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1 Introduction

All engineering students have certainly made use of the Taylor expansions for
sinusoids, exponentials, etc. They probably also remember something about the
corresponding remainder terms, and the rest of the associated (and difficult)
material presented by their former calculus professors. Many students know
about function analyticity and, moreover, are aware that not all functions are
analytic. However few students have thought about the difference between the
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Taylor expansion of sinx, say, and the Taylor expansion of some function near
a point at which the function is not holomorphic (i.e., the Taylor series does not
converge in any neighborhood of the point). There are functions for which one
can compose the Taylor series at some point x0, but for which this series fails
to converge at any point near x0. It may even be that only finitely many of
the Taylor coefficients of a function exist, making it impossible to compose the
whole Taylor series. However, the reader understands that our main practical
goal in deriving the Taylor series of a function is the ability to calculate its
values or, what amounts to the same thing, a knowledge of its behavior in some
neighborhood of a point using simple formulas. For this the Taylor expansion
having the form

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n + o (|x− x0|n) (1)

is quite appropriate, even if we know nothing about the n + 1-th derivative.
Indeed we know that f(x) is approximated by the expression

f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n (2)

in a neighborhood of x0 within accuracy o (|x− x0|n).1 Thus if |x − x0| is
sufficiently small we know that the error produced in using formula (2) instead
of f(x) is of the order of |x−x0|n. Of course, it would be better to have a more
exact estimation of the error, and for that in calculus there were derived various
forms of the remainder term that allow us to evaluate a bound for the error.
Thus expansion (1) provides us with a way to calculate an approximation to
a function in some neighborhood using comparatively simple formulas. In this
way Napier composed the first table of logarithms. Many tables of values for
special functions could be calculated at a time when pencil and paper were the
only available tools.

Taylor expansions of functions are the first and foremost examples of asymp-
totic expansions (or “asymptotics,” for short). The main feature of asymptotic
expansions is that they approximate the behavior of functions or other expres-
sions using comparatively simple expressions and propose some bounds for the
approximation errors. Sometimes an asymptotic, a simple analytic expression,
is all we can obtain to characterize the behavior of a solution to a physical
problem at a singular point. In mechanics this could be a boundary point at

1We recall that the notation f(x) = o(g(x)) when x = x0 means

lim
x→x0

f(x)

g(x)
= 0.

We will use the notation f(x) = O(g(x)) when x = x0 if there is a neighborhood of x0 and a
constant C such that in this neighborhood the relation∣∣∣∣f(x)

g(x)

∣∣∣∣ ≤ C

holds.
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which the type of clamping of a body changes, or a point of jump discontinuity
in the external forces acting on a body, or a corner point of a body at which the
behavior of the solution differs from its behavior at all other points of the body.
Quite frequently a knowledge of this singular asymptotic approximation permits
us to compose a simple and fast algorithm to find a numerical solution of the
problem, whereas direct algorithms that do not take into account the nature of
the solution at a singular point can give incorrect results. Asymptotic expan-
sions are widely used in physics and other mathematical sciences for finding the
dependence on a parameter of integrals, solutions of boundary value problems
for ordinary and partial differential equations, eigenfrequencies of various sys-
tems, etc. Asymptotics from various fields of application all share a common
basic nature, but the methods needed for their construction can differ widely.
Some of these methods require only a knowledge of calculus, but more complex
problems require more complex tools to construct the asymptotics. Having in
mind the structure of the Taylor expansion, let us extend the idea of asymptotic
expansions.

2 The main definitions

Let us note first that a simple change of the variable x − x0 to x allows us to
consider asymptotics at x = 0. Next, we note that the powers xn are not the
only functions with respect to which we can compose asymptotic expansions.
For example, consider y =

√
x cos x at x = 0. There is no Taylor expansion of

this function (except the trivial one y =
√

x cos x = o(|x|)) at x = 0. However,
it is clear that the expansion

√
x cos x =

√
x +

∞∑
n=1

(−1)n x2n
√

x

(2n)!
(3)

plays the same role as the Taylor expansion. The reader could raise the objection
that this is composed of the Taylor expansion; however, he should envision a
situation in which we lack any knowledge of the explicit form of the function
but have obtained the right-hand side of (3) as a solution to some boundary
value problem which we could not solve exactly. Thus we have an expansion in
xn
√

x that makes sense only for nonnegative x and for small x; the inclusion
of a few terms of the sum presents us with an accurate approximation to the
solution. Let us summarize what we expect to have when introducing a general
form of asymptotic expansion:

1. The generalization can use not only powers xn as base functions.

2. An asymptotic expansion is composed as a sum of sufficiently simple ex-
pressions.

3. The addition of a term to the asymptotic expression brings a higher ac-
curacy of approximation.
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4. The Fourier transform and some other integral transformations introduce
complex parameters into consideration. The theory should cover the case
of a complex variable.

Having this in mind, let us introduce the main elements of asymptotics.

