periodic tasks are the tasks that are done repetitively.

• Aperiodic tasks are those that occur occasionally

2) By consequences of their not being executed on time

• Critical tasks (hard real-time): This generally includes embedded systems

that control devices. Examples of this category are systems that control

aircraft, nuclear reactors, chemical power plants, jet engines, etc.

Disastrous results ensue when the system does not respond in time.

• Non Critical tasks (soft real time): These are systems where nothing

catastrophic happens even when some deadlines are missed. An example

of this category is multi-media.

ISSUES IN REAL-TIME SYSTEMS.

 BOUNDED RESPONSE TIME: A real-time system provides bounded and

usually fast response to specific external events, allowing applications to schedule

a particular thread to run within a specified time limit after the occurrence of an

event.

SCHEDULING: In the conventional time-sharing environment, every process

yields its CPU at the end of its time slice. This is not applicable in a real-time

environment as it may result in loss of data. So we must ensure, by choosing a

suitable scheduling mechanism, that other processes do not preempt these real-

time processes.

PRIORITY MANAGEMENT: To ensure that there is no data loss we must see

that whenever there is an input available, the input must be read into the input

buffer. Therefore the read module is given the highest priority. The processing

block must be given the next higher priority so that the data that has been read is

processed before output. In other words, the processing is done only when the

read block and the process block are idle.

TASK SYNCHRONISATION: Whenever data is available, an indication is sent

to the read module to start input. When the read module finishes reading, it sends

an indication to the process block to start processing. After processing the data,

the process block sends an indication to the output block to output the data in the

output buffer.

ASYNCHRONOUS I/O : Using this facility a programmer can queue a read or

write request to a device and optionally receive a queued signal when the request

is complete. The read() or write() call will return when the request is queued

rather than blocking the process pending completion of the I/O. Optionally,

process priority can be used to establish the order in which queued requests are

 completed.

MEMORY LOCKING A real-time application can avoid the overhead of page

fault processing by locking ranges of its text and data into memory.

INTER PROCESS COMMUNICATION: The communication (transfer of data)

between the three processes is through shared buffers. The simulator and the read

block share a common buffer from which the read block inputs data. The read

block and the process block share buffers through which the data is communicated

between them. The process block shares a buffer with the output block to send

data for output.

PERFORMANCE MEASURES FOR REAL-TIME SYSTEMS

1) Reliability is the probability that the system will not undergo failure over any

part of a prescribed interval.

2) Availability is the fraction of time for which the system is up.

3) Throughput is the average number of instructions per unit time that the

system can process.

4) Performability of a real-time system is dependent on performance of the

process that it controls. A real-time process has several accomplishment

levels (levels of performance as seen by the user). Performability is the

probability that the computer system will allow each accomplishment level to

be met.

5) Hard deadlines should be met in order to avoid catastrophic failures.

PROBLEM DEFINITION:

Data (image) is received from an external device at regular intervals and

buffered. Processing is carried out on receiving an entire block of data. Once

processed the result of processing is displayed.

 The major problem is to ensure that no data is lost. Since there is limited

storage, processing should be efficient so that every block of data is processed before

the buffers overflow.

DESIGN

 The entire job has essentially three aspects.

1. Reading data from an external device.

2. Processing the data read

3. Displaying (output) of this processed data.

These three functions must be incorporated into three different processes running

in parallel. This leads to several important issues mentioned below.

• Scheduling.

• Priority management.

• Task synchronization.

• Inter process communication.

• Bounded response time

• Asynchronous I/O

• Memory Locking.

The modules involved are:

1. Simulator module: It initializes the data which is used by the application.

2. Timer module: This simulates an external device by sending a signal to the read

process.

3. Read module: This module reads an image from the input buffer (i.e. a shared

memory segment created and initialized by the simulator). It then copies the read

data to buffer1/buffer2 and issues a signal to the processing module.

4. Processing module: This module is scheduled to run when it receives a signal

from the read module. It processes the received image and sends a signal to the

output module.

