
3
Elements of Nonlinear
Functional Analysis

From the viewpoint of functional analysis, nonlinear problems of mechanics
are more complicated than linear problems; as in mechanics, they require
new techniques for their study. Many of them, such as nonlinear elasticity
in the general case, provide a wide field of investigation for mathemati-
cians (see Antman [2]); the problem of existence of solutions in nonlinear
elasticity in general is still open.

But some of the nonlinear problems of mechanics can be treated on a
known background; as in the linear case, we consider only some of the
known nonlinear results of functional analysis that are needed in what
follows.

3.1 Fréchet and Gâteaux Derivatives

We begin nonlinear analysis of operators with definitions of differentiation.
Let F (x) be a nonlinear operator acting from D(F ) ⊂ X to R(F ) ⊂ Y ,
where X and Y are real Banach spaces. Assume D(F ) is open.

Definition 3.1.1. F (x) is differentiable in the Fréchet sense at x0 ∈ D(F )
if there is a bounded linear operator, denoted by F ′(x0), such that

F (x0 + h) − F (x0) = F ′(x0)h+ ω(x0, h) for all ‖h‖ < ε

with some ε > 0, where ‖ω(x0, h)‖/‖h‖ → 0 as ‖h‖ → 0. Then F ′(x0) is
called the Fréchet derivative of F (x) at x0, and dF (x0, h) = F ′(x0)h is
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its Fréchet differential. F (x) is Fréchet differentiable in an open domain
S ⊂ D(F ) if it is Fréchet differentiable at every point of S.

It is clear that the Fréchet derivative of a continuous linear operator is
the same operator.

Problem 3.1.1. Assume y = f(x) is a vector function from Rm to Rn and
f(x) ∈ (C(1)(Ω))n. Show that its Fréchet derivative at x0 ∈ Ω is the Jacobi
matrix

(
∂fi(x0)

∂xj

)
i=1,...,n
j=1,...,m

.

In the construction of the Fréchet derivative, the reader can recognize a
method of the calculus of variations, used to obtain the Euler equations of
a functional. The following derivative by Gâteaux is yet closer to this.

Definition 3.1.2. Assume that for all h ∈ D(F ) we have

lim
t→0

F (x0 + th) − F (x0)
t

= DF (x0, h), x0 ∈ D(F ),

where DF (x0, h) is a linear operator with respect to h. Then DF (x0, h)
is called the Gâteaux differential of F (x) at x0, and the operator is called
Gâteaux differentiable. Denoting DF (x0, h) = F ′(x0)h, we get the Gâteaux
derivative F ′(x0). An operator is differentiable in the Gâteaux sense in an
open domain S ⊂ X if it has a Gâteaux derivative at every point of S.

The definitions of derivatives are clearly valid for functionals. Suppose
Φ(x) is a functional which is Gâteaux differentiable in a Hilbert space and
that DΦ(x, h) is bounded at x = x0 as a linear functional in h. Then, by
the Riesz representation theorem, it can be represented in the form of an
inner product; denoting the representing element by grad Φ(x0), we get

DΦ(x0, h) = (grad Φ(x0), h).

By this, we have an operator grad Φ(x0) called the gradient of Φ(x) at x0.

Theorem 3.1.1. If an operator F (x) from X to Y is Fréchet differentiable
at x0 ∈ D(F ), then F (x) is Gâteaux differentiable at x0 and the Gâteaux
derivative coincides with the Fréchet derivative.

Proof. Put th instead of h in Definition 3.1.1:

F (x0 + th) − F (x0) = F ′(x0)th+ ω(x0, th).

