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1. MOTIVATION 

 

Multi level or multi resolution representation of surfaces has several advantages such as 

compression, hierarchical editing, progressive transmission and so on. This project 

focuses on a multi-level representation of surfaces through refinement for editing of b-

spline surfaces. The hierarchical representation is implemented using b-spline surface 

refinement (uniform bi-cubic subdivision surfaces).  

 

The advantage of having a multi level representation for hierarchical editing is that we 

can edit the overall geometry by modifying the coarser level control points while we can 

add finer detail or features by moving the finer level control points. However we need a 

mechanism to update the other corresponding levels consistently when we update one 

level of the surface. 

 

2. PROBLEM DEFINITION 

 

The two operations that a user can perform at any time are-  

 

1. Editing the coarser level 

2.   Editing the finer level 

 

When a fine level is modified, we cannot find an equivalent surface with the coarser level 

basis-functions. So we need to somehow keep track of the modifications in the finer level 

separately. And when the coarser geometry is updated, make the appropriate changes to 

the finer geometry.  

 



Another idea that has been tried is, when we update the finer level, trying  and updating 

the coarser geometry and get the closest possible approximation to the finer geometry in 

the least square sense (since we cannot get an exact representation using the basis 

functions of the coarser level).   

 

Also we need a means to specify the motion of control points in 3D. This has been done 

by computing the partial derivatives and the normal of the surface at the node value 

corresponding to the control point. 

 

3.1 SPECIFYING CONTROL POINT POSITION BY DEFINING A LOCAL 

COORDINATE SYSTEM 

 

Specifying motion in 3D is a difficult problem. So instead, when a user selects a control 

point and wants to move it, an orthonormal basis (u1,v1,n1) is displayed at that point with 

normal n1 pointing to the normal to the surface at that point, and u1 and v1 in the tangent 

plane at that point. This makes it intuitive and easy to specify motion. 

 

                                     
 

 

 

 



Computing the Local basis system: 

 

Computing :  For every column j, the control points of the surface 

corresponding to the partial derivative with respect to u are computed as 
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Computing :  For every row i, the control points of the surface corresponding 

to the partial derivative with respect to u are computed as 
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where udeg is the degree in the u direction, vdeg the degree in the v direction, uk the u 

knot vector and vk the v knot vector. 

 

The knot vector of the new spline surface (partial derivative) is similar to the original 

knot vector. It is uniform floating with two fewer elements compared to the original. 

 

When we want to move a particular control point, the node value in the parameter space 

corresponding to that control point is taken – say this is (u,v) 

The normal is computed as n=  x ( , ) /s u v u∂ ∂ ( , ) /s u v v∂ ∂  

 

The local basis chosen is ,  ( , ) /s u v u∂ ∂ ( , ) /s u v u∂ ∂  x n and  n. The amount of motion in 

each of these directions is specified by the user, using sliders in the GUI. 

 



3.2 UNIFORM BI_CUBIC SUBDIVISION  (CATMULL_CLARK SUBDIVISION) 
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This method proceeds by inserting a new knot between adjacent knots in the coarser 

surface and finding the corresponding new control points in terms of the old control 

points. 

 

The Subdivision Template 

For every control point Ri,j on the refined mesh, the Catmull-Clark subdivision template 

can be expressed as follows 

If i is odd and j is odd 

Ri,j = P(i/2 + ½,  j/2 + ½)  + P(i/2 + ½,  j/2 - ½) + P(i/2 - ½,  j/2 + ½)  + P(i/2 - ½,  j/2 - ½)  

 

If  i is odd and j is even 

Ri,j = P(i/2 + ½,  j/2 )  * 3/8+ P(i/2 - ½,  j/2) *3/8 

+ P(i/2 - ½,  j/2 + 1) *1/16 + P(i/2 + ½,  j/2 + 1) * 1/16 

+ P(i/2 - ½,  j/2 - 1) *1/16 + P(i/2 + ½,  j/2 - 1) *1/16 

 

 



If i is even and j is odd 

Ri,j = P(i/2 ,  j/2 – 1/2)  * 3/8+ P(i/2 ,  j/2 + 1/2) *3/8 

+ P(i/2 - 1,  j/2 + 1/2) *1/16 + P(i/2 + ½,  j/2 + 1/2) * 1/16  

+ P(i/2 - 1,  j/2 – 1/2) *1/16 + P(i/2 + 1,  j/2 – 1/2) *1/16 

 