Asymptotic expansion

Suppose f = f(z) depends on a complex variable z. We suppose that z0 is a limit
point of the domain D where f = f(z) is determined and where an asymptotic
expansion will be constructed. Suppose we have a sequence of functions {ϕn(z)},
n = 1, 2, 3, . . ., each of which is determined on the intersection of D and some
neighborhood of z0. This sequence is called asymptotic if for each n we have

ϕn+1(z) = o(ϕn(z)) when z → z0. (4)

Note that here we require z to tend to z0 being in D.

Definition 2.1. Let {ϕn(z)}, n = 1, 2, 3, . . ., be an asymptotic sequence. A
formal series

∑∞
n=1 anϕn(z) is called an asymptotic expansion (or an asymptotic)

of f = f(z) at z0 if for each k ≥ 1 we have∣∣∣∣∣f(z)−
k∑

n=1

anϕn(z)

∣∣∣∣∣ = o(ϕk(z)) when z → z0, z ∈ D. (5)

We will denote the fact that
∑∞

n=1 anϕn(z) is an asymptotic expansion of f(z)
as

f(z) ∼
∞∑

k=1

akϕk(z)

The special notation “∼” is used to remind us that an asymptotic expansion is
a formal series: convergence of the series is neither implied nor precluded here.

Example 2.1. For a power expansion at zero we would write

f(z) ∼ a0 +
∞∑

k=1

akzk.

Remark 2.1. We shall reserve the same term “asymptotic” for a finite sum∑N
n=1 anϕn(z) if (5) is fulfilled for each k ≤ N .

Remark 2.2. We leave it to the reader to demonstrate that (5) in Definition 2.1
can be written in the equivalent form∣∣∣∣∣f(z)−

N∑
n=1

anϕn(z)

∣∣∣∣∣ = O(ϕN+1(z)) when z → z0, z ∈ D. (6)

So the truncation error must be of the order of the first term omitted. We shall
use (5) or (6) interchangeably.2

2However, they are not quite equivalent in the case of finite expansion to N terms only.

4



The expression a1ϕ1(z) is called the main term of the asymptotic. There
are times in which we can find only this term, but are nonetheless pleased that
we can do so.

It is evident that 1, x, x2, . . . , xn, . . . is an asymptotic sequence at x = 0
for a function of a real variable. Similarly, in the complex plane the sequence
1, z, z2, . . . , zn, . . . is asymptotic at z = 0.

Exercise 2.1. Which of the following are asymptotic sequences at the indicated
points:

(a) 1, x, x2, . . . , xn, . . . at x = 1;

(b) 1, x2, x4, . . . , x2n, . . . at x = 0;

(c) 1, sinx, sin 2x, sin 3x, . . . , sinnx, . . . at x = 0.

We have said that the Taylor expansion is a particular case of an asymptotic
expansion. The reader should verify that the Taylor expansion fits the definition
of the asymptotic expansion.

The Laurent series at a pole of a complex function is another example of an
asymptotic expansion.

Similarly to the case of asymptotics for finite z0 we can consider asymptotics
of functions at infinity. Even on the real axis the behavior of a function can be
different depending on whether x → +∞ or x → −∞. Hence we should expect
to find that the neighborhood of infinity, i.e., the set |z| > N , is normally
partitioned into some parts where the asymptotic behavior of a function is
different. A function analytic at infinity has an expansion

f(z) = b0 +
∞∑

n=1

bn

zn
.

This presents an example of an asymptotic expansion of a function at infinity,
and 1, z−1, z−2, z−3, . . . is an example of an asymptotic sequence at an infinite
point. Later we shall see asymptotic sequences that do not belong to the class
of power sequences.

Simple properties of asymptotic expansion

It is easy to see that the coefficients an of an asymptotic expansion of f(z) are
defined uniquely by

an = lim
z→z0

f(z)−
∑n−1

k=1 akϕk(z)
ϕn(z)

. (7)

Since an asymptotic expansion is a formal sum of terms, we expect to be
able to apply simple arithmetic operations to such an expansion.

Let {ϕn(z)} be an asymptotic sequence at z = z0. Then the following
properties hold, as the reader can verify by the use of Definition 2.1.
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1. Let c be a constant. If
∑∞

n=1 anϕn(z) is an asymptotic expansion of f(z)
at z0, then cf(z) has asymptotic expansion

∑∞
n=1 canϕn(z).

2. Let, in addition,
∑∞

n=1 bnϕn(z) be an asymptotic expansion for g(z) at
z = z0. Then f(z)+ g(z) has asymptotic expansion

∑∞
n=1(an + bn)ϕn(z) at the

same point in the common domain where both asymptotics are valid.