It follows that

lim
t→0

F (x0 + th) − F (x0)
t

= F ′(x0)h

since ‖ω(x0, th)‖/‖th‖ → 0 as t → 0. This means F ′(x0) is a Gâteaux
derivative of F (x) at x0.
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Gâteaux differentiability does not imply Fréchet differentiability. We for-
mulate a sufficient condition as

Problem 3.1.2. Assume that the Gâteaux derivative of F (x) exists in a
neighborhood of x0 and is continuous at x0 in the uniform norm of L(X,Y ).
Show that the Fréchet derivative exists and is equal to the Gâteaux deriva-
tive.

We consider an operator equation with a parameter µ being an element
of a real Banach space M :

F (x, µ) = 0

where D(F (x, µ)) ⊆ X, R(F (x, µ)) ⊆ Y .
In problems of mechanics, µ can represent loads or some parameters of

a body or a process (say, disturbances of the thickness of a plate or its
moduli).

There are different abstract analogs of the implicit function theorem; we
present two of them.

Denote by N(x0, r;µ0, ρ) the following neighborhood of a pair:

N(x0, r;µ0, ρ) = {x ∈ X,µ ∈ M | ‖x− x0‖ < r, ‖µ− µ0‖ < ρ}.

Theorem 3.1.2. Assume:

(i) F (x0, µ0) = 0;

(ii) F (x0, µ) is continuous with respect to µ in a ball ‖µ− µ0‖ < ρ1;

(iii) there exist r1 > 0 and ρ1 > 0 and a continuous linear operator
A from X to Y , being continuously invertible and such that in the
neighborhood N(x0, r1;µ0, ρ1)

‖F (x, µ) − F (y, µ) −A(x− y)‖ ≤ α(r1, ρ1)‖x− y‖

where lim supr,ρ→0 |α(r, ρ)| ‖A−1‖ = q < 1.

Then there exist r0 > 0 and ρ0 > 0 such that in N(x0, r0;µ0, ρ0) the
equation

F (x, µ) = 0 (3.1.1)

has the unique solution x = x(µ) which depends continuously on µ: x(µ) →
x(µ0) as µ → µ0.

Proof. We reduce the equation to a form needed to apply the contraction
mapping principle:

x = K(x, µ), K(x, µ) = x−A−1F (x, µ).
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This equation is equivalent to (3.1.1) because A−1 is continuously invert-
ible. K(x, µ) is a contraction operator with respect to x in some neighbor-
hood of (µ0, x0). Indeed

‖K(x, µ) −K(y, µ)‖ = ‖x− y −A−1(F (x, µ) − F (y, µ))‖
≤ ‖A−1‖ ‖A(x− y) − (F (x, µ) − F (y, µ))‖
≤ ‖A−1‖ |α(r, ρ)| ‖x− y‖
≤ (q + ε)‖x− y‖;

by (iii), q + ε < 1 if r and ρ are sufficiently small and r < r1, ρ < ρ1.
Then there are r0, ρ0, r0 ≤ r1, ρ0 ≤ ρ1, such that K(x, µ) takes a ball
‖x− x0‖ ≤ r0 into itself when ‖µ− µ0‖ ≤ ρ0, indeed

‖K(x, µ) − x0‖ ≤ ‖K(x, µ) −K(x0, µ)‖ + ‖K(x0, µ) − x0‖
≤ (q + ε)‖x− x0‖ + ‖A−1F (x0, µ)‖
≤ (q + ε)‖x− x0‖ + ‖A−1‖ ‖F (x0, µ)‖.

Since F (x0, µ) → F (x0, µ0) = 0 as µ → µ0, then

‖A−1‖ ‖F (x0, µ)‖ ≤ (1 − q− ε)r1 when ‖µ− µ0‖ ≤ ρ2 for some ρ2 < ρ1

and thus for any r0 < r1, ρ0 < ρ2, the ball ‖x − x0‖ ≤ r0 is taken by
K(x, µ) into itself when ‖µ− µ0‖ ≤ ρ0.

By the contraction mapping principle, there is a solution x = x(µ) in
N(x0, r0;µ0, ρ0). The continuity of x(µ) at µ0 follows from the bound

‖x(µ) − x0‖ ≤ ‖A−1‖
1 − q − ε

‖F (x0, µ)‖,

a consequence of the contraction mapping principle.