5. Output module: The output module displays the processed image on receiving a

signal from the process block

DATA FLOW DIAGRAMS

DFD (LEVEL 1)

 SIGALRM

 BUFFER 1 BUFFER2

INPUT BUFFER LOG
 OUTPUT BUFFER FILE

MONITOR

READ
MODULE PROCESS

BLOCK

SIMULATOR

OUTPUT
MODULE

TIMER

FEATURES OF LINUX

Linux is not designed to support hard realtime applications where a response time of
less that 1 milli second is garunteed. It is basically designed to maximize the average
case performance instead of the worst case performance. However, there are recently
emerged versions of Linux (the rtlinux for instance) that are suitable for hard realtime
applications. We confine our study to our conventional Linux (version 6.1).

Scheduling And Priority Management In Linux:

 Linux uses a simple priority based scheduling algorithm to choose between the
current processes in the system. There are two types of Linux processes viz 1) normal
(time sharing) and real time.

 Linux supports real time processes and these are scheduled to have a higher
priority than all of the other non real- time processes in the system. And also allows
scheduler to give each real time process a relative priority. The priority of the real-
time processes can be altered using system calls.
 Real-time processes may have two types of policy, namely
 1) ROUND ROBIN: In Round robin scheduling each runnable real time process is
run in turns
 2) FIRST-IN FIRST-OUT: In First-in First-out each runnable process is run in the
order that it is in the run queue.

Scheduling Classes

SCHED_FIFO: A preemptive priority based scheduling. Each process managed
under this scheduling policy possesses the CPU as long as 1) it does not block itself
and 2) there comes no other process into a higher priority wait queue. There exist a
FIFO queue for each priority level, and every process which becomes runnable is
inserted into the queue behind all other processes.

SCHED_RR: A preemptive priority based round robin scheduling strategy
with quanta. Each process has a time quantum and the process becomes preempted
when the time quantum expires; it is inserted at the end of the queue for the same
priority level if it runs longer than the time quantum.

SCHED_OTHER: This policy is based on time-sharing scheduling. Here all the
processes have a static priority 0. The priorities between the SCHED_OTHER
processes can be set with the nice command.

The system calls used are
int sched_setscheduler(pid_t pid, int policy, const struct sched_param *p);

 struct sched_param{
 int sched_priority;
 ��..
 };

 This system call sets the scheduler policy and the static priorities of the
process. Priorities between 1&99 can be assigned to processes. To use this system
call, the process must have superuser privileges or must have its effective-id equal to
its user-id.

Memory Locking

A real-time application can avoid the overhead of page fault processing under IRIX
by locking ranges of its text and data into memory.The mlock() and mlockall() system
calls can be used for this purpose.

Process Synchronization

 Task synchronization can be achieved with signals. The following system calls have
been used to deal with signals.
 int kill(pid_t pid, int signum);
 This is used to send a specified signal with signal number �signum� to
process with id �pid�.
 void (*signal(int signum, void (*handler)(int)))(int);
 The signal system call installs a new signal handler for the signal with
number signum. The signal handler is set to a handler, which may be a user specified
function or a default function.

Interprocess Communication

 Shared Memory is used as communication between processes. The system
calls used here are as follows.
 int shmget(key_t key, int size, int shmflg);
 shmget() allocates a shared memory segment of size �size�. It returns
an identifier of the shared memory segment associated to the value of the argument
�key�.

 char * shmat(int shmid, char* shmaddr, int shmflg);
 This function attaches the shared memory segment to the pointer
�shmaddr�.

char* shmdt(char* shmaddr);
 This function detaches the shared memory from the pointer �shmaddr�.

FEATURES 0F IRIX

 The IRIX operating system is basically an improvement on the UNIX operating

system with several enhancements like advanced graphics and visual computing

platform and multiprocessor capability. It provides a rich set of real-time

programming features that are collectively referred to as the REACT extensions.