Properties of power-type asymptotic expansions. Asymptotic expan-
sions for the product and quotient of two functions are difficult to formulate in
terms of general asymptotic sequences. We have seen that the asymptotic power
sequence is an important tool in applications (the reader should remember that
for most points of solutions of boundary value problems, or of other functions
that usually arise in applications, the Taylor expansion works perfectly; the
points at which we need other types of asymptotic expansions are exceptional).
Let us discuss other properties of asymptotic power-type expansions.

We have said that the change of variable z − z0 to z moves an arbitrary
finite point z0 at which an asymptotic expansion is sought to z0 = 0. Moreover,
the change 1/z to z moves the infinitely distant point to zero as well. Thus
considering the properties of a power-type asymptotic expansion of f(z) at zero,

a0 +
∞∑

k=1

akzk

we study simultaneously asymptotic expansions at z0,

a0 +
∞∑

k=1

ak(z − z0)k

and the asymptotics at infinity,

a0 +
∞∑

n=1

an

zn
.

Thus we suppose that f(z) has an asymptotic expansion at z = 0, which means
that for each n there holds

f(z) = a0 +
n∑

k=1

akzk + o(zn) as z → 0. (8)

The function g(z) has a similar asymptotic expansion at zero:

g(z) = b0 +
n∑

k=1

bkzk + o(zn) as z → 0. (9)

It is clear that the above two properties of asymptotics are valid in this case.
Now we continue.
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3. f(z) · g(z) has the asymptotic expansion

c0 +
∞∑

k=1

ckzk

where

c0 = a0b0,

c1 = a0b1 + a1b0,

ck = a0bk + a1bk−1 + · · ·+ akb0,

...

This follows from direct multiplication of the left and right parts of (8) by the
corresponding parts of (9). Note that for finite asymptotics (i.e., for the case in
which (8) or (9) are valid only up to some n1 or n2, respectively) the product
power asymptotic has order equal to the least of n1 and n2. The situation is
quite similar to that in which we multiply approximations of decimal numbers:
the product has the least number of valid digits possessed by the multipliers.

4. If g(0) = b0 6= 0 then f(x)/g(x) has a power-type asymptotic expansion
d0 +

∑∞
k=1 dkzk at zero where the coefficients of the expansion can be found by

formula (7):

d0 =
a0

b0
,

d1 = lim
z→0

f(z)
g(z) −

a0
b0

z
=

a1b0 − a0b1

b2
0

,

d2 = lim
z→0

f(z)
g(z) − d0 − d1z

z2
=

a2b
2
0 − a1b0b1 + a0(b2

1 − b0b2)
b3
0

,

d3 = lim
z→0

f(z)
g(z) − d0 − d1z − d2z

2

z3

=
a3b

3
0 − a2b

2
0b1 + a1(b0b

2
1 − b2

0b2)− a0(b3
1 − 2b0b1b2 + b2

0b3)
b4
0

,

etc.
Let us also consider the operations of differentiation and integration. We

shall do this for a function of a real variable x.

5. Suppose f(x) has an asymptotic expansion

f(x) ∼ a0 +
∞∑

k=1

akxk (10)
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at zero, and it is known that its derivative is continuous in some neighborhood of
zero and has an asymptotic expansion at zero. Then the asymptotic expansion
for f ′(x) at zero can be obtained by formal term-by-term differentiation of the
expansion (10):

f ′(x) ∼ a1 +
∞∑

k=2

akxk−1.

Note that we should suppose the existence of an asymptotic expansion for
f ′(x). The sufficient conditions for this are given by various versions of calculus
theorems on the Taylor expansion. So, let the expansion for f ′(x) be

f ′(x) ∼ c0 +
∞∑

k=1

ckxk.

The Newton–Leibnitz formula

f(x)− f(0) =
∫ x

0

f ′(s) ds

and substitution of the finite asymptotic expansion for f ′(x) give us

f(x)− a0 =
∫ x

0

(
c0 +

n∑
k=1

cksk + O(sn+1)

)
ds

= c0x +
n∑

k=1

ck
xk+1

k + 1
+ O(xn+2) (11)

since we can integrate a finite sum term-wise. Expression (11) means its right-
hand side (together with a0) is an asymptotic expansion of f(x). Using unique-
ness of the asymptotic expansion and identifying the terms in (11) with those
in (10), we complete the proof.

6. Suppose that f(x) is continuous in a neighborhood of x = 0 and has an
asymptotic expansion (10). Then

∫ x

0
f(s) ds has an asymptotic expansion at

x = 0 that is derived by the term-wise integration∫ x

0

f(s) ds ∼
∞∑

k=0

akxk+1

k + 1
.

The proof follows from the chain of transformations∫ x

0

f(s) ds =
∫ x

0

(
a0 +

n∑
k=1

aksk + O(sn+1)

)
ds =

n∑
k=0

akxk+1

k + 1
+ O(xn+2).
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7. It is useful to know how to integrate a function having a power-type asymp-
totic expansion at an infinitely remote point:

f(x) ∼ b0 +
∞∑

k=1

bk

xk
.