To prove the other variant of the implicit function theorem, we need
some properties of Fréchet derivatives as given by the next two lemmas.

Lemma 3.1.1. Assume an operator F (x) from X to Y has a Fréchet
derivative at x = x0, and an operator x = S(z) from a real Banach space
Z to X also has a Fréchet derivative S′(z0) and x0 = S(z0). Then their
composition F (S(z)) has a Fréchet derivative at z = z0 and

(F (S(z0)))′ = F ′(x0)S′(z0).

Proof. Substituting

x− x0 = S(z) − S(z0) = S′(z0)(z − z0) + ω1(z0, z − z0)

into
F (x) − F (x0) = F ′(x0)(x− x0) + ω(x0, x− x0),
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we get

F (x) − F (x0) = F ′(x0)S′(z0)(z − z0) + F ′(x0)ω1(z0, z − z0) +
+ ω(x0, S(z) − S(z0)).

This completes the proof, since the last two terms on the right-hand side
are of the order o(‖z − z0‖).

The next lemma is the so-called Lagrange identity.

Lemma 3.1.2. Assume that F (x) from X to Y is Fréchet differentiable
in a neighborhood Ω of x0. Then for x ∈ Ω we have

F (x) − F (x0) =
∫ 1

0
F ′(x0 + θ(x− x0)) dθ (x− x0).

Proof. By Lemma 3.1.1, the composition F (S(θ)), where S(θ) = x0+θ(x−
x0), has a Fréchet derivative

d

dθ
F (S(θ)) = F ′(x0 + θ(x− x0))(x− x0)

since S′(θ) = x− x0. Integrating this over [0, 1] with regard for continuity
of F (S(θ)) in θ, we complete the proof.

We can now present the more traditional version of the implicit function
theorem. In preparation we introduce a partial Fréchet derivative Fx(x, µ)
of F (x, µ) with respect to x as its Fréchet derivative with respect to x when
µ is fixed.

Theorem 3.1.3. Assume:

(i) F (x0, µ0) = 0;

(ii) for some r > 0 and ρ > 0, the operator F (x, µ) is continuous on the
set N(x0, r;µ0, ρ);

(iii) Fx(x, µ) is continuous at (x0, µ0);

(iv) Fx(x0, µ0) has a continuous inverse linear operator.

Then there exist r0 > 0, ρ0 > 0 such that the equation F (x, µ) = 0 has the
unique solution x = x(µ) in a ball ‖x − x0‖ ≤ r0 when ‖µ − µ0‖ ≤ ρ0. If
there is, in addition, Fµ(x, µ) which is continuous at (x0, µ0) then x(µ) has
a Fréchet derivative at µ = µ0 and

x′(µ0) = −F−1
x (x0, µ0)Fµ(x0, µ0).
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Proof. We verify that A = Fx(x0, µ0) meets condition (iii) of Theorem
3.1.2. Consider

Ψ(x, y, µ) = ‖F (x, µ) − F (y, µ) − Fx(x, µ0)(x− y)‖.

By Lemma 3.1.2,

F (x, µ) − F (y, µ) =
∫ 1

0
Fx(y + θ(x− y), µ) dθ (x− y)

and so

Ψ(x, y, µ) =
∥∥∥∥∫ 1

0
(Fx(y + θ(x− y), µ) − Fx(x0, µ0)) d θ(x− y)

∥∥∥∥
≤
∫ 1

0
‖Fx(y + θ(x− y), µ) − Fx(x0, µ0)‖ dθ ‖x− y‖

≤ α(r, ρ)‖x− y‖

where

α(r, ρ) = sup
x,µ

‖Fx(x, µ) − Fx(x0, µ0)‖ on N(x0, r;µ0, ρ)

is such that α(r, ρ) → 0 as r, ρ → 0 since Fx(x, µ) is continuous at (x0, µ0).
The other conditions of Theorem 3.1.2 are also satisfied and so a solution
x = x(µ) actually exists. We leave the second part of the theorem on
differentiability of x(µ) without proof.

