4. Approximation in a Normed Linear Space

They say there was a fish who said two words in such a strange
language that for three years scientists have been trying to under-
stand it.

N.V. Gogol, Notes of a Madman

4.1 Separable spaces

If we want to know whether a room holds enough chairs to seat some people
standing outside we can do one of two things:

e Count the number of chairs, n, and the number of people, p, and see
whether n > p.

e Start seating the people, and continue until all the chairs are filled, or all
the people are seated, whichever comes first.

The second procedure has the advantage that it avoids counting; it relies on
establishing a one-to-one correspondence between chairs and people. This leads
to

Definition 4.1.1 Two sets are said to have equal power if there is a one-to-
one correspondence between their elements.

The set of positive integers 1,2,3,--- is the set containing an infinity of
elements which has the least power.

Definition 4.1.2 A set which has the same power as the set of positive integers
is said to be countable (enumerable).

Theorem 4.1.1 The union of a finite number, or a countable set, of countable
sets is countable.

Proof. Tt suffices to show how to enumerate the elements of the union. This
is clear from the diagram in Fig. 4.1.1. The countable sets are {a;;}, 7 =
1,2,3,--+; {as}, 7 =1,2,3,--+; etc. We take them in the order ai; ay2,as:;
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a4z a3 aig e e e
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///

Fig. 4.1.1. Enumeration of a countable union.

a3, 99, azy; ete. In this way we will cover all the elements in the union, and we
can place the elements so ordered in a one-to-one correspondence with 1; 2, 3;
4,5,6; etc. m

Corollary 4.1.1 The set of rational numbers is countable.

Problem 4.1.1 Show that the set of all polynomials with rational coefficients
18 countable.

Georg Cantor (1845-1918) proved
Theorem 4.1.2 The set of real numbers in the interval [0,1] is not countable.

The proof can be found in any textbook on set theory or of functions of a
real variable. Cantor’s Theorem implies that the set of points (real numbers) in
[0,1] does not have the same power as the set of positive integers; these points
form a continuum. We can extend this to say that the set of points in IR forms
an N-dimensional continuum.

We shall not discuss Cantor’s theory of sets, which is a special subject.
Our interests lie in applications of the notion of countability to metric spaces.
Modern mechanics depends heavily on computer ability. A computer can process
only a finite set of numbers. An operator using a computer expects a solution
to a problem to be approximated with a certain accuracy by the sequence of
numbers used by the computer. If = is an arbitrary element of an infinite set X
and we want to use a computer to find an approximation to it, then we must be
certain that every element of X can be approximated by elements of another
set which is finite or, at least, countable. This leads to:
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Definition 4.1.3 X s called a separable space if it contains a countable
subset which is dense in X .

We call such a subset a countable dense subset. In other words, X is sepa-
rable if there is a countable set M C X such that for every x € X there exists
a sequence {m;}, m; € M, such that d(x,m;) — 0 as i — oo. Equivalently,
for any € > 0 there is, for each z € X, an element m € M (depending on z)
in an e-neighborhood of z.

The set of real numbers in [0, 1] is a separable metric space, since the set
of rational numbers in [0, 1] is a countable dense subset.

There is a more important example: Weierstrass’ theorem on polynomial
approximation (Theorem 1.3.1) states that if £2 is a bounded domain in IR",

then the set of polynomials P({2) (with real or complex coefficients) is dense

in C(£2) in the uniform norm. If P,({2) is the set of polynomials with rational
coefficients, then

Problem 4.1.2 Show that P,(£2) is dense in P(£2), in the uniform norm.

This means that P(f2) is separable, because P,(f2) is countable. Putting
this together with Weierstrass’ theorem, we can deduce that P,({2) is a count-
able dense subset of C'(£2), so that C'({2) is separable, again in the uniform
norm.

However, not all spaces are separable, because

Lemma 4.1.1 The space of all bounded functions on [0,1] equipped with the
norm

I/

0= sup |f(z)]
z€(0,1]

18 not separable.

Proof. 1t is sufficient to construct a subset M of the space whose elements can-
not be approximated by functions from a countable set. Let o be an arbitrary
point in [0, 1]. Construct a set M of functions defined as follows:

fa(x):{(l): r>a,

r < Q.

The distance from f,(z) to fg(x) is

[ fo = follow = Sét[lopl] [falz) = fe(@)| =1, if a#p.

Take a ball B, of radius 1/3 about f,(z). If a # 3, the intersection B, Bg
is empty. This means that every element of M is an isolated point; there is
just one element f,(z) in each ball of radius 1/3 about f,(x). If a set S is
to be dense in M, then each of these balls must contain at least one element
of S. But the set of balls B, with real values of o has the same power as
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the continuum, i.e. it is not countable (Theorem 4.1.2). Therefore there is no
countable set which is dense in M. Therefore M, and a fortiori (meaning ‘all
the more so’) the set of bounded functions, is not separable. =

We will now proceed to show that the Lebesgue spaces LP(f2) and the
Sobolev spaces W™P((2) are separable. We prove a general result:

Theorem 4.1.3 The completion of a separable metric space is separable.

Proof. In the notation of Theorem 2.6.1, there are three metric spaces: M, the
original incomplete space composed of elements x; M, the space of stationary
sequences {x,x,--}; M the space of equivalence classes X of Cauchy sequences
{z,}, where z,, € M, with the metric (2.6.1), namely

~

d(X,Y) = nh_)rglo Ad(Zp, Yn)-

In Theorem 2.6.1 we showed that M is dense in M. Since M is separable, it
has a countable dense subset D. Let D be the space of stationary sequences
S ={s,s,--} for s € D.If x € M and € > 0, then we can find s € D such
that d(x,s) <e. Let X ={z,z,---} and S = {s,s,---} then

A

d(X,S) =d(z,s) < e.

so that D is dense in M which in turn is dense in M therefore D which, like
D, is countable, is dense in M, and M is separable. m

Using this general result we may now prove
Theorem 4.1.4 If 2 is bounded, then LP(£2), 1 < p < oo is separable.

Proof. LP(S2) is the completion of C7(£2) in || - ||,, so, by Theorem 4.1.3, it is

sufficient to prove that C;({2) is separable in |- [|,. But C(§2) is dense in C({2)
in || -|p, so it is sufficient to show that C'({2) is separable in || -||,. Weierstrass’

theorem states that P,({2) is dense in C({2) in the uniform norm. Thus, if

f(z) € C(£2) and € > 0, we can find P,(x) such that

sup | f(z) — Pa(x)| < ¢/(mes(£2))'/7.

TES?
This implies
1/p
1 = Pally = ([ 1) = Puta)Pa) " <.

so that P,(£2) is dense in C({2) in the | - ||, norm, and C(£2) is separable in
[ llp- =

Weierstrass’ theorem states that P,(f2) is dense in C({2), so that C({2)

is separable, in the uniform norm. From that we showed that C({2), and its
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completion LP({2) in the || - ||, norm, are separable. Using similar arguments
we can show that P,({2) is dense in C™({2) in the metric (2.3.4), and hence
also in the || - ||;,, norm, so that W™P({2) is separable.

We conclude this section with the almost trivial result

Problem 4.1.3 Show that any subspace E of a separable metric space X is
separable.

The result is of great importance, for the following reason. We have only
a few convenient countable sets of functions which we may use to show that
various spaces are separable: P,, the space of polynomials with rational coef-
ficients; the space of trigonometric polynomials with rational coefficients; etc.
In general, the elements of these sets will not satisfy the boundary conditions
imposed on functions in energy spaces, for example, so that we cannot use them
to show that the energy spaces are separable. To circumvent this difficulty we
can take a wider space, containing the space under consideration, and show that
it is separable; Problem 4.1.3 shows that the subspace is separable. In § 3.6 we
showed that the energy spaces we introduced were subspaces of Sobolev spaces;
since the Sobolev spaces are separable, so too are the energy spaces.

4.2 Theory of approximation in a normed linear space

The first problem we will consider is relatively simple, the so-called general prob-

lem of approximation in a normed linear space: Given x € X and ¢y, 92, -+, gn
with ¢g; € X, find numbers A\, Ay, ---, A, to minimize
d(A, Az, o+, An) = [[o = Aigi — Aaga — <+ — Angnllx. (4.2.1)

The problems of best approximation of a continuous function by an n-th order
polynomial, by a trigonometric polynomial, or by some other specified functions,
all have this form. Our analysis will depend on a well known result from the
theory of continuous functions, which we stated as Theorem 1.2.1.

Now return to (4.2.1). We suppose that g, go, - -, g, are linearly indepen-
dent. This means that the equation

Ag1 +Aoga+ -+ Apgn =0

implies
)\1 = 0 = )\2 _

n-

=\
We show that the problem of minimizing (4.2.1) has a solution: we prove the
existence theorem

Theorem 4.2.1 For any x € X there is an x*, depending on x, such that
n
— Z Aiog; and

=1
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| —2"[ = min
A1 A2, An

=1

Proof. Define (A, Aa, -+, A\n) = D Aig;, and let 6 = ||¢]|x. The triangle
i—1
inequality gives

[zl = Nyl 1< llz =yl (4.2.2)

We use this to give the following chain of inequalities:

|¢()\1 +A17)‘2 +A2:"'7)‘n +An) - ¢()\1:)\27"'7)‘n)|

Z Aigi
i=1

n

=1

n
=Y Aigi
i-1

=1 i=1

< <

<Y 1A gl

This shows that both of the functions ¢(A1, Ag, -+, Ay) and O(Ay, Ao, -+, \y)
are continuous in IR" (or in C" if X is a complex space). The function 6 is a
real homogeneous function of degree 1, i.e.

g(lu’)‘la /'L)‘Qa Tt N)‘n) = |:u’|0()‘1a )‘Qa Tt )‘n)

First consider # on the unit ball > |\;|> = 1. This is a closed and bounded,

=1
i.e. compact, set in IR", so, by Theorem 1.2.1, the real continuous function ¢
will assume its minimum value at some point (Af, A3,---, A*) on the unit ball.