Suppose that f(x) is continuous when x > M > 0. Then the function

Ψ(x) =
∫ ∞

x

(
f(s)− b0 −

b1

s

)
ds (12)

is continuous when x > M and has an asymptotic expansion

Ψ(x) ∼
∞∑

k=2

bk

(k − 1)xk−1

at x → ∞. For it is clear that the integrand in (12) is continuous in [M,∞)
and is majorized by C/s2. Thus the integral (12) converges and is a continuous
function. Using the definition of asymptotic expansion for f(x) we get

Ψ(x) =
∫ ∞

x

(
n∑

k=2

bk

sk
+ O

(
1

sn+1

))
ds.

Integrating term-wise we obtain

Ψ(x) =
n∑

k=2

bk

(k − 1)xk−1
+ O

(
1
xn

)
as x →∞.

So the integration of an expansion at infinity can be performed term-wise.
We had to remove the non-integrable terms from the function first, however.

It is well known how to find the simplest kinds of asymptotics: the Taylor
expansions. Now let us consider how to derive asymptotic expansions for some
special integrals depending on parameters. These occur in many applications.
We shall begin to demonstrate simple but useful methods by means of the
example of the incomplete gamma function.

3 Method of integration by parts

Incomplete gamma function

The incomplete gamma function

γ(a, x) =
∫ x

0

e−ssa−1 ds (13)
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plays an important role in mathematical physics. We would like to obtain simple
formulas with which to calculate γ(a, x) for positive x and fixed positive a. The
function γ(a, x) is “a portion” of the Gamma function

Γ(a) =
∫ ∞

0

e−ssa−1 ds

for which, as is well known, Γ(n) = (n− 1)!.
We will demonstrate the two simplest but frequently used methods of get-

ting asymptotics. One uses well known Taylor expansions and the other is the
method of integration by parts. The two asymptotics which we shall obtain are
used in different ranges of the variable x.

To find an asymptotic expansion of γ(a, x) for small x, we can use the ex-
pansion

e−s =
∞∑

k=0

(−1)ksk

k!
.

Substituting this into (13) and integrating term-wise we get

γ(a, x) =
∞∑

k=0

(−1)kxa+k

(a + k)k!
.

This is a convergent series whose radius of convergence is infinite. Thus we
could use this formula to calculate γ(a, x) at any x. However, for large x we
need to take many terms to achieve an accurate result. For large x we will find
an asymptotic expansion of a supplementary function

Γ(a, x) = Γ(a)− γ(a, x) =
∫ ∞

x

e−ssa−1 ds;

this function is important in itself, since by a change of variable we can see that
the error integral Erfc(x) has representation

Erfc(x) =
∫ ∞

x

e−t2 dt =
1
2

∫ ∞

x2
e−ss−1/2 ds =

1
2
Γ
(

1
2
, x2

)
. (14)

It is seen that the integral in Γ(a, x) is convergent. We will obtain its asymp-
totic expansion for large x. Integrating by parts we have∫ ∞

x

e−ssa−1 ds = e−xxa−1 + (a− 1)
∫ ∞

x

e−ssa−2 ds.

Let us repeat the procedure with respect the integral on the right:∫ ∞

x

e−ssa−1 ds = e−xxa−1 + (a− 1)e−xxa−2+

+ (a− 1)(a− 2)
∫ ∞

x

e−ssa−3 ds.
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It is clear that many-fold repetition of the procedure gives us∫ ∞

x

e−ssa−1 ds = e−x[xa−1 + (a− 1)xa−2 + · · ·+

+ (a− 1)(a− 2) · · · (a− n + 1)xa−n]+

+ (a− 1)(a− 2) · · · (a− n)
∫ ∞

x

e−ssa−n−1 ds. (15)

It is seen that when x → ∞ the sequence {e−xxa−k} is asymptotic. Let us
verify that the last term is O(e−xxa−n−1) as x →∞. Indeed∫ ∞

x

e−ssa−n−1 ds ≤ xa−n−1

∫ ∞

x

e−s ds = e−xxa−n−1,

which means that we really have an asymptotic expansion of Γ(a, x) for x →∞.
By the properties of Γ(a) we can rewrite (15) as

Γ(a, x) ∼ e−x
∞∑

k=1

Γ(a)
Γ(a− k + 1)

xa−k as x →∞.

For large x > 0 this expansion gives accurate results for a small number of
terms. From this and (14) we derive an important expansion

Erfc(x) =
1
2
Γ
(

1
2
, x2

)
∼ 1

2
e−x2

Γ
(

1
2

) ∞∑
k=1

1
x2k−1 Γ

(
3
2 − k

)
=

1
2
√

πe−x2
∞∑

k=1

1
x2k−1 Γ

(
3
2 − k

) as x →∞.

As with other expansions of this type, computations are best done with one
or two terms — despite the series notation. Many asymptotic expansions are
actually divergent when considered as series. So adding more and more terms
will, beyond a certain number of terms, lead to deterioration in the approxima-
tion. However, for a fixed number of terms the approximation always improves
as the independent variable x → x0.