If i is even and j is even 

Ri,j = P(i/2 ,  j/2 )  * 9/16  

+ P(i/2 ,  j/2 + 1)  * 3/32 + P(i/2 ,  j/2 – 1)  * 3/32 

+ P(i/2 + 1,  j/2 )  * 3/32 + P(i/2 -1,  j/2 ) *3/32 

+ P(i/2 - 1,  j/2 -1) *1/64  + P(i/2 - 1,  j/2 +1) *1/64 

+ P(i/2 + 1,  j/2 + 1) *1/64 + P(i/2 + 1,  j/2 – 1) *1/64  
 

3.3 FINDING THE CLOSEST ESTIMATE OF THE CONTROL POINTS OF THE 

BASE MESH 

Let M be the number of rows in the control mesh and N the number of columns 

The above template can be expressed as follows. 

For every control point Ra,b of the refined mesh,  
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where w(i,j) is defined by the template mentioned above if  Ra,b contributes towards P(i,j) 

,and 0 otherwise. In other words, for all Ri  where Ri is a control point belonging to the 

refined mesh,  
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This is a linear system and can be expressed as  

    W P = R 

 

Where P is a (MN x 1) matrix, R is a ((2M-3 * 2N-3) x 1) matrix and W is a   ((2M-3 * 

2N-3) x MN) matrix 

 



Given a refined mesh, the R matrix is known, and the W matrix is known from the 

subdivision template. We can try to solve this system of equations and try to obtain a 

base mesh corresponding to this refined mesh. However, the above linear system is over 

determined. Hence Singular Value Decomposition has been used to solve this linear 

system in order to get the closest base mesh in the least squares sense. 

 

4  IMPLEMENTATION 

 

At any point of time, there are two surface objects that the user can access, the base 

surface B and the refined surface  S.  Also In the program, every refined surface object 

has associated with it a base surface object (Sb). This surface Sb is a data member of the 

refined surface.  

 

Let u  be the unit vector in the direction of partial derivative of the surface with respect to 

u direction at that point. Let v  be the unit vector in the direction of partial of the surface 

with respect to v direction at that point and let n be the unit vector in the direction of  

cross product of u and v (perpendicular to the tangent plane) 

 

Modifying Base Surface  B --> B’ 

The control points of the surface B are just set to the new values corresponding to B’ as 

specified interactively by the user. 

 

However, this change needs to be reflected in the refined mesh S too. Since the refined 

surface S might have been updated in the meantime, the amount by which it has been 

updated is obtained as follows: 

 

Its base surface Sb is invoked and subdivided the adequate number of times to obtained 

the refined mesh Ss  (This would have been our refined mesh if S has not been updated at 

any point of time). Each control point of  Ss and S are compared, and their difference is 

split into three components along the directions u, v and n at that point. These differences 

are stored in a matrix D 

 



Now the new base mesh B’ is copied into Sb and S is obtained by refining Sb the 

adequate number of times. Now the control points of S are modified according to the 

matrix D.  In other words, each control point of S is displaced along its  u, v, and n 

directions according to the values stored in D. We thus get our new refined surface S.  

 

When Refined Surface is Updated   S -> S’ 

 The control points of the surface S are just set to the new values corresponding to S’ as 

specified interactively by the user.  

There is a checkbox to specify the option of attempting to update the base mesh 

adequately. If this box is checked, the base mesh is changed so that it is as close to the 

refined mesh as possible. Now B and Sb are updated to this new base mesh. 

 

5  SOLVING AN OVER DETERMINED SET OF EQUATIONS 

 

Suppose we have a set of equations AX=B .  

The number of unknowns (dimension of X) is n and the number of equations is m. In our 

case, m>n. 

||AX-B|| is called the residue .  

Since the system is over determined, the matrix A is rectangular and is not invertible. 

Under these circumstances,  commonly, we try to find a solution that minimizes the least 

square norm |Ax-B|2.  When we equate the partial derivative of this expression with 

respect to x to 0, we end up with the expression 

 AtA x-AtB=0 

Or       AtA x=AtB 

 These are called the normal equations. 

 And x= (At A)-1 At B 

 

 The Expression  A+ = [(At A)-1 At ] is called the pseudo inverse  of the Matrix A. 

A+ is also called the Morse Penrose inverse – since A+ satisfies A A+ A = A 

 

Finding the Pseudo inverse of  a Matrix 

 



Finding the inverse of a matrix by the usual method (Adj(A)/Det(A)) is an extremely 

tedious process and is hardly ever used.  