This minimum value must be nonzero, since the {g;} are linearly independent.

Thus if Y [\* =1, then

=1

=d> 0.

Z)\:gi

=1

> Aigi

=1

min # = min

We now show that the minimizing (A;)} of the theorem must lie in a ball of

radius R = 3||z||/d. For the inequality (4.2.2) gives

¢ = llz =l = |9l = [l2] = 0 — |||

On the unit ball, > d; therefore, outside the ball of radius R, § > Rd = 3||z||
and ¢ > 3||z|| — ||z|| = 2||z||. But ¢(0,0,---,0) = ||z||, so the minimum value
of ¢ must be inside the ball of radius R; since this is a closed and bounded
set we see that the minimum will actually be attained; we can say min in the
statement of the theorem, not just inf. =
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We called the general problem in the theory of approximation relatively
simple; we mean that the problem of solvability is simple, not that concrete
applications of this theory are simple.

We have shown that the problem of minimizing (4.2.1) has a solution; in a
general normed linear space the solution is not unique; it is unique when X is
a strictly normed space.

Definition 4.2.1 A normed linear space is called strictly normed if the equal-
1ty

lz+yll = llzll +1lyll, = #0,
implies y = Ax and A > 0.

Most of the normed linear spaces which appear in applications are in fact
strictly normed. First we have

Lemma 4.2.1 An inner product space is strictly normed.

Proof. Suppose ||z +y| = [lz|| + [|lyll, then [z +y|* = (||z[| + [|y||)*. For a
complex space this may be written

|2]|* + 2Re(z, y) + lyll* = ll2* + 2ll= ]| - [l + Iy,
so that Re(x,y) = ||| - [|y||. But the Schwarz inequality (2.12.2) states that
(. y)|* = [ Re(z, y)|* + [ Im(z, y)|* < [|=[* - ly]]*,

so that Im(x,y) = 0 and thus (z,y) = [|2||-||y[|. But then Theorem 2.12.1 gives
y = Az and hence (z,y) = M|z||*> = |A| - ||z|]?, so that A = |\ and A > 0. =

Now we pose

Problem 4.2.1 Use the properties of the Minkowski inequality to show that the
spaces [P, LP(£2) and W™P($2) are strictly normed when 1 < p < oc.

We also need the general notion of a convezx set; we have

Definition 4.2.2 A set M in a linear space is said to be convex if, for any
two elements x,y € M, each element Az + (1 — Ny with 0 < XA <1 is also in
M . (Thus when z,y are in a convex set M, the segment joining x and y lies
completely in M .)

Problem 4.2.2 Show that the closed unit ball B(0,)\) = {z; ||z|| <1} in a
normed linear space X s conver.

When {g,} C X, the set M of elements
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Y=g+ Ngs+ -+ Agn

is a closed convex set, so that the problem of minimizing (4.2.1) can be viewed
as finding y € M which is closest to x.

We now combine the notions of strictly normed space and convex set to give
a uniqueness theorem. First, however, we combine Definitions 2.7.2 and 2.9.2
into

Definition 4.2.3 Let X be a linear space. An operator (linear operator) from
X into R or C is called a real or complex functional (linear functional).

Theorem 4.2.2 Let X be a strictly normed linear space, let x € X ,and let
M C X be a closed convex set. There is no more than one y € M which
minimizes the functional F(y) = ||lx — y|| on M.

Proof. 1If x € M, there is clearly only one minimizer, y = x. Suppose © ¢ M,
and that, if possible, there are two minimizers, ¥,y and y; # yo. Thus

lz =yl = [l — 32l = inf [z —y|| = d > 0. (4.2.3)
yeM
Since M is convex, (y; +y2)/2 € M so that
Hx St} )
2
On the other hand
Y1+ Y2 T — Y1 T — Y2
_ =d.
Hx > 1= 72 |1
Thus
Y1+ Y2 T — Y1 T — Yo
- = +
2 2 2

But X is strictly normed so that this equality implies x — y; = Az — y2),
A>0; ||z — || = M|z — y2|, and (4.2.3) implies A = 1 so that y; = yo. This
is a contradiction, so that there can be at most one minimizer. =

In this section we have shown that the problem of minimizing (4.2.1) always
has a solution, and that this problem, as well as the more general problem of
Theorem 4.2.2 has at most one solution if the space is strictly normed. Thus the
minimizing problem (4.2.1) has a unique solution in a strictly normed space.

We now proceed to study the problem stated in Theorem 4.2.2 when X is
a Hilbert space.

4.3 Riesz’s representation theorem

Riesz’s theorem, due to Frédéric Riesz (1880-1956), is the most important of
a number of results we shall obtain in this chapter about approximation in an
inner product, and in particular a complete inner product, i.e. a Hilbert, space.
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First we show the existence of a solution to the problem of Theorem 4.2.2.
We have

Theorem 4.3.1 Let H be a Hilbert space, let x € H, and let M C H be a
closed conver set. There is a unique y € M which minimizes the functional
F(y) = |lz—yll on M.

Proof. The uniqueness is proved in Theorem 4.2.2; in Theorem 4.2.1 we showed
the existence in the special case in which M is a finite dimensional subspace
of a normed linear space; now we will establish the existence for an arbitrary
closed convex set in a Hilbert space.

Let {yx} € M be a minimizing sequence for F(y), i.e.

Jim F(yy) = lim ||z —yyf| = inf [lo —y]| = d.

Such a sequence exists by the definition of infimum. If we can show that {y;}
is a Cauchy sequence, then, because M is closed and a closed set in a complete
space is itself complete, (Problem 2.5.3) it will have a limit in M, and this will
be the minimizer.

Since H is an inner product space, the parallelogram law (2.12.3) holds.
Thus

122 = i = y;lI* + v — ysll* = 20w — wall* + 2l|= — w51,

and therefore

vi + 5 ||

o= 95l = 2l = il + 2 = ) = 4 o = 45

Since ||z — yx|| — d, we can write ||z — y;||* = d*> +¢;, where ¢, — 0 as i — oc.
Since M is convex, (y; +y;)/2 € M and

2

H:E YTy ; Yi > d>.

Thus
lyi = yill* < 2(d* + & + d* + ¢j) — 4d” = 2(e; + ¢;) = 0,

so that {yx} is a Cauchy sequence, having a limit yo € M. =

Now suppose that M is not just a closed convex set, but a closed subspace
(Definition 2.8.4). If z,y € M and M is conver, then \x + (1 — \)y € M for
0 < A<1.When M is a subspace, then ax + Sy € M for any o, € C. Thus
there is a unique minimizer m € M, i.e.

— = inf ||z — y||.
lz —m|l = inf flz -y
Take an arbitrary v € M ; we consider the real valued function

fla) =lz —m — av|?
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of the real variable «. Because M is a subspace, m + av € M for all o, and
f(a) has its minimum at a = 0. Thus f(0) = 0. But
) d

f0)=—(@E—m-—av,z —m —av) |a=0= —2Re(x — m,v) = 0.

do
Replacing « by ia, we get Im(z — m,v) = 0, so that

(x —m,v) =0, (4.3.1)
This means that x — m is orthogonal to every v € M, and leads us to

Definition 4.3.1 Let H be a Hilbert space, M C H a linear subspace, and
n € H. The element n is said to be orthogonal to M if n is orthogonal to
every m € M, i.e. (n,m) =20 for all m € M. Two subspaces M, N C H are
said to be mutually orthogonal if (n,m) =0 for allm € M and n € N. We
write M = N+, N = M*.

Definition 4.3.2 Let H be a Hilbert space, and M,N C H be mutually or-
thogonal subspaces. We say that H has an orthogonal decomposition into
M and N if any x € H can be uniquely represented in the form

r=m+n, meM, néeN. (4.3.2)

We can state the result already obtained in equation (4.3.1) as the so-called
decomposition theorem for a Hilbert space:

Theorem 4.3.2 Let H be a Hilbert space, and M C H a closed subspace.
Then there is a closed subspace N C H, orthogonal to M, such that H has an
orthogonal decomposition into M and N, as in (4.5.2).

Proof. Suppose M # H. Let N be the set of all n € H such that any
n € N is orthogonal to every m € M. We show that N is not empty, is
a linear subspace of H, and is closed. Equation (4.3.1) shows that N is not
empty. N is a linear subspace because (ni,m) = 0 = (ny,m) for all m € M
implies (an; + fng,m) = 0 for all m € M. Thus if n; € N, ny € N, then
any + ny € N. Suppose {n;} C N is a Cauchy sequence. Since H is complete,
{ni} will have a limit n € H, and

(n,m) = klim (ng,m) =0 for allme M,
—00
so that n € N, and N is closed.
The analysis leading to (4.3.1) shows how to construct the projection m €
M of an arbitrary x € H; n = x — m is orthogonal to M and x = m +n. The
decomposition is unique because

T =mp+ny, T = my + No, m; € M, n; € N,
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implies
mp — Mg = N9 — Ny.