The Fourier integral

Let us consider an asymptotic expansion for large ξ for the Fourier integral on
a finite interval ∫ b

a

eiξxϕ(x) dx

when ϕ(x) has n continuous derivatives on [a, b]. Integration by parts gives us∫ b

a

eiξxϕ(x) dx = − 1
(iξ)

[
eiξaϕ(a)− eiξbϕ(b)

]
− 1

(iξ)

∫ b

a

eiξxϕ′(x) dx.
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A second integration by parts yields∫ b

a

eiξxϕ(x) dx = − 1
(iξ)

[
eiξaϕ(a)− eiξbϕ(b)

]
+

+
1

(iξ)2
[
eiξaϕ′(a)− eiξbϕ′(b)

]
+

+
1

(iξ)2

∫ b

a

eiξxϕ′′(x) dx.

Continuing in this way, after n-fold integration by parts we have∫ b

a

eiξxϕ(x) dx =
n−1∑
k=0

(−1)k+1

(iξ)k+1

[
eiξaϕ(k)(a)− eiξbϕ(k)(b)

]
+

+
(−1)n

(iξ)n

∫ b

a

eiξxϕ(n)(x) dx.

The last integral term can be estimated as∣∣∣∣∣ (−1)n

(iξ)n

∫ b

a

eiξxϕ(n)(x) dx

∣∣∣∣∣ = 1
|ξ|n

∣∣∣∣∣
∫ b

a

eiξxϕ(n)(x) dx

∣∣∣∣∣ = o

(
1
|ξ|n

)
since by a calculus theorem

∫ b

a
eiξxϕ(n)(x) dx → 0 as |ξ| → ∞. Thus we have∫ b

a

eiξxϕ(x) dx =
n−1∑
k=0

ik+1

ξk+1

[
eiξaϕ(k)(a)− eiξbϕ(k)(b)

]
+ o

(
1
|ξ|n

)
,

which defines an asymptotic expansion of the Fourier integral as |ξ| → ∞.

Exercise 3.1. Let a > 0. Use the method of integration by parts to demon-
strate that the asymptotic expansion∫ ∞

x

eis

sa
ds ∼ ieix

xa

∞∑
k=0

Γ(a + k)
Γ(a)(ix)k

is valid as x →∞. Note that the Fresnel integrals∫ ∞

x

cos(s2) ds,

∫ ∞

x

sin(s2) ds,

used in optics are a particular case (the real and imaginary parts) of the above
integral when a = 1/2.

4 Equations depending on a parameter analyti-
cally

The implicit function theorem of calculus is well known. We state it in a form
convenient for obtaining an asymptotic expansion of a solution with respect to
a parameter ε.
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Theorem 4.1. Suppose f(x0, 0) = 0, the function y = f(x, ε) is continuous in
both variables in some neighborhood of (x0, 0), ∂f(x, ε)/∂x is continuous in the
same neighborhood of (x0, 0), and ∂f(x, ε)/∂x 6= 0 at point (x0, ε). Then there
is a neighborhood ε < ε0 and |x−x0| < ρ in which there exists a unique solution
x = x(ε) of the equation f(x, ε) = 0; the function x = x(ε) is continuous at the
point ε = 0.

Less familiar is the theorem on the analytic dependence of the same solution
on a parameter. Let us add to the conditions of Theorem 1 that the function
y = f(x, ε) is holomorphic at point (x0, 0): i.e., there is a neighborhood ε < ε0

and |x− x0| < ρ0 in which the double power series

f(x, ε) =
∑

k+m≥1

fkm(x− x0)kεm

is convergent (note that f00 = 0 since f(x0, 0) = 0). It appears that in this
case, in some neighborhood of the zero function x = x(ε) is holomorphic, which
means that it has the form

x = x0 +
∞∑

k=1

xk εk (16)

where the series has nonzero radius of convergence.
In applications it is quite frequent that the equation x = x(ε) has the form

of a polynomial in two variables, or that the variables are under trigonometric
or exponential functions so the last condition is fulfilled automatically. This
means that, wishing to find the dependence of a solution on a parameter in
such a case, we can use quite a simple technique. We represent the equation in
the power form ∑

k+m≥1

fkm(x− x0)kεm = 0

and substitute (16) into it. Then, collecting coefficients of like powers of ε and
equating them to zero, we obtain equations for finding the coefficients xk. The
equation at ε gives us x1, the next equation allows us to calculate x2, and so
on. At each step we obtain a linear equation with respect to the next variable,
so this calculation is quite easy.

This theorem and the method can be extended to operator equations of the
form

F (x, ε) = 0,

where x and ε belong to some Banach spaces and the image of F is also a
Banach space. The form of the result simply copies the above but of course, it
requires harder techniques to apply.