 Various components of REACT include: bounded response time, clocks, timers,

signals, virtual memory control, asynchronous I/O, threads, scheduling policies, real-

time priority band, processor isolation, process binding, and interrupt redirection.

These features of IRIX make it suitable for hard real-time applications unlike

Linux.

Discussed below are some of the important features of the IRIX operating

system.

Bounded Response Time

 A real-time system provides bounded and usually fast response to specific external

events, allowing applications to schedule a particular thread to run within a specified

time limit after the occurrence of an event.

 IRIX guarantees deterministic response of one millisecond on certain uni-

processor systems. This real-time strategy guarantees the highest priority thread will

execute within one millisecond from the time it was made runnable.

 On certain multi-processor machines (OCTANE, Origin200, Origin2000, Onyx2,

Origin 3000 series, and Onyx3), the one millisecond bounded response time guarantee

is controlled by the systune variable rtcpus. rtcpus represents a threshold at which the

scheduler functionality that is required to meet this guarantee is enabled. The

threshold is based on the number of physical cpus in the system. If rtcpus is set

greater than or equal to the number of physical processors, the bounded response

guarantee is enabled. If rtcpus is set below the number of physical processors in the

machine, the bounded response time guarantee is NOT enabled. The default value for

rtcpus is 0, which means that by default, the guarantee is not enabled. In order to

enable the guarantee, rtcpus must be set equal to or greater than the number of cpus in

the system

Timers

 Timer expiration interrupts are dispatched to IRIX interrupt threads for handling.

The priority at which these threads are scheduled is determined by the scheduling

policy and priority of the thread which sets the timer: If the thread setting the timer is

running with a timeshare scheduling policy, then the associated interrupt thread will

be scheduled at real-time priority one.

 If the thread setting the timer is running with a real-time scheduling policy, then

the priority of the associated interrupt thread will be the priority of the setting thread

plus one. Priority 255, being the maximum real-time band priority, is an exception. If

the thread setting the timer is running at priority 255, then the interrupt thread will

also be scheduled at priority 255. Hence, real-time applications depending on system

services shouldn't use priority 255. Once the timer expires, the interrupt thread will be

scheduled ahead of the thread which set the timer.

 The system calls used to invoke the timer are

int timer_create();

int timer_settime (timer_t timerid, int flags,const struct itimerspec *value,

 struct itimerspec *ovalue);

Signals

IRIX implements queued signals which provide signal priorities and queuing

of signals such that exactly as many signals are received as were sent.

Memory Locking
 The mlockall system call can be used to lock down a process's entire virtual

address space. Since it is not always desirable to lock down the entire virtual address

space, IRIX provides the following system calls to lock and unlock a specified range

of addresses in memory: pin/munpin and mlock/munlock. The major difference

between the two sets is that mpin/munpin maintains a per page lock counter and

mlock/munlock does not.

System calls :

 int mlockall(int flags);
 int munlockall(void);

Asynchronous I/O
 IRIX implements the interface to asynchronous I/O. By using this facility one can

queue a read or write request to a device and optionally receive a queued signal when

the request completes. The read() or write() call will return when the request is

queued rather than block the process pending completion of the I/O. Optionally,

process priority can be used to establish the order in which queued requests are

completed.

System calls:
 int aio_write(aiocb_t *aiocbp);

 int aio_write64(aiocb64_t *aiocbp);

 struct aiocb_t

 {

 int aio_nbytes;

 int aio_fildes;

 char *aio_buf;

 int aio_sigevent;

 ��

 }

 Threads

 Threads (pthreads) in IRIX support both process and system scope threads.

System scope threads enable pthread applications to obtain predictable scheduling

behavior on a system level by using the kernel scheduler directly, bypassing the user-

level pthread scheduler.

System calls:

 int pthread_create(pthread_t *thread, pthread_attr_t *attr,
 void *(*start)(void *), void *arg);

 int pthread_kill(pthread_t thread, int sig);

Real-time Scheduling

 IRIX supports the real-time scheduler interfaces, including sched_setscheduler

and sched_setparam.