But my —my € M, ng —ny € N and M, N are mutually orthogonal, i.e.
0= (ml — M2, Ny — nl) = ||m1 - m2||2 = ||n2 - n1||2,

so that m; = my and n; =ny. N

The element m € M is the projection of z on M. We may consider the
projection as defining a projection operator P on H onto M , according to

Definition 4.3.3 Let H be a Hilbert space and M a closed subspace of H. The
projection operator P on H onto M is defined by Px = m, where

— = inf ||z — y||.
lz —m|| = inf Jlo—y]
Clearly Px = x when © € M.

Theorem 4.3.2 has widespread applications. One of them is Riesz’s repre-
sentation theorem:

Theorem 4.3.3 Let H be a Hilbert space, and F(z) be a continuous linear
functional on H. There is a unique f € H such that

F(z) = (2, f) for every x € H, (4.3.3)

and |[F|f = [lfl-

Proof. Let M be the kernel of F(x): the set of # € H satisfying F'(z) = 0. We
show that M is a closed linear subspace. If m;,my € M, then F(m;) =0 =
F(msy), but F is linear so that F(amy + fmy) = aF'(my) + fF(my) = 0, and
thus amy + fmg € M; M is a subspace. If {m;} C M is a Cauchy sequence,
then it has a limit m € H. But since F' is continuous, F(m) = kIH& F(mg) =0,

so that m € M and M is closed.

Since M 1is a closed linear subspace of H we can apply Theorem 4.3.2.
There is a subspace N C H, orthogonal to M, and any x € H can be uniquely
represented as t =m+n, me M, n € N.

We now show that N is a one-dimensional space, i.e. any n € N may be
written as n = ang, where ny is a fixed element in N. Let n;,ny € N, then
ng = F(ni)ny — F(na)ny € N. But F(n3) = F(n1)F(n2) — F(ng)F(ny) = 0
which means n3 € M. But M, N are mutually orthogonal so that ns, being in
both, must be zero. Thus F(n;)ny = F(ny)n; and N is one-dimensional.

Take an element n € N, and define ng by

ng = n/||n|.

Any element x € H can be represented uniquely as
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T =m+ ang, m € M,
and (z,n9) = (m,ng) + a(ng, ng) = a. Therefore

F(z) = F(m+ ang) = F(m) + aF(ng) = aF(ny)

= (manU)F(no) = (mam%) = (zaf)a

where f = F(ng)ne.
If there were two representing element f, fo, then F(x) = (z, f1) = (z, f2
so that (z, fi — fo) = 0, and taking z = f; — fo, we would find || f; — f]|*> =

i.e. f1 = fg.
Finally,

),
0,

|F(2)] |(z, )|

| F']| = sup ——~= = sup ——= < || f]],

but E(f)/|LF|l = l[£]l, so that [|[F][=[[f[|. m

The proof above was given for a complex Hilbert space, but the result holds
for real spaces also.

The meaning of the theorem is that any continuous linear functional F'(x)
on H can be identified with a unique element f € H. The set of continuous
linear functionals F(x) on H is called the dual of H, and is denoted by H*.
Riesz’s theorem gives a one-to-one correspondence between elements F' € H*
and f € H.

4.4 Existence of energy solutions of some mechanics
problems

In this section we discuss some applications of Riesz’s theorem. We recall that
in Chapter 3 we introduced generalized solution for several mechanics problems
and reduced these problems to that of finding a solution to the abstract equation

(u,v) +P(v) = 0. (4.4.1)

(see for example (3.1.28)) in an energy space. (We will use lower case letters,
rather than script capitals to denote elements of the energy space.) (There were
some restrictions on the forces to ensure the continuity of the linear functional
&(v) in the energy space.) The following theorem concerns the solution of these
generalized problems.

Theorem 4.4.1 Let ®(v) be a continuous linear functional on a Hilbert space
H. There is a unique element uw € H which satisfies (4.4.1) for every v € H.

Proof. By Riesz’s representation theorem, there is a unique element ug € H
such that the continuous linear functional @(v) can be written in the form
&(v) = (v,ug) = (ug,v), and so equation (4.4.1) becomes
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(u,v) + (ug,v) =0,
Writing this as
(u~+ ug,v) =0,
we see that this is zero for all v € H iff u + ug = 0, i.e. u = —ug. This is the

unique solution of (4.4.1). =

Now let us consider another application of Riesz’s theorem. In Problem 3.3.2
we set up the integro-differential equation

Ooudv  Oudv
L(aaﬁ+?g&»dQ—Aéumm, (4.4.2)

as the generalized statement of the eigenvalue problem (3.3.22). We need to find
u # 0 € Eyp, and corresponding A, so that u satisfies (4.4.2) for every v € Eyy, .

Problem 4.4.1 Show that if u € Ey,, u # 0, and A satisfy (4.4.2) for every
v € By, then X is real.

First we consider the term
F(v) = / uv d2 = (u,v)s,
0

the inner product of u,v in the space L*({2), for fixed u € Fy., as a linear
functional in v, for v € Fy,. The Schwarz inequality (2.12.2) gives

. _ 210 1/2 210 1/2: .
Pl < ([ u K el - ol

while Friedrich’s inequality (3.3.7) gives

[F@)] <m?[lullvcllvlve < mallvllw,. (4.4.3)

This inequality states that F'(v) is a continuous functional in the Hilbert space
E\, . By Riesz’s theorem, F(v) has a unique representation

F(v) = (u,v)2 = (f,0)m = (), (4.4.4)

where, from now on, we implicitly take all inner products and norms in FEy, .
What have we found? For any u € Fy, there is a unique element f € Fy;, such
that (4.4.4) holds. The correspondence v — f defines an operator f = K(u)
acting from Ey, to By, .

Let us study some properties of this operator. First we show that it is linear.
Let

fi=K(uw), fo=K(uy).

Then on the one hand we have
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/Q()\lul + )\QUQ)’U df{) = (K()\lul + )\QUQ), ’U),
and on the other hand

/Q()\lul + Xoug)vd2 =N [ouivdQ2 + Ay [ usv d2

= M (K (u1),v) + Ao (K (uz),v)
= (MK (u1) + XK (ug),v).

Combining these, we have
(K (AMuy + Aaug),v) = (MK (u1) + MoK (ug),v).
But v is an arbitrary element of Ey; , so that
K (Mup + Aaug) = MK (uy) + MK (us),

and K is linear operator.
Now let us rewrite the inequality (4.4.3) using K; it is

|(K (u), )] < m?|lu| - o]
Taking v = K(u), we have
(K (u), K ()] = [|K (u)][* < m?[|ul] - [ K ()],

so that
| K (u)]| < m?||ul], (4.4.5)

and K is a continuous operator.
Now return to equation (4.4.2) which we can write as
(u,v) = MK (u),v). (4.4.6)
But v is an arbitrary element of Ey., so that equation (4.4.6) is equivalent to

u=AK(u), (4.4.7)

with a continuous linear operator K.
The inequality (4.4.5) shows that

IAK (1) = AK (v)|| = [A] - [ K (u = v)[| < [Ajm*[Ju — o],

so that, if |[\jm? < 1, AK satisfies the conditions of Definition 2.7.4 for a
contracting mapping. The contracting mapping theorem (Theorem 2.7.1) states
that AK has a single fixed point, which, since K is linear, is v = 0. This
means that if |[A|m? < 1, the only solution of equation (4.4.7) is u = 0, i.e.
equation (4.4.7), and therefore (4.4.2), has no eigenvalues \ satisfying |A| <
1/m?.
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Problem 4.4.2 Set up a generalized problem similar to (4.4.2), for the free
vibration of a membrane (with fized boundary) with variable, but bounded, mass
density. Show that the problem can still be reduced to the form (4.4.7), where
K is a continuous linear operator in Eyp, .

Problem 4.4.3 Carry out the analysis of the free vibration of a plate, with
clamped boundary, and with variable, but bounded, mass density. Show that the
problem can be reduced to the form (4.4.7), where K is a continuous linear
operator in Ep,_ .

4.5 Bases and complete systems

If a linear space X has finite dimension n, there are n linearly independent
elements g1, g2, - - -, gn, called a basis for X, such that every element z € X has
a unique representation

n
T = g,
k=1

where the ay are scalars. We now generalize this definition to an infinite di-
mensional normed space X.

Definition 4.5.1 Let X be a normed linear space. A system of elements
91,92, -+ C X 1s said to be a basis for X if any element x € X has a unique
representation

=) gk, (4.5.1)
k=1

with scalars oy . Note that the meaning of (4.5.1) is: if x, = Zakgk, then

. k=1
lim [l — 2, = 0.
It is clear that a basis g1, g2, -+ is a linearly independent system since the
equation

(0.@)
> akgr =0
k=1

has the unique solution a; =0 =ay = ---.

Problem 4.5.1 Show that if a normed linear space X has a basis, then it is
separable. (Show that there is a countable set of linear combinations of the form
o

Z Ckgk, with gp € X and rational coefficients ¢y, which is dense in X .)
k=1

Consider the normed linear space C[0, 1] of continuous functions on [0, 1]
under the metric (2.3.1), and remember that convergence in this metric means
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uniform convergence. We ask whether the powers 1,z,22,--- form a basis for

C[0,1]. If they did, then any continuous function f(z) in C]0,1] could be
expanded as a uniformly convergent power series

@)=Y opat
k=0

in [0,1]. But this means that f(x) is analytic, and there are clearly continuous

functions which are not analytic. Therefore the powers do not constitute a basis
for C0,1].