If F (x, ε) is continuous in some neighborhood of a point (x0, 0) at which
F (x0, 0) = 0 together with its partial derivative Fx(x, ε), there exists a contin-
uous inverse of Fx(x, ε) at point (x0, 0) and F (x, ε) is holomorphic in the same

13



point, which means that in some neighborhood of (x0, 0) there is a convergent
series

F (x, ε) =
∑

k+m≥1

Fkm(x− x0)kεm

where the operator coefficients Fkm are continuous in zero and homogeneous in
their variables, that is

Fkm(α(x− x0))k(βε)m = αkβmFkm(x− x0)k(ε)m

for any numbers α, β. Then there is a neighborhood of point (x0, 0) in which
there is a unique solution of the equation F (x, ε) = 0 that is holomorphic in ε
in some neighborhood of zero, so there is a series representation

x = x0 +
∞∑

k=1

xkεk

where xk(αε)k = αkxkεk for any number α that converges uniformly in this
neighborhood.

This result, given without proof, allows us to find an asymptotic dependence
of solution of many boundary value problems when the equations and boundary
conditions depend on unknown functions and parameters analytically. Let us
demonstrate two examples.

1. A nonlinear integral equation. Let us consider a nonlinear integral
equation of the Fredholm type:

u(t)−
∫ b

a

K(t, s, u(s), ε) ds = f(t), (17)

where u = u(t) is an unknown function on a finite segment [a, b] and ε is a small
parameter. Suppose that the kernel K(t, s, u, ε) is a continuous function of all
its arguments when t, s ∈ [a, b], −∞ < u < ∞, |ε| < ρ0. Let its particular
derivative Ku(t, s, u, ε) be uniformly continuous on the same set, f = f(t) con-
tinuous on [a, b], and suppose that at ε = 0 there is a solution of u0(t) of (17)
that is continuous on [a, b]. Suppose that K(t, s, u, ε) is analytic with respect
to u and ε.

At last let us introduce the partial derivative of the operator of the problem
for which we need to study the problem of the inverse:

Fu(u0, 0)v = v(t)−
∫ b

a

Ku (t, s, u0(s), 0) v(s) ds.

We consider this problem in the space C(a, b). By the above result if we know
that the operator Fu(u0, 0) has a continuous inverse then equation (17) has an
analytic solution representable in a series form:

u(t, ε) =
∞∑

k=0

uk(t) εk. (18)

14



It can be shown that under the above conditions the integral operator is compact
in C(a, b). So to study the inverse to Fu(u0, 0) we can appeal to the Fredholm–
Schauder–Riesz theory. Suppose that the equation with respect to v = v(t),

v(t)−
∫ b

a

Ku (t, s, u0(s), 0) v(s) ds = 0, (19)

has only the trivial solution v = 0. This means that considering this as a
particular case of the eigenvalue problem

v(t)− λ

∫ b

a

Ku (t, s, u0(s), 0) v(s) ds = 0

with λ = 1 we have that it is not an eigenvalue. By the Fredholm–Schauder–
Riesz theory this means that this operator has a continuous inverse in C(a, b).

Thus we can explore the small parameter method to find the dependence of
u(t, ε) on ε, that is, we need to substitute (18) into equation (17) where kernel
K(t, s, u, ε) is expanded into power series. Equating the coefficients at equal
powers of ε we will have the system of linear Fredholm equations with respect
to the coefficients uk(t). This system is recurrent: finding the first k unknown
functions, on the next step we get an equation in a single unknown.

2. A boundary value problem. Suppose we need to find a solution of a
boundary value problem depending on a small parameter ε:

y′′ = f(x, y(x), y′(x), ε), (20)

y(0) = g0(ε), y(1) = g1(ε). (21)

Suppose that f(x, y, v, ε) is continuous in the area x ∈ [0, 1], −∞ < x, y <
∞, |ε| < ρ and that the partial derivatives fy(x, y, v, ε) and fv(x, y, v, ε) are
uniformly continuous in the same range. Finally, let us suppose that fy(x, y, v, ε)
is analytic with respect to y, v, ε.

Knowing the Green function that is a solution of the problem

y′′(x) = δ(x− x0), y(0) = 0 = y(1),

we can easily reduce this problem to the previous integral equation, which means
that we immediately have the needed result if we know that the corresponding
equation (19) has only the zero solution. Understanding this, we mention that
it is not really necessary to reduce the problem to the integral form, but we
can formulate everything in the initial terms. Let y0(x) be a solution of (20) at
ε = 0. Instead of the integral equation (19) we should consider the boundary
value problem

z′′(x) = fy(x, y0(x), y′0(x), 0)z(x) + fy′(x, y0(x), y′0(x), 0)z′(x),
z(0) = 0 = z(1), (22)
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with respect to z = z(x). If this equation has the only solution z(x) = 0 we
have a solution to (20) at small ε has a form

y(t, ε) =
∞∑

k=0

yk(t) εk (23)

that can be found by successive solution of boundary value problems that arise
when we substitute (23) into (20) where f is written in the series form and then
equate the coefficients at the same powers of ε.