 

The following are some of the common techniques employed in order to solve our system 

Ax=B 

 

Cholesky Factorization 

 

Every positive definite matrix A can be factored uniquely into the product A=Lt L where 

L is a lower triangular matrix. This is the Cholesky factorization.  

• Split At A into Lt L where L is a Lower triangular matrix. 

• Let W= Lx 

• Solve the lower triangular  system  Lt W =  At B 

• Now solve the upper triangular system L x = W 

• The time complexity of this algorithm is of the order O(mn2 + n3/3) 

 

QR Decomposition: 

QR factorization is a more modern way of solving the least squares problem. Given a  

matrix A, it can be decomposed into an upper triangular matrix R and an orthogonal 

Matrix Q (QQt=I) 

 

• Decompose A as A= Q R 

• Q R x = B 

• R x = (Qt  B) 

This is an upper triangular system and can be solved by back substitution. This method 

gives us a technique for finding the least squares approximation to the solution 

Complexity (2mn2 – 2/3 n3) 

 

Singular Value Decomposition 

Every m x n matrix A with m>n can be decomposed into   

A = U D Vt 

Where D is a diagonal matrix and U and V are orthogonal matrices. 



Our system of equations is A x = B 

• Obtain the singular value decomposition of A:   A = U D Vt 

• U D Vt x = B 

• x= (U D Vt)-1 B 

• x =  (V D-1 Ut) B 

A+  = (V D-1 Ut)  [the pseudo inverse of A] 

Complexity : 2 mn2 + 11 n3

 

Comparison of methods: 

Condition number is the ratio of the largest singular value to the smallest singular value 

and when the condition number is too large, the matrix is ill-conditioned.  

Solving by Cholesky factorization is more efficient than SVD. However, for ill- 

conditioned matrices, the condition number of  AtA is the square of condition number of 

A  (The eigen decomposition of AtA is VD2Vt  if singular value decomposition of A is 

UDVt) . Hence solving the normal equations directly might have numerical instability 

issues. Hence SVD or QR factorization methods are generally preferred. 

 

When the rank of  A is equal to n, the least squares problem has a unique solution. 

However when rank(A) < min(m , n) -- in other words, A is rank-deficient - we seek the 

minimum norm least squares solution  x which minimizes both ||x||2  and  ||Ax-B||2.  And 

SVD provides such a solution. For matrices that are not rank deficient, QR is the 

preferred method as it is cheaper than SVD when m and n are almost equal.  

 

However, When  m>>n, the two methods have almost the same time complexity. And 

SVD is the method used in this project 



6. RESULTS 

1. Finding the refined mesh when the base mesh is updated
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A control point in the refined mesh being

moved 

New refined mesh after a control point in the

refined mesh has been  moved 
      

 
New base mesh after a control point in the base
mesh has been  moved 
New refined mesh reflecting the change made to the
base mesh and retaining its detail previously added.



2. Finding the closest base mesh given the refined mesh
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being moved)
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7. T
A closer view of the new refined mesh
 

HE GUI 

 

A closer view of the new base mesh- updated
going by the idea previously described 
 



Exit: Exit the application 

New File: Read a new base mesh and get the appropriate refined mesh 

Write To File: Write the current mesh base/refined to file. 

Print Surface: Print the control mesh and knot vector of the current object to console 

Base: Show the base mesh 

Refined: Show the refined mesh 

Levels: Specify how many levels the refined mesh must be subdivided from the base 

mesh. 

Reset Transformations: Reset all the transformations done to the object so far (rotation, 

translation and scaling) 

u, v and n: Specify how much to move a control point along its u, u x n and n directions 

Fix movement: Fix the movement specified by the u, v and n sliders and update the 

surfaces 

Update Base: Update the base mesh when the refined mesh is modified 

Hide Curve/Surface: Do not show the surface when checked 

Hide other surface: Do not show the refined mesh when the current object is the base 

mesh, and vice versa 

Previous: When we modify the current object, when this box is checked, the object prior 

to the modification is shown in a different color. 

Hide Control Polygon: Hide the control polygon or the control mesh of the surface. 

 
The object under consideration can be rotated by moving the left mouse button, zoomed 
using the right mouse button and translated using the center mouse button. Any control 
point can be selected by clicking on it and it can be moved along u, v and  n as specified 
using the sliders provided 
 
References:  

Elaine Cohen, Richard F Riesenfeld and Greshon Elber, “Geometric Modelling with Splines- An 

Introduction” 

Numerical Recipes - http://www.library.cornell.edu/nr/cbookcpdf.html
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