Problem 4.5.2 Construct a function f(x) € C[0,1] which cannot be expressed
as a uniformly convergent power series.

Even though the powers do not form a basis for C|0, 1], Weierstrass’ theorem
states that they do have properties similar to those of a basis: we can find a
polynomial arbitrarily near, in the uniform norm, to any function in CY0,1].
This leads us to the next definition

Definition 4.5.2 Let X be a normed linear space. A countable system g1, g2, - - -,
C X is said to be complete in X if for any x € X and any € > 0 there is a
finite linear combination of the gy such that

=Y apgl| <e (4.5.2)
k=1

We can also refer to a system of elements that is complete in a subset S of
a normed linear space X . This simply means that for any € > 0 and element of
S, we can find a finite linear combination of elements of the system such that
the distance between the element and the sum is less than e.

Let us be clear about the distinction between a basis and complete system.
For the former, the a4 depend only on x; if we are given ¢ > 0 and want to
make ||z —x,|| < €, we simply take n large enough, i.e. take more of the ay. For
the latter, the values of the a4, as well as the value of n, will depend on ¢; if one

set of coefficients ay, ag, - -, a, makes (4.5.2) true for one value of ¢, and we
decrease € to € , we will not only have to take more oy, i.e. Opyi1, Qnio, -, Q,,
but also, maybe, have to change aq, as, -+, a, to 0/1, a’Q, e a’n.

Weierstrass’ theorem states that the powers 1,z,22, --- are complete in
C[0,1], and generally, that the composite powers x7'x5?--- 2\’ are complete

in C(£2), where 2 Cc R".

Problem 4.5.3 Generalize the last result to find a system which is complete in
LP(82) and W™P(£2), when 2 C RV .

The problem of the existence of a basis for a particular normed linear space
can be very difficult, but there is a special case when this problem is fully solved:
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when the space is a separable Hilbert space. Those who are familiar with the
theory of Fourier Series, after Jean Baptiste Fourier (1768-1830), will see that
it will largely be repeated here in abstract terms.

We begin with

Definition 4.5.3 Let H be a Hilbert space. A system of elements {g,} C H is
said to be orthonormal if, for all integers m,n,

- ] 1 if m=n,

There are many advantages in using an orthonormal system of elements as
a basis.

If we have an arbitrary linearly independent system of elements f, fo, -, fu
in a Hilbert space H , they will span a subspace H,,. We may form an orthonor-
mal basis for H, by using the familiar Gram—Schmidt process, named after
Jorgen Pedersen Gram (1850-1916) and Erhard Schmidt (1876-1959):

L. g1 = fi/llfill, so that [[g1]] = 1.

2. ea = fo— (f2.01)01, so that (ez, g1) =0, go = ea/||e2]|

i—1

3. e =fi— Z(fiagj)gj7 Gi :6i/||ei||7 i=3,4,---,n.

J=1

Applying the Gram-Schmidt procedure to subsets of monomials z* in the
spaces L(a,b), we get systems of polynomials that are called orthogonal poly-
nomials. Orthogonal polynomials are widely used in mathematical physics.

Problem 4.5.4 Show that {g;}} constructed in the Gram—Schmidt process will
be orthonormal iff {f;} are linearly independent.

If H is a separable Hilbert space, then, by definition, it has a countable
dense subset {f,}. From this we may, by the Gram-Schmidt process, construct
an orthonormal set which is dense in H ; this will be a complete orthonormal
system in H .

Although there are Hilbert spaces which are not separable, the important
ones, L?(2) and W™?2({2) are separable. The following theorem is based on
the premise ‘If H has a complete orthonormal system’.

Theorem 4.5.1 Let H be a Hilbert space. If H has a complete orthonormal
system {gx} C H, then it is a basis for H; any element f € H has a unique
representation

f = i Argg, (453)
k=1
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called the Fourier series for f. The numbers o = (f,gr) are called the
Fourier coefficients of f.

Proof. First we consider the problem of best approximation of an element
f € H by elements of the subspace H, spanned by gi,¢92, -, 9,. In § 4.2 we
showed that this problem has a unique solution; now we show that it is

f’n = Z Qk Gk, Qp = (f: gk)
k=1
Indeed, take an arbitrary element h € H,, i.e.
= k-
k=1
Then
1f = hall* = (f = by £ = ha) = P = (B £) = (f, Foa) + [l

hnaf (Z Ck Gk, f) = zn:ck@ka
k=1

and ||h,|]* = 2:|ck|2 so that
k=1

n n n
1f = hall® = IF11P = D2 cuie — Y G + D |e]?
k=1 k=1 k=1

n n
= 1FIP =3 el + Y ler — axl?,
k=1 k=1

which shows that [|f — h,|| takes its minimum value when ¢, = ay, i.e. when
h, = f.. Thus

If = full? = min |If = hall* = [IFI* = 3 loxl* > 0, (4.5.4)
k=1
which gives
>l < (I fI (4.5.5)
k=1

n
This inequality states that the sequence of partial sums of the series »_ | |2
k=1
is bounded above; it therefore converges, and we have Bessel’s inequality, after
Friedrich Wilhelm Bessel (1784-1846),

> lewl* < IIFII* (4.5.6)
k=1
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This means that the sequence of partial sums {f,} is a Cauchy sequence, for

2
n—+m n-+m
| form — fall> =1 D argi| = Y. |ew|* =0 as n— oc. (4.5.7)
k=n-+1 k=n+1

We have not yet used the completeness of the system {gx}, so that, in
particular, the results (4.5.6), (4.5.7) hold for any orthonormal system {g;} C
H. The completeness of the system {gx} means that if f € H and € > 0, we
can find a number n and coefficients (c)} such that

n
If = hall <& hn=)_ crgr-
k=1

But then the inequality (4.5.4) for that n shows that

If = full <,

which means that the sequence {f,} converges to f in the norm of H. This is
the meaning of equation (4.5.3).

When the system {g;} is complete, we can sharpen (4.5.6). Indeed equa-
tion (4.5.4) means that

0= Jim 1 = £l =ty (117 = 32 o)

n—00
k=1

so that

o0

> lewl* =111 (4.5.8)

k=1
This is called Parseval’s equality, after Marc Antoine Parseval (1755-1846). =

Now we introduce

Definition 4.5.4 Let H be a Hilbert space. A system {gy} C H is said to be
closed in H if the system of equations

(f,91) =0, k=1,2,-- (4.5.9)
implies f =0.

Theorem 4.5.2 An orthonormal system in a Hilbert space H s closed iff it is
complete.

Proof. Suppose the orthonormal system ¢, g2, - - - is complete in H, and that
f € H with (fa gk) = 07 then

o0

k=1
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so that the system is closed. Now suppose that g, go, - - - is closed. The system
n

{fa}, with f, = > arge, and a, = (f, gx) is a Cauchy sequence in H; because
k=1
H is a complete space, this sequence has a limit f € H

n—oo

00
f = lim fn - Zakgk:
k=1

and
(f = f' 9m) = B (f = fo, gm) = Qm — o = 0. (4.5.10)

n—oo

But {g.} is closed, so that equation (4.5.10) implies f = f', i.e. f is given by
(4.5.3), so that {g} is actually a basis for H. =

Problem 4.5.5 Show that an orthonormal system in a Hilbert space H s closed
iff it is a basis for H.

Problem 4.5.6 Show that if a system is complete in a set S that is dense in
a Hilbert space H, then it is complete in H. (Hint: For any element x € X
there is an element s € S that is closer than €/2 to x. For €, there is a finite
linear sum x. of the system elements whose distance from s is less than €/2.
The distance between x and x. is less than €, which means that the system is
complete in X ).

An important application of this application concerns L?(0,27). By defini-
tion this is complete; it can be obtained as the completion of C[0, 27] in the L?
norm. The functions

1 )
g (t) = Ee’“ k=0,1,2,--- (4.5.11)

are orthogonal in L?(0, 27). Thus Bessel’s inequality states that if f € L?(0, 2)
and

= (fog) == [ Ft)e "t
Qp = f’gk - \/ﬁ 0 f €
then o ,
2 f12= [ 1)t
>l < 1= [ 170

One of the consequences of the convergence of the infinite series on the left is
that

ar — 0 as k — oc.

But . )
= — t)e Rt dt
Qp \/%/0 f( )6

so that if f(t) is real then
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2
ap = —/ f(t)[cos kt — isinkt]dt — 0
0
ie.
2w 2w
/ F(#) cos kt dt — 0, / F(t)sinktdt — 0, as k — oc. (4.5.12)
0 0

The results in (4.5.12) are usually given the name, the Riemann-Lebesgue
lemma; they hold for f(t) € L?*(0,27r). We will now prove

Theorem 4.5.3 The system {g,(t)} given by (4.5.11) is complete in L*(0,27).