 These interfaces provide privileged applications with the control necessary for

managing the cycles of the system processor(s). Real-time scheduling policies, such

as round-robin and first-in-first-out, may be selected along with a real-time priority.

Real-time Priority Band

 A real-time thread may select one of a range of 256 priorities (0-255) in the

real-time priority band, using interfaces sched_setparam() or sched_setscheduler().

The higher the numeric value of the priority, the more important the thread.

 Many soft real-time applications simply need to execute ahead of timeshare

applications, in which case priority range 0 through and including 89 is best suited.

Since timeshare applications are not priority scheduled, a thread running at the lowest

real-time priority (0) will still execute ahead of all timeshare applications. Hard real-

time applications may use priorities 240 through and including 254 for the most

deterministic behavior and the lowest latencies.

Device Driver Interrupt Thread Priorities

 As of IRIX 6.4, device drivers employ interrupt threads to handle device interrupts.

Interrupt threads have default priorities in the range 200 through and including 239.

Processor Control
 Using the sysmp() call or the mpadmin and runon commands a programmer may

control the distribution of processes among the processors in a real-time system. It is

possible to bind a particular process onto a processor and conversely, it is possible to

restrict a processor to only run those processes that are explicitly bound to it.

IMPLEMENTATION

IMPLEMENTATION OF MAJOR DESIGN ISSUES :

• SCHEDULING & PRIORITY MANAGEMENT: -The scheduling class that is

used to schedule the various processes in this application is SCHED_FIFO, which

ensures no data loss. Each process is associated with a specific priority according

to its requirements. The scheduling class and the priorities within this class are set

for each module using the 'sched_setparam()' system call.

• TASK SYNCHRONIZATION: Task synchronization, one of the major design

issues, is achieved through SIGNALS. The following are the various signals that

enable task synchronization in this application.

1. SIGALRM: This signal is issued every second to indicate the arrival of

input data and is captured by the read process which then reads the

supplied input.

2. SIGQUIT: On completion of reading the entire data for an image, the read

process sends a signal (SIGQUIT) to the processing process.

3. SIGPIPE: The signal SIGPIPE is generated by the processing process to

the output process after the processing process has finished with its

processing.

• INTERPROCESS COMMUNICATION: This aspect of design is implemented

using the concept of shared memory. The various shared memory segments used

in this application are designated as follows:

1. Input buffer, between simulator and read process.

2. Buffer1, between read process and processing process.

3. Buffer2, between read process and processing process.

4. Output buffer, between processing and output processes.

• RESPONSE TIME : The response time of the application can be improved by

incorporating the following features:

1. Bounded response time: This facility is available in IRIX OS. This real time

strategy guarantees the highest priority thread will execute within a specified

time from the time it was made runnable.

2. Asynchronous I/O: This is possible in IRIX. aio_read() and aio_write()

system calls are used to achieve asynchronous I/O

3. Memory locking: This is implemented using the system calls, mlockall() and

munlock().

MODULE SPECIFICATION

SIMULATOR: This is run before all the other processes are invoked. Its purpose

is to create a shared memory segment (the input buffer) and initialize it with a

fixed pattern. This pattern can be described as follows. Let the dimensions of

the image being displayed be 2N * 2N. The input buffer has a size of 6 * N *

N bytes and every third byte represents red color and the remaining bytes

represent blue.

TIMER: It simulates an external device. It indicates the availability of data to the

read process at regular intervals. It interrupts the currently running process by

issuing a signal SIGALRM.

READ MODULE: This module is assigned the highest priority (priority 3). It is

activated on receiving SIGALRM from the timer.

• INPUT: It reads data (an entire image) at regular intervals from the

input buffer. It reads N* N bytes (size of the image) in a circular fashion,

starting from the last byte unaccessed in the previous reading (that is, if it

encounters the end of the buffer, it proceeds to the beginning of the buffer and

continues from there).