Exercise 4.1. Find a series dependence of solutions of the following equations:

(a) x2 − 2x + ε = 0

(b) x = cos(x + ε)

5 Branching of solutions

Before studying a general problem it is often advantageous to consider a simple
problem that has all the necessary features. We would like to study a case of
the previous section when fx has no inverse at a solution for ε = 0. A simple
example of such a problem is the problem of dependence on ε of the solution of
an equation:

Problem 5.1. Find the asymptotics of solution of x2 = ε as ε → 0.

For this equation x = 0 is a solution when ε = 0, and f(x, ε) = x2− ε, being
analytic, does not satisfy the condition fx(0, 0) 6= 0, so we cannot say there is
an analytic dependence of x on ε.

But now we can easily solve the equation. Its solutions are x = ±
√

ε. First
of all we see the non-uniqueness of solution. Secondly, if we wish to find real
roots they exist only for ε > 0. (This situation is typical for many practical
problems when increasing some parameters, the amplitude of a force or voltage
or something else, we get some point from which there go several branches of
possible change of dependence of a solution.) Thirdly, the point ε = 0 is a point
of branching of the function y =

√
ε, so there is no integer power series that

represents it. However there is an expansion in power series with respect to
ε1/2 (of course, it is funny to call it an expansion since it is only one term of an
expansion, however we discuss all this knowing what we get in more complex
situations, that is why we direct the reader’s attention to this fact).

Note that changing ε to ε2 we could avoid square roots and get usual power
series. This is common for many practical problems: an appropriate change of
a parameter brings power asymptotics of a solution.

Let us consider another problem.

Problem 5.2. Find the asymptotics of solution of εx2 − x = 0 as ε → 0.
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This problem has two solutions: x = 0, x = 1/ε. We see that now a quadratic
equation has roots one of which is impossible to approximate putting ε = 0. In
this case ε = 0 is a pole of the latter solution.

Now we begin to study an equation f(x, ε) = 0 that has a solution x = 0 at
ε = 0 when the function is analytic in both variables but fx(0, 0) = 0 wishing
to get a dependence x = x(ε) at small ε. For simplicity we will consider a case
when

f(x, ε) =
n∑

k=0

ak(ε)xk. (24)

Suppose that each ak is presented in some neighborhood of ε = 0 as a convergent
series

ak(ε) = εpk

∞∑
n=0

aknεn/N . (25)

We suppose that if ak(ε) 6= 0 then ak0 6= 0 and pk are rational numbers and N
is an integer.

An equation of the type (24) is one to which many problems of mathematical
physics on branching of solutions reduce. We note that quite frequently the
original problem has some parameter under the symbol of some root, in this case
the change of parameter brings one to the representation (25). We describe only
the technique how to find the asymptotics of the roots of (24) that descends to
Newton. Suppose the principal term of the asymptotics is x0ε

r so

x(ε) = x0ε
r + o(εr) as ε → 0. (26)

Let us substitute it into (24) and collect terms with equal powers of ε. It is
clear that if we wish the term of lowest degree to be cancelled we need to have
at least two terms with the lowest degree of ε. This brings us to a practical way
of finding r, the degree in (26). It is easy to see that the lowest degree of ε in
(24) is among the following terms:

a00ε
p0 , a10ε

p1+r, a20ε
p1+2r, . . . , an0ε

p1+nr

We recall that some of the ak0 are zeros. For practical finding such variants for
r when several degrees pk +kr are equal and corresponding numbers k, Newton
proposed to construct a diagram as follows. We need to find k and m such that
pk + kr = pm + mr and for all s with as0 6= 0 there holds ps + sr ≥ pk + kr.

Take a cartesian coordinate plane and check points (k, pk) for nonzero ak0.
Suppose that a0,0 6= 0. Take a ray beginning at (0, p0) codirected with negative
direction of y-axis and rotate it counterclockwise until it meets a point (k1, pk1).
On the direct line through (0, p0) and (k1, pk1) there can be other points. It
is clear that taking r0 = (pk1 − p0)/k1 we get the needed equal degrees p0 =
pk1 + k + 1r0. Fix this direct line. If we draw direct lines parallel to this
one through other checked points they will lie above this one that means that
ps + sr0 ≥ p0.
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Substituting (26) with r = r0 into (24) we can find the coefficient x0 of the
asymptotics (26) that is nonunique if there are more than two checked points
on the line through (0, p0) and (k1, pk1).

Let us find other possible values for r in (26). For this take the farthest
from (0, p0) checked points on the line through (0, p0) and (k1, pk1), let it be
(m, pm) and rotate counterclockwise the ray from the old direction until it meets
the next checked point (t, pt). Then the second possible value of r is r1 =
(pt−pm)/(t−m). Here we also can find the principal term of another asymptotic
(of another root(s)). By the same reasons as above for the other checked points
we will have pk + kr1 ≥ pmmr1. In a similar fashion we can find new roots
(their principal members).