Proof. By Problem 4.5.6 it is sufficient to show that there is a dense set in
L*(0,7) in which the system is complete. The set of functions C.(0,27) with
compact support in (0, 27) is dense in L?(0, 27). These functions are continuous
on suppf C [0,27] and so, since suppf is closed and bounded, are uniformly
continuous in [0, 27]. Since these functions satisfy f(0) = 0 = f(27) they may
be continued to the whole real line as functions of period 27. We may there-
fore apply Weierstrass’ trigonometric polynomial approximation theorem (The-
orem 1.3.3) to them. This means that, given € > 0, we may find a trigonometric
polynomial of the form (1.3.6) which we may write in the form

such that

This completes the proof. =
If f(t) € C.(0,7), then we may extend f(t) to C.(0,27) by taking
f@r—t)=—f(t) te(m?2n)

and then, where g (t) is given by (4.5.11),

R ikt g, L7 ikt 1 ikt
(f, 9k) _\/ﬁ/o f(t)e dt_\/ﬁ/o f(t)e dt+\/ﬁ/ﬁ f(t)e "™ dt

1 Q , 1 m .
— ﬁ/ﬂ f(t)eﬂktdt_ E/ﬂ f(t)ezktdt

2 T
:—z’,/—/ F(t)sinktdt k=1,2,-
™ Jo

Similarly, if we take

f@r—1t)=f@{) te(m2m)
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then we find

(for) = \/g/oﬂf(t)cosktdt k=12,

Theorem 4.5.4 A Hilbert space has a countable orthonormal basis iff it is
separable.

Proof. Problem 4.5.1 shows that if it has a basis it is separable. On the other
hand if H is separable it has a countable set which is dense in H; we now apply
the Gram—Schmidt process to this set to produce an orthonormal basis. m

4.6 Weak convergence in a Hilbert space

Suppose fi, f2,-+- is a sequence in IR™, and f; has components fim, m =
1,2,---,N. The sequence {f;} converges iff each of the m sequences {f;,,}
converges. In a Hilbert space with orthonormal basis gy, go, - - -, the Fourier co-
efficients oy, = (f, gr) play the part of components, but now there is a difference
between the two kinds of convergence, as shown by the following example. Let
g1, g2, - - be an orthonormal basis for H, then for every £ =1,2,3,---

(9nr 95) =0 if n >k, ie. lim (go, ) = 0.

Thus the sequence of the kth components of {g,} tends to zero, but {g,} itself
does not converge, since

g — gmll = V2, if n#m.

We need to introduce a new kind of convergence. For a general normed linear
space we have

Definition 4.6.1 The sequence {xy} in a normed linear space X is said to be
a weak Cauchy sequence if, for every continuous linear functional F(x) on
X, the sequence {F(xx)} is a Cauchy sequence, in C. The sequence {xy} is
said to converge weakly to xy € X if, for every continuous linear functional
F(z) on X,

lim F(xg) = F(x).

k—o00

We use x,, = z for strong convergence, i.e. ||z, —z| — 0; z,, — = for weak
convergence.

Problem 4.6.1 Let X be a normed linear space. Show that if {z,} C X is a
(strong) Cauchy sequence, then it is a weak Cauchy sequence. Show also that if
T, = 19 € X, then x, — xy.
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Although it is possible to consider weak convergence in a general normed
linear space, as in Definition 4.6.1, we shall usually consider it only in an inner
product space. In such a space, if f € X, then

F(z) = (z, f) (4.6.1)

is a linear functional on X . Then we can easily show

Problem 4.6.2 Let X be a normed linear space. Show that a sequence {z,} C
X cannot have two distinct weak limits.

If X is a complete inner product space, i.e. a Hilbert space H, then Riesz’s
representation theorem (Theorem 4.3.3) states that every linear functional on
H has the form (4.6.1) for some f € H. This yields

Theorem 4.6.1 Let H be a Hilbert space. A sequence {x,} C H is a weak
Cauchy sequence if, for every f € H, {(zn, f)} is a Cauchy sequence. The
sequence {x,} converges weakly to o € H if, for every f € H,

lim (l‘n, f) = (1‘0, f)

n—oo

Theorem 4.6.2 If {z,} C H, z,, — x9 € H and ||z,|| = ||xo]|, then x, = x,.
Proof. Consider

120 = zoll* = [|2al* = (2a, 70) — (20, ) + ||zol|*.
But z, — ¢ and zg € H, so that

Jim {(zy, 7o) + (z0,20)} = 2|[o]?,
and

. 2 1: 2 217
Jim [l — ao|” = lim {{[za]|” — l[zo]"} = 0. =

As we will see later, it is often easier, when discussing numerical methods, to
establish weak convergence rather than strong convergence. This is why the last
result is important, and why weak convergence will be a major preoccupation
in this presentation.

Problem 4.6.3 Show that in a finite dimensional Hilbert space, x,, — xq € H
implies x,, = xo. This implies that in a finite dimensional space weak conver-

gence and strong convergence are synonymous.

Theorem 4.6.3 A weak Cauchy sequence {x,} in a Hilbert space is bounded.
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Proof. Suppose, on the contrary, that {z,} is a weak Cauchy sequence which
is unbounded. Let B(y, €) denote the closed ball with center y,, radius € > 0.
We show that if ||z,| — oo, then there is a sequence of points vy, € B(yq,€)
such that |(z,,y,)| — co. We take

Yn = Yo + 6xn/(2||xn||)ﬂ

then ||y, — yo|| = €/2, so that vy, € B(yo,¢€), and

since the numerical sequence {(z,,y0)} is bounded, because {z,} is weakly
convergent.

We now obtain a contradiction. Take yo = 0, ¢, = 1. By the above argu-
ment, we can find z,,, and y; € B(yo, €1) such that

|(fl?n1,y1)| > 1.

By the continuity of the inner product, we can find a ball B(y1,€2) C B(yo, €1)
such that this inequality holds for all y € B(y1, €2):

|(xnl7y)| > 1 for all yGB(yheQ)'

Now apply the same argument to B(y,€;) and find z,, with ny > n; and a
ball B(ys,€3) C B(y1,€) such that

|(xn27y)| > 2 for all BS B(y2763)'

Repeating this procedure ad infinitum, we find a nested sequence of closed balls
B(yp, €x41) such that

|(1‘nk,y)| >k for all Y€ B(yka Ek-l-l)‘

Since H is a Hilbert space, there is at least one element y* which belongs to
each B(yy, €x+1), and
| (T y") | > k.

Thus we have a continuous linear functional F(x) = (z,y*) for which {F(z,,)}
is not a Cauchy sequence, i.e. {z,, }, a subset of the weak Cauchy sequence
{x,}, is not itself a weak Cauchy sequence. This is impossible. u

A corollary of the proof of this theorem is the following statement.

Corollary If {x,} is an unbounded sequence in a Hilbert space H, then there
is a y* € H and a subsequence {x,,} such that |(z,,,y*)| — oo as k — oco.

Proof. Let us introduce the sequence z, = x,/||x,||. For any y with unit norm
the numerical sequence {(z,,y)} is bounded and thus we can select a convergent
subsequence. If there exist such a unit element y* and subsequence {z,,} for
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which (z,,,y*) = a # 0, then the statement of the Corollary is valid for the
subsequence {z,,} and y* if a >0 or —y* if a < 0.

If, on the other hand, we cannot find such y* and {z,,}, then we have
(2n,y) — 0 as n — oo for any y, which means that {z,} tends weakly to zero.
In this case we demonstrate the Corollary using the second part of the proof of
the above theorem. In it, the existence of an element y* and subsequence {z,, }
such that (z,,,y*) — 0o as k — oo is a consequence of two facts:

1. {z,} is unbounded, which is the case;
2. the numerical set (z,,y), when y runs over any B(yq,€), is unbounded.

The proof of the latter we give under the additional condition that (z,,y) — 0
as n — 0o, and this will complete the proof of the Corollary.
First, the element vy, = yo + €/(2||z,||)x, belongs to B(yo,€), € > 0. Next,

B € (T, Tn)

= ((zn> yo) + €/2)|[nl-

Since € > 0 is finite and (2,,y0) — 0 as n — oo, we have (z,,y,) — oo as
needed. =

We will use the corollary to prove the Principle of Uniform Bounded-
ness, contained in

Theorem 4.6.4 Let {Fy(x)}, k = 1,2,---, be a family of continuous lin-
ear functionals defined on a Hilbert space H. If sup{|Fy(x)|} < oo, then
k

Sukp{HFkH} < 0.

Proof. Riesz’s representation theorem states that each Fj(x) has the form
Fi(x) = (x, fr), where fi € H, || Fgl| = ||fell-
The condition of the theorem is therefore

Sl;p |(z, fr)] < oc. (4.6.2)

If sup || fx|| = oo, then the Corollary to Theorem 4.6.3 would state that there
k

is an wo € H and a subsequence {f, } such that |(z, fx)| — oo, which would
contradict (4.6.2). m

Problem 4.6.4 Use Theorem 4.6.4 to prove that if {Fy(x)} is a sequence
of continuous linear functionals on H, and if for every x € H the sequence
{Fi(x)} is a Cauchy sequence, then there is a continuous linear functional F(x)
on H such that

F(z) = leIEO Fy(z) forall x € H,
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and
|FIl < Tim [|F] < oc.
k—oc

The following theorem gives a convenient check for weak convergence.

Theorem 4.6.5 A sequence {x,} is a weak Cauchy sequence in a Hilbert space
H iff
1. {x,} is bounded in H, i.e. there is a M such that ||z,| < M;

2. for any fo € H from a system {fo} which is complete in H , the numerical
sequence {(T,, fo)} is a Cauchy sequence.

Proof. The necessity of the conditions follows from the definition of weak con-
vergence and Theorem 4.6.4.