• OUTPUT: The data read is written to BUFFER1 and BUFFER2

alternately. Once the buffer is filled, it sends SIGQUIT to the processing

module and goes into a pause state.

PROCESSING MODULE: This module is assigned second highest priority

(priority 2). It is scheduled when it receives a SIGQUIT signal and when the read

module is in pause state (waiting for SIGALRM signal).

• INPUT: It reads data from BUFFER1 and BUFFER2

alternately.

• PROCESSING:

1) Histogram: It counts the frequency of occurrence of various colors (red and

blue) and stores it in a log file.

2) Stretching: It widens the range of pixel intensities. Pixel intensities are

multiplied by a factor (F) which is determined as follows.

F = (desired range/current range)

3) Inversing: Pixel intensities are complemented.

Finally a signal (SIGQUIT) is sent to the output process.

• OUTPUT: The frequency of occurrence of various colors is written onto a log

file and the contents of BUFFER1 / BUFFER2 are copied onto the OUPUT

BUFFER.

OUTPUT MODULE: It is assigned the least priority (priority 1). The output

module is activated on receiving SIGPIPE from the processing module and when

the read and the processing modules are in a pause state. It initializes the GUI and

creates a new top-level window.

• INPUT: It reads the image from the OUTPUT BUFFER.

• PROCESSING: Each time, the image is copied onto the pixmap array that is

associated with a widget.

• OUTPUT: The widget corresponding to the OUTPUT BUFFER is displayed

on the screen.

STATE TRANSITION DIAGRAM

 SIGALRM

 READ MODULE

 ALARM

 READ MODULE

 SIGQUIT SIGPIPE

 PROCESSING MODULE OUTPUT MODULE

IDLE

OUTPUT
READING

PROCESSING

TESTING

• It must be ensured that no data is lost at the required data rate. To simulate this

data rate, an alarm is set so that it issues a signal to the read process every second

and the size of the image is equalized with the numeric value of the required data

rate. The system is held under scrutiny to check for data loss.

• The efficient operation of the program even in the presence of other processes

shall be tested. To ensure this, several dummy processes are made to run in the

background and the output is held under scrutiny to check for data loss.

OBSERVATIONS

LINUX

THE MAXIMUM DATA RATE FOR DIFFERENT PROCESSING ACTIVITIES
 (The results shown below were recorded with the timer value set at 1 sec.)

IMAGE SIZE MAXIMUM

DATA RATE
PROCESSING
INVOLVED

1088 x 1088 1.13 Mbytes/sec Stretching, inverting,
recording the frequency
count and displaying the
image

3840 x 3840 14.03 Mbytes/sec Stretching, inverting,
recording the frequency
count

IRIX

MAXIMUM DATA RATE FOR DIFFERENT IMAGE SIZES
 (The processing done is stretching, inversion and recording the
frequency count)

IMAGE SIZE MAXIMUM DATA RATE

1024 X 1024 26 Mbytes/sec

1088 X 1088 24 Mbytes/sec

2048 X 2048 20 Mbytes/sec

3840 X 3840 17 Mbytes/sec

CONCLUSIONS

1. We have studied the real-time features of various operating systems.

2. We have experimented with these features and observed how the response

time can be improved.

3. We have studied how the response time varies with each of these features.

4. Although IRIX has more features to accommodate real-time applications, we

found that Linux can produce reasonable results in a soft real-time application

like image processing. In other words, in the worst case, there may be some

data loss due to lack a deterministic response time during context switching.

But the average performance for the image size chosen is not far behind the

IRIX operating system.

BIBLIOGRAPHY

1. Walter S. Heath: Real-Time Software Techniques

2. C. M. Krishna & Kang G.Shin : Real-Time Systems

3. Eric Harlow: Developing Linux Applications with GDK & GTK+

4. Linux Manual pages

5. IRIX Manual pages.