Repeating the procedure for the farthest from (m, pm) point on the line
through (m, pm) and (t, pt), we find a new chain of the Newton diagram.

Note that if corresponding rk is positive then the solution is continuous at
ε = 0, otherwise it tends to infinity.

If we would like to find higher terms of the asymptotics we should substitute

x(ε) = x0kεrk + x1kεr + o(εr), r > rk

into (24) and repeat the procedure.
In this way we can find asymptotics of any length

x(ε) ∼ x0kεrk + x1kεrk1 + x2kεrk2 + · · · .

This is called the Puiso expansion.
It is shown that under some conditions the degrees rks

are of the form
rks

= (q + s)/Q where q, Q are fixed integers. This happens to many important
practical problems whose asymptotics are power series in ε1/2 or ε1/3.

I forgot to introduce the definition of a branching point of an equation. It is a
solution in any neighborhood of which and some small ε there are two solutions
of the equation. Thus when we find positive rk we find a point of branching of
the equation. If it is negative, it is not a point branching since another solution
tends to infinity as ε → 0.

It is quite easy to extend the theory to equations f(x, ε) = 0 with an analytic
function with respect to x and ε. In this case we can find continuous branching
of solutions that can be done quite similar to the above. Now the Newton
diagram would be infinite but the range where rk are positive is always finite
so we can apply the same techniques to this.

The theory of asymptotics of an algebraic equations is extended to equations
in Banach spaces. When it is a nonlinear equation with a parameter having
branching points, the use of the Lyapunov–Schmidt method allows us to reduce
the problem in the neighborhood of such a point to a finite dimensional equation
that can be solved by the techniques similar to the above.
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6 Ordinary differential equations with singular
points

Sometimes we are interested in the behavior of solution to a Cauchy problem
on a very large range 0 < t < T :

y′(t) = f(y(t)), y(0) = y0.

In particular, this class of problems includes the problem of motion of our Earth
(when y = y(t) is a vector function). We know that numerical calculations do
not give an accurate result quite frequently because of accumulated errors. We
can change the variable t 7→ Tt. Denoting ε = 1/T we get a problem

ε y′(t) = f(y(t)), y(0) = y0, (27)

which we would like to solve for small ε > 0 on [0, 1].
If we put ε = 0 in (27) formally we get a non-differential equation f(y(t)) = 0

that in practical cases has only few separate solutions that means that we cannot
satisfy the initial condition y(0) = y0. What we can tell about solutions of
similar equations? Let us consider this question for a simple example which we
can solve analytically:

ε y′(t) + y(t) = 1, y(0) = 0 (28)

when ε is positive and small. The equation f(y(t)) = 0 reduces to y(t) = 1.
However the solution to (28) is

y = −e−t/ε + 1.

This solution contains two terms, one of which, y = 1 is called regular part
of solution and another, y = −e−

t
ε the boundary layer solution. The smaller

is ε the smaller is the domain [0, t0] where we need to take into account this
term calculating equation numerically. The name ‘boundary layer’ came from
hydrodynamics where they studied the problems whose solutions had similar
behavior near the boundary of a liquid: there is fast change in values near the
boundary and outside some small neighborhood of the boundary the solution
is quite regular. Similar parts of solutions are in electricity, the corresponding
part of solution is called the transient process that Mr Mike knows better than
me.

If we can find an asymptotics near the boundary exactly (or numerically)
then the regular part of solution, as a rule can be found numerically quite
accurately.

We can consider ODEs of the type

g(x)y′(x) = f(y(x))

where there is a point x0 such that g(x0) = 0. In this the equation also has a
singular point at which the solution behaves in a singular way.
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There is a theory of equations of these types and the methods how to find
their asymptotics.

Quite similar situation with boundary layers happens to many problems:
There are partial differential equations with small parameters at the highest
derivatives. Their theory is hard but useful.

Not to think that the situation of equation (28) is the most common we can
consider the problem

εy′(t)− y(t) = 1, y(0) = 0,

with small positive ε. Now a solution is

y = et/ε − 1

and the fast growing part penetrates everywhere. This problem relates to in-
correct problems. One of the frequently met equations with a small parameter
at the highest derivative is one of the form:

ε2y′′(x) + y(x) = εf(x, y(x), ε)

and its variants. This equation can be met in boundary value problems and
Cauchy problems. The main part of the main term of the asymptotics of its
solution is a fast oscillating function a sin(x/ε + ϕ). There are many methods
that in much relate to averaging how to find the main asymptotics of the so-
lution. Take into account that the problem of 3 bodies (it is when they move
being mutually attracted by the gravity law) is of this type. So we wanted to
mention that boundary layers is not the only what can be met in this theory.
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