Now we prove the sufficiency. Suppose conditions 1 and 2 hold. Take an
arbitrary continuous linear functional defined, because of the Riesz represen-
tation theorem, by an element f € H, and consider the numerical sequence
dpm = (T, f) — (T, ). The system {f,} is complete; given € > 0, we can find

N

a linear combination f, = Z cr fr such that
k=1

|f = fell < €/(3M).
Then

|dnm| Ty — l'm, )| - |( xmafe+f_f€)|

(

|§\‘;En xm7f€)|+|( xmaf_fe)|

> lerl - (@n = 2, i)l + (all + [zl DILF = fell-
k=1

VAN

IN

Since, by 2, each of the sequences {(x,,fx)}, & = 1,2,---, N, is a Cauchy
sequence, we can find a number R such that

N
Z lck| - [(xn — Zm, fr)| < €/3  when n,m > R,

S0
|dpm| < €/3+2Me/(3M) =€ for n,m > R.

This means the sequence {(x,, f)} is a Cauchy sequence. =

Problem 4.6.5 Show that a sequence {x,} is weakly convergent to xo in H iff

1. {xz,} is bounded in H;



4.6 Weak convergence in a Hilbert space 125

2. for any fo from a system {fo} C H, which is complete in H,

nlggo(xnafa) = (l'o,fa).

Since weak convergence differs from strong convergence we need to define
the terms weakly closed and weakly complete

Definition 4.6.2 Let X be a normed linear space. A set S C X is said to be
weakly closed in X if all its weak limit points are in S. Thus if {z,} C S,
then x, — xo € X implies xog € S.

Definition 4.6.3 Let X be a normed linear space. X 1is said to be weakly
complete if every weak Cauchy sequence (Definition 4.6.1) converges weakly
to an element x € X .

We first prove the important

Theorem 4.6.6 A Hilbert space (a complete inner product space) is weakly
complete.

Proof. Suppose {z,} is a weak Cauchy sequence. For any y € H we may
define the linear functional F(y) = nlggo(y, z,). Theorem 4.6.5 states that ||z,|]

is bounded, i.e. ||z, || < M for all n so that
[F)l < Mllyll, ie [[F|| <M.
Thus F' is continuous and, by Riesz’s representation theorem,
F(y) = (y,x), x € H,
where ||z|| = ||F|| < M. This means that x is a weak limit of {z,}. =

Corollary A (strongly) closed ball about zero in a Hilbert space H is weakly
closed.

Let S be the (strongly) closed ball ||z|| < M. Suppose {z,} C S and
T, — x, as in the theorem. Then ||z,|| < M and ||z|| < M, ie. z € S and S
is weakly closed.

We now prove

Theorem 4.6.7 Let X be an inner product space. A weakly closed set S C X
is closed. A closed set need not be weakly closed.

Proof. Let {x,} be a (strongly) convergent sequence in S converging to x € X .
We need to prove that x € S. The sequence {z,} converges weakly to x
because, if F(x) is any continuous linear functional on X, then
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|F(wn) = F(a)] = |[F(zn — 2)] < [|F[ - [l2n — 2] = 0.

But S is weakly closed, so that = € S; S is closed.

For a counterexample we take X to be L?(0,1), the set S to be |[z|| =1,
This is (strongly) closed, for z,, = = and ||z,|| = 1 implies ||z|| = 1. However,
the Riemann—Lebesgue Lemma (equation (4.5.12)) shows that if f(¢) € L?(0,1)
then

1
/f(t)sinmrtdt—>(] as n — oo.
0

If therefore we take
Zn(t) = V2sinnat

then z, € S since

||zn|]? = 2/01 sin? natdt = 1.
But z,, converges weakly to 0, (i.e. z, — 0) because if f € L?(0,1) we have
(xn, f) = \/5/01 sinnrtf(t) dt — 0;
since 0 is not in S, S is not weakly closed. =
Even though a strongly closed set in an inner product space need not be
weakly closed, we can use the orthogonal decomposition in Theorem 4.3.2 to

obtain:

Problem 4.6.6 Show that a (strongly) closed subspace M of a Hilbert space
H is weakly closed.

There is also the more difficult

Problem 4.6.7 Show that a (strongly) closed convex subset S of a Hilbert
space H is weakly closed.

The corollary to Theorem 4.6.6 is an example of this; a closed ball is a closed

convex set.

4.7 Introduction to the concept of a compact set

We introduced the concepts of weakly closed and weakly complete in § 4.6. Now
we introduce

Definition 4.7.1 Let X be an inner product space. The set S C X 1is said
to be weakly compact if every sequence in S contains a subsequence which
converges weakly to an element x € S'.
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We now prove

Theorem 4.7.1 Let H be a Hilbert space. A set S C H is weakly compact iff
it 18 bounded and weakly closed.

Proof. We will show that if it is bounded and weakly closed, then it is weakly
compact, i.e. that any sequence {x,} C S contains a weakly convergent sub-
sequence. Since S is weakly closed we know that the weak limit of such a
subsequence will be in S'.

Let {x,} be a sequence in S, and M be the closed linear subspace spanned
by x1,29,--+. Since M is a closed linear subspace of H we may (by Theo-
rem 4.3.2) decompose H into M and N which are mutually orthogonal. If
x € H, then we can write x = m +n where m € M and n € N. If v € N,
then (zg,2) = (xp,n) = 0; if x € M, then (xy,2) = (zg,m). Thus it is
sufficient to consider (zy,x) for € M. The subspace M, being a closed
subspace of a Hilbert space, is a Hilbert space (Problem 2.12.4). It is clearly
separable, and so has an orthonormal basis {g;}. By Theorem 4.6.5 it is suf-
ficient to show that there is a subsequence {x,} of {zx} such that, for each
i, the numerical sequence {(z,g¢;)} is convergent. We proceed as follows. The
sequence {(zg,91)} in C is bounded and therefore contains a convergent se-
quence {(xy,,91)}. The sequence {(xy,,92)} is bounded and therefore contains
a convergent sequence. Continuing in this way we obtain, at the ith step, a
convergent sequence {(zy,,9;)} C C. The subsequence {z,} = {z},} is such
that, for each fixed g;, the sequence {(x},g;)} is convergent. Therefore {x,} is
a weakly convergent sequence converging to some x € S. =

We leave the (easier) converse to

Problem 4.7.1 Show that a weakly compact set in a Hilbert space is bounded
and weakly closed.

Look back at Theorems 4.2.2 and 4.3.1. They show that if H is a Hilbert
space and M C H is a closed convex set, then if © € H there is (existence) a
unique y € M which minimizes F(y) = ||z — y|| on M. Problem 4.6.7 states
that a (strongly) closed convex set is weakly closed, so that we can replace
‘closed convex set’” in Theorem 4.3.1 by ‘weakly closed convex set.” However, we
can use the weak compactness of a weakly closed and bounded set in a Hilbert
space to provide a separate proof. Thus we have

Problem 4.7.2 Let H be a Hilbert space, let x € H, and let M be a bounded
and weakly closed set in H, then there is a y € M such that

ly —zll = inf [lw— 2.

If, in addition M is convex, then y is unique.
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We will use the concept of weak compactness in our discussion of the Ritz
procedure in the following section.

4.8 Ritz approximation in a Hilbert space

We return to the problem of Theorem 4.2.2, but now suppose X is a Hilbert
space H.

Thus let H be a Hilbert space, M be a closed subspace of H, and zy & M,
o € H. Find the unique minimizer of

F(x) = |z — o

for x € M.
We consider the problem in four steps due to Walter Ritz (1878-1909).

Step 1. Set up the approximation problem and study its solutions

We solve the problem approximately using the so-called Ritz method.

Assume that M has a complete system {g;}. This will certainly be the case
if H is separable. Suppose that any finite subsystem g1, go, - - -, g5, is linearly in-
dependent. Let M,, be the subspace spanned by (g1, g2, -, gn). Theorem 4.2.1
states that there is an x € M, which minimizes F(x) on M,; call one such
minimizer z,,. For convenience we now suppose that H is a real Hilbert space.
We can argue as in § 4.3. Thus the real function

f(t) = {F (20 + tgm)}* = |20 — 20 + tgm|*,

of the real variable ¢ takes a minimum value at ¢t = 0, and since f(¢) is differ-
entiable,

) d
f(0)= a(xn — 2o + tGm, Tn — To + tGm) = 2(z, — 2o, gm) = 0. (4.8.1)
t=0
Thus x,, — ¢ is orthogonal to each ¢,,, m=1,2,---,n.
Writing

n
Tpn = Z CknJk,
k=1
we obtain a set of simultaneous linear equation for the c¢g,, namely
n
chn(gkagm) = (x(]:gm)a m:1:27"'7n'
k=1

Since g1, g2, -, g, are linearly independent the solution to this equation is
unique. For if it were two solutions
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n n
! !

their difference

n

n
Ty =Tp — Ty = Z(Ckn - Clkn)gk = Z Ak Gk
k=1 k=1

would satisfy

"

(,,9m) =0 m=1,2--- n.

n
Thus ||z, |* = (z,, > @mgm) = 0 so that z, = 0. But since the {g;}} are
m=1
linearly independent, this means oy = 0, £k = 1,2,---,n and thus ¢, = cl,m.
Hence the solution is unique.

Step 2. An a priori estimate of the approximation

An a priori estimate is one which can be obtained without actually knowing
the approximation, or even whether it exists.
We begin with the definition of z,:

[ = w0l <l = wol [,z € M,
As x =0 € M, , we have
[0 — ol < [|ol],

from which we obtain
nll < (|20 — @ol| + [lzol| < 2|0l (4.8.2)

which is the required estimate.

Step 3. Weak passage to the limait

By (4.8.2), the sequence {z,} is bounded. By Theorem 4.7.1, {z,} contains
a weakly convergent subsequence {z,,} whose weak limit z* € M, since M,
being a closed subspace, is weakly closed (Problem 4.6.6).
For any fixed m we can pass to the limit n; — oo in the equation (4.8.1),

namely

(xnk - angm) =0,
and obtain

(2" = 20, gm) = 0.

This passage is possible because (z, g,,) is a continuous (linear) functional.
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Now consider (z* — g, h) where h is an arbitrary but fixed element of M.

The system {g,,} is complete in M, therefore, given € > 0, we can find a finite
N

linear combination h, = Z CmGm such that

m=1

€
h—h < 77— 4.8.
Ih=hl < g (4.83)

(2% = o, )| < [(@" — @0, b — he)| + [(&" = w0, he)| = (2" — 2o, h — )]
| = ol - [[h = hel| < ([[&*[| + [zl = hell

<|
<|
< (2l|zoll + o)/ (3l|zoll)e = €,

where, in the last step, we used the inequalities (4.8.2) and (4.8.3). Therefore,
for any h € M we have
(" =z, h) = 0. (4.8.4)

Finally, by considering values of F(x) for x = 2*+h and h € M, we obtain

[F(z*+ )] = [l + h— x| = [|a% — xol|* + 2(2™ — o, h) + [|]|?
= llz* = @oll* + [l > [l2* — o],

This implies that z* is the solution to the problem.

Step 4. Study the convergence of the sequence of approximations

We have shown that there is a subsequence {z,,} which converges weakly to
x*. We will show that the whole sequence converges weakly to z*, and then
that it converges strongly to z*.

Suppose, if possible that {x,} does not converge weakly to z*. This means
that there is an f € H such that (x,, f) does not converge to (z*, f). Remove
from {z,} any subsequence {z} such that (z, f) converges to (z*, f). Re-
name the remaining sequence {z,}. Since the set {(z,, f)} is bounded, it has,
by the Bolzano—Weierstrass theorem, a convergent subsequence {(zy,, f)}, and
the limit of this sequence will not be (z*, f). Thus

lim (@10, ) = 0 # (2", ). (1.85)
But for the sequence {z,} we can repeat Step 3, and find a subsequence {z3,,}

which is weakly convergent to a solution of the problem. Theorem 4.3.1 states
that this minimizer is unique, z*. Thus

Ji_{glo(xsz) = (z*, f) forall fe€H.

This contradicts (4.8.5). Thus {z,} converges weakly to z*, i.e. z, — x*.



4.8 Ritz approximation in a Hilbert space 131

Now we prove that {x,} converges strongly to z*, i.e. x, = z*. Equa-
tion (4.8.1) states that

(xn_x07gm):0a m:172a"'an'

Thus .
(Tn — To, Tn) = (Tn — To, Y Congm) = 0,
m=1
so that
(Tn, Tn) = (X0, Tp)-
But x, — z* so that nli_>1{.10(330,33n) = (xg,2"). But 2* € M so that equa-
tion (4.8.4) states that (xg,z*) = (z*,2*). Therefore,

li o = Jimm (o, 00) = lisn (s,) = "]

Now we may use Theorem 4.6.2 to state that =, = x*.
To conclude this section we note that we can apply the argument above to
the problem of minimizing

J(x) = ||z + 20()

in a Hilbert space H, where &(z) is a continuous linear functional. For by
Riesz’s representation theorem, we can write

D(z) = (z,—x), T9 € H,

so that
J(x) = [|z]|” + 2(z, —x0) = || — xo||* — [|0]I*.

Since zy is fixed, the problem of minimizing J(z) is equivalent to that of min-
imizing
F(x) = [l — ol
for x € H. This problem has the unique, obvious, solution = = z;.
To apply the Ritz method we suppose, as before, that {g,,} is a complete

system in H such that any finite set gy, g2, -, g, is linearly independent. We
take the nth Ritz approximation as

Tn =Y Cknl, (4.8.6)
k=1
and find the equations
n
(xnagm) - Z Ckn(gmgm) = (x07gm) - _Q(gm)a (487)
k=1
for m =1,2,---,n. Note that we express (zo, g,,) in terms of the given func-

tional @. The result of the earlier analysis gives us
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Theorem 4.8.1 For each n, equations (4.8.7) have the unique solution cip, Cop,
“ v, Cpp . When ®(x) is a continuous linear functional, the sequence {x,} of Ritz
approzimations defined by (4.8.6) converges strongly to the unique minimizer of
the quadratic functional J(z).

The problems considered in Chapter 3 and set in the various energy spaces
— which were all separable Hilbert spaces — fall into this category, and the
analysis given here provides justification for the application of the Ritz method
to these problems.

4.9 Generalized solutions of evolution problems

Consider the heat transfer equation

ou
—=A F. 491
T u + (4.9.1)

Here u = wu(x,t) is the temperature, ¢ the time, and x the position z =
(x1,72,73) in a domain 2 C IR* with boundary 02, containing heat sources
F = F(x,t). To pose the problem, we need boundary conditions, say

u =0, on 02, (4.9.2)
and an initial condition
u(z,0) = ug(x). (4.9.3)

To obtain a generalized statement of the problem we first suppose that
as a function of =, u € C?(2) and as a function of ¢, u € C'0,T], i.e. it

has continuous second derivatives in space and a continuous derivative in time;
and that F € C(2) and F € C[0,T]. Now suppose that v € C'(£2) and
v € C(0,T), and v satisfies (4.9.2). Multiply (4.9.1) by v and use the identity

vAu =div(vVu) — Vu- Vo

and Gauss’ divergence theorem, to obtain

ou

/vAudQ: v—dS—/ Vou-Vodo.
17} on 1)

002
The integral over the boundary is zero, so that
ou
/ el d9+/ Vu- Vud? :/ Fv dQ. (4.9.4)
2 Ot Q Q

Now integrate in time over (0,7) to obtain

ou
S dQ+/QVu-Vv dQ_/QFv dQ, (4.9.5)
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T
where we use the abbreviation / fdQ = / / fds2dt.
Q 0o Jao

This is the basis for the generalized solution; we derived it from (4.9.1) by
assuming that u, v, F' satisfied the restrictive conditions we stated, but we now
consider it in its own right. In what space(s) should we treat it? The functions
u,v are defined for x € 2 and t € (0,7, i.e. the domain @ = {2 x (0,7, and
they satisfy (4.9.2). We recall the definition of W2(Q); it is the completion of
C'Y(Q) in the || - ||, norm, i.e.

2 2

ou 3 || du
2 2
= = 4.9.
ol =l + | 5+ 3|5 (4.9
where .
1A= [ 172 aQ = [ [ |7P aoat (49.7)
Q 0 Jn

Straightforward application of the Schwarz inequality shows that equation
(4.9.5) may be interpreted for u,v € W"?(Q) and F € L*(Q). We therefore
introduce

Definition 4.9.1 Let W be the subspace of W*(Q) satisfying (4.9.2), uo(z) €
Wh2(0), the subspace of W2(Q2) satisfying (4.9.2); and F(x,t) € L*(Q). The
element u = u(x,t) is called the generalized solution of the heat transfer prob-
lem (4.9.1) with the Dirichlet boundary condition (4.9.2) if it satisfies (4.9.5)
for every v € W, and

lim /Q lu(z, 1) — ug(x, )] d2 = 0. (4.9.8)

t—0+

First we show that the generalized solution is unique. For this, we establish
an a priori estimate for a solution. Let u be a generalized solution of (4.9.5).
Put v = u in (4.9.5) to obtain

Q%u dQ+/Q|Vu|2 dQ = /QF“ dQ. (4.9.9)

Consider the terms in this equation separately. Using first Schwarz’s and then
Friedrich’s inequalities, we find

\/QFu 1qQ| < (f 1er dQ)l/z (/QluPdQ)l/Q
< ([ 1Fra)” ([ 1wur aq) "

1
Now use the elementary inequality |ab| < 2a* + 562 to obtain

|
‘/ Fu dQ‘ <om? [ |FPdQ+ [ |Vl dQ. (4.9.10)
Q Q 2 Jq
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Now consider the first term in (4.9.9). If u € C*(Q), then v € C'(£2) and
u € C'(0,T) and, for every t;,t, € (0,T) we have

(e ts) — u(z, 1)} = ( : g—?dt)

Thus

ou\’
[ futet) — e eae <t ol [ (5 dr=lea = ol ol

Now use the triangle inequality |||u|| — ||v||| < ||u — v]| to give

‘( /Q W2 (x, 1) drz)m— ( /Q (2, 1) d!))m

/2

</ {u(z, ty) —u(z,t1)} dQ)

< [ty =t Jlull1 2.
This inequality holds for v € C*(Q), but it therefore holds for v € WH(Q),

and it shows that
/ u?(z,t) dS2
17}

is a uniformly continuous function of ¢ on (0,7) and may therefore (by Theo-
rem 1.2.3) be extended continuously to [0,77], so that

lim [ u?(x,t) d2 = / ud(z) de2,
7

t—0+ J 0

lim [ w?(z,t) d2 = / Wz, 1) dQ
(0]

t—T—-J0n

t=T
Now return to equation (4.9.9); we have

/ /—ud()dt /quQ
2 n

so that putting (4.9.10), (4.9.11) together in (4.9.9) we find
1
5 | utas
2Ja

1
< 2m2/Q IF2dQ + 5/Q|Vu|2 dQ

1
- §/ng 40 (4.9.11)

t=T

1
——/ugd9+/ Vul? dQ
2./0 Q

t=T
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which we may rewrite as

1
—/u2d9
2J0

This is the needed a priori estimate. It shows that the generalized solution
is unique. For if there were two generalized solutions u; and wus, then their
difference, v = u; — uy would satisfy equations (4.9.9), (4.9.3) with F' = 0
and ug = 0 respectively. This would mean that, for this u, the left hand side of
(4.9.12) would be zero, so that u would be zero a.e. in (). (See Definition 2.11.3)

Note that because / u?(z,t) df? is a uniformly continuous function of ¢ on
7

1 1
+—/ IV ul?dQ < 2m2/ |2 dQ+—/ w240, (49.12)
=7 2JqQ Q 2 /)0

(0,7), so is / u(z,t) df2, by the Schwarz inequality, so that equation (4.9.8)
willhold.

Having shown that there cannot be more than one generalized solution, we
show that there is one, which will thus be the generalized solution. (Of course we
can always add a function which is zero a.e., to the solution.) We could use the
Galerkin procedure on the domain (), but instead we will separate the variables,
using a complete system of functions in space to reduce the partial differential
equation (4.9.1) to a system of ordinary differential equations in time.

Consider the Sobolev space W12(£2), the subspace of W1?(£2) satisfying
(4.9.2). As a corollary to Theorem 4.1.4 we showed that W"2(£2) is separable,
and therefore, by Problem 4.1.2, W!2(£2) is separable. W?(£2) is a Hilbert
space, and therefore, by Theorem 4.5.3 it has a countable orthonormal basis
{fx(z)}. Apply the Gram—Schmidt procedure to this sequence to construct a
system {gx(z)} orthonormal in L?(£2), i.e.

G df2 = ;.
/Qgg] J

Problem 4.9.1 Show that the set of all finite combinations

n

un(z,t) = cp(t)gi(z), (4.9.13)

k=1

with cx(t) € C'0,t] is dense in W .

We now define the nth Faedo—Galerkin approrimation , after S. Faedo
and Boris Grigor’evich Galerkin (1871-1945). To do that we return to equa-
tion (4.9.4), take u = u,, given by (4.9.13) and v = gx(z) to obtain the equation

de (t)

7j=1

where

Fi(t) :/ Fgy, d.
2

We define the nth Faedo-Galerkin approximation as the solution of (4.9.14)
which minimizes
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[ 19 un(2,0) = Vuo(a)]? a2

over ¢1(0),c2(0), -+, ¢,(0), for Fi(t) € L*(0,T).

If Fi(t) € C[0,T], then the general theory of first order differential equa-
tion with constant coefficients shows that, for given ¢;(0), ¢2(0), - - -, ¢,(0), equa-
tion (4.9.14) for £ = 1,2,---,n, has a unique solution ¢(t), k = 1,2,---,n,
which is continuous in [0,7]. The equation (4.9.14) then shows that ¢(t) €
C'0,T]. We now show that we can establish properties of ¢ (), and more
importantly of u,(z,t), when Fi(t) € L?(0,T).

Suppose that Fi(t) € C[0,T]. Multiply equation (4.9.14) by ¢, (t) and sum
over k to obtain

1d
2dt< > /Zc]Vg] chngdQ /Fchgde
which may be written

1d

-4 29/ n2(2:/FnQ.
thgund +Q(Vu)d Qucl

Integrating over [0, t] we obtain

1 1 t ¢
—/ tp (7, 1) dQ——/ up(,0) d(2+/ /(Vun)2 det:/ / Fuy, dQdt.
2Ja 2/ 0 Jo 0 Jo

This means that

1 t 1 t
—/ 2 (1) d9+/ /(Vun)2 d0dt = —/ W2 (z,0) d9+/ / Fuy, dQdt.
2J0 0 Jn 2J0 0 Jn
(4.9.15)
The right hand side is bounded, independently of ¢ € [0, 7], because

t 1/2 t
d()dt‘ < ( | [F d()dt) ( [ d()dt)
0 Jn 0 JN
T 1/2 1/2
<72 < / / F? d()dt) max ( / w2 d())
0o Jn [0,T] n

1
<Im x</ugd(z)+4T/F2dQ.
4[ 7] \J Q

1/2

But F € L?(Q) so that the second term is bounded. Thus by using this in-
equality in conjunction with (4.9.15) we see that each of / u?(r,t) dQ and
Q

/ (Vu,)? dQ is bounded. We wish to show that {u,(z,t)} is bounded in the
Q

2
W d@ is bounded

also. To show this, we multiply (4.9.14) by dcy/dt and sum over k. Thus

norm (4.9.6). To do this we must show that /
Q
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d " d d
<Ck> /Vun' ﬂvgk dN = ZﬂFk,

which we can write as

[(5e) a0y onian= [ e oo

Integrating this in time we find

t Oup\” 1 1
n 0 L 2 g0 L 2 40
/o/g<at) d dt+2/g|VUn($,t)| d 2/Q|Vun(x,0)| d

- /0 t /Q Fa(;;" d9dt.

(4.9.16)

Applying the Schwarz inequality, we find

. 1/2 o 1/2
g(/o /QF2det) (//( ") d()dt)
§2/0t/QF2 det—k%/ot/Q (‘Z")z 40t

Substituting this into (4.9.16), we obtain

2// (a“”) d()dt+%/ﬂ|Vun(x,t)|2 d0

1 t
< —/ |Vun(x,0)|2d(2+2/ / F? dQdt,
2 Jo 0 J0

Ay, )
which implies that/ (aut) d@) is bounded.
Q

We have now shown that the sequence {u,(z,t)} is bounded in W; W is a
closed linear subspace of the complete space W12(Q). Problem 4.6.6 and Theo-
rem 4.7.1 show that {u,(z,t)} is weakly compact, i.e. it contains a subsequence
{ty, (z,t)} which converges weakly to U(z,t) € W.

Return once more to equation (4.9.14), and suppose

= i dy,(t) gr (). (4.9.17)

Multiplying (4.9.14) by d(t), and summing over k, and integrating over time,
we find p
Unp

Hn, dQ+/ YV, Vo, dQ = /Fvn dQ.
Q Ot
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Since, as we have shown, all the integrals are continuous functions with respect
to u, in W, we can pass to the limit in the subsequence {u,,} and find

a *
AL dQ+/ V' Vo, dQ — / Fu, dQ
Q Ot Q Q
for any v, given by (4.9.17). But, by Problem 4.9.1, such v,, are dense in W.

Hence 9
U de+/ Vu*-Vde:/deQ
Q Ot Q Q

for all v € W. But this is equation (4.9.5), so that u* satisfies the first of
the two conditions for the generalized solution, stated in Definition 4.9.1, and
therefore, as we showed earlier, satisfies (4.9.8).

Now we may repeat step 4 of § 4.8 to show that the whole sequence {u,}
converges weakly to u* in W.

Actually, the convergence of the approximation is stronger than we have
established. We formulate a set of problems.

Problem 4.9.2 Show that the nth approximation to the solution of (4.9.5)
satisfies

/Q%un dQ+/@|VUn|2 dQ:/QF“n dQ

and that it s possible to pass to the limit n — oo to obtain

ou*
t

nli_)rgo/Q|Vun|2 dQ:/QFu* dQ—/Q S dQ:/Q|Vu*|2 do.

Problem 4.9.3 Introduce a new Hilbert space Wy which is the completion of
the subspace of C'(Q) satisfying (4.9.2) in the norm corresponding to the inner
product

(u,v) = /Q Vu-VudQ.

Show that this is a proper inner product, and that a sequence which converges
weakly to an element of W converges weakly to the same element in W .

Problem 4.9.4 Use Problems 4.9.2, 4.9.3 to show that
/ |V, — Vu*?dQ =0 as n— co.
Q
This means that u, = u* (i.e. strongly) in the norm of Wy, and illustrates

how the spaces in which a set of approrimations to a given problem converges
weakly, or strongly, must be chosen to fit the problem under consideration.
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Synopsis of Chapter 4: Approximation

Separable : has countable dense subset. Definition 4.1.3.

: C(02); LP(2), W™P(£2) if 2 bounded.
Linear functional: linear operator with values in IR or C. Definition 4.2.3.

Riesz’s representation: continuous linear functional on H can be written
F(z) = (x, f). Theorem 4.3.3.

Orthogonal decomposition of H: x = m + n. Definition 4.3.2.

Basis: = = Z a9 - Definition 4.5.1.
k=1

< €. Definition 4.5.2.

T =Y apgn

k=1
Closed : {gx} is closed if (f,gx) =0 = f = 0. Definition 4.5.4.
: {gx} is closed in H iff it is a basis. Problem 4.5.5.
: H has basis iff separable. Theorem 4.5.3.

Complete: {g;} is complete if

Weak Cauchy sequence in H : (z, — 2, f) — 0 as m,n — oo. Theo-
rem 4.6.1.

: Strong Cauchy implies weak Cauchy. Problem 4.6.1.
: with ||z,| — ||zo|| implies z,, = x¢. Theorem 4.6.2.
: Bounded. Theorem 4.6.3.
: Strongly complete implies weakly complete. Theorem 4.6.6.
: Weakly closed implies strongly closed. Theorem 4.6.7.
: A strongly closed subspace of H is weakly closed.
Weak Compactness : every sequence in S contains a subsequence converg-
ing weakly to x € S. Definition 4.7.1

:in H, S is weakly compact iff S is bounded and weakly closed. Theo-
rem 4.7.1