Using the implicit function theorem, we can determine whether a solution
to a problem depends continuously and uniquely on some parameters.

We studied several linear problems of mechanics with constant parame-
ters. The reader can now verify that small disturbances of elastic moduli
or, say, the thickness of a plate, bring small disturbances in displacements
(small in a corresponding energy norm). We note that for linear problems
this can be shown more easily by using the contraction mapping princi-
ple, but in nonlinear problems using the implicit function theorem is more
convenient.

3.2 Liapunov–Schmidt Method

We shall say that (x0, µ0) is a regular point of the equation F (x, µ) = 0 if
there is a neighborhood of (x0, µ0), say N(x0, r;µ0, ρ), in which there is a
unique solution x = x(µ).

The implicit function theorem gives sufficient conditions for regularity of
F (x, µ) at (x0, µ0).



3.2 Liapunov–Schmidt Method 183

In mechanics, the breakdown of the property of regularity of a solution
is of great importance; it is usually connected with some qualitative change
of the properties of a system under consideration: its behavior, stability, or
type of motion.

We now consider an important class of non-regular points of an operator
equation.

Definition 3.2.1. (x0, µ0) is a bifurcation point of the equation F (x, µ) =
0 if for any r > 0, ρ > 0, in the ball ‖µ− µ0‖ ≤ ρ there exists µ such that
in the ball ‖x − x0‖ ≤ r there are at least two solutions of the equation
corresponding to µ.

Many problems of mechanics (in particular, in shell theory) are such that
in an energy space a partial Fréchet derivative Fx(x0, µ0) of a corresponding
operator of a problem may be reduced to the form I − B, B = B(x0, µ0),
where B is a compact linear operator (as a rule it is self-adjoint) and so
the results of the Fredholm–Riesz–Schauder theory are valid. In particular,
I − B is not continuously invertible if and only if there is a nontrivial
solution to (I − B)x = 0, and this is the case when the implicit function
theorem is not applicable. This case is now considered.

Without loss of generality, we assume x0 = 0, µ0 = 0 (we can always
change x �→ x0 + x, µ �→ µ0 + µ) so let

F (0, 0) = 0.

Suppose F is an operator acting from H ×M in H where H is a Hilbert
space and M is a real Banach space. As we said, we suppose that Fx(0, 0)
takes the form

Fx(0, 0) = I −B0

with B0 a compact self-adjoint linear operator in H.
The equation F (x, µ) = 0 can be rewritten in the form

(I −B0)x = −F (x, µ) + (I −B0)x

or

(I −B0)x = R(x, µ), R(x, µ) = −F (x, µ) + (I −B0)x. (3.2.1)

We now consider the Liapunov–Schmidt method of determining the de-
pendence of solution to (3.2.1) on µ when ‖µ‖ is small and there are non-
trivial solutions to the equation (I−B0)x = 0. As in Section 2.11, denote by
N the set of these nontrivial solutions and let x1, . . . , xn be an orthonormal
basis of N .

In the beginning of the proof of Theorem 2.11.4 we saw that the operator

Q0x = (I −B0)x+
n∑

k=1

(x, xk)xk
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is continuously invertible. Equation (3.2.1) can be written in the form

Q0x = R(x, µ) +
n∑

k=1

αkxk, αk = (x, xk). (3.2.2)

We now consider (3.2.2) as an equation with respect to x that has pa-
rameters µ, α1, . . . , αn, introducing, in preparation,

x = u+
n∑

k=1

βkxk, (u, xj) = 0, j = 1, . . . , n.

Here u ∈ M , M being the orthogonal complement of N in H. As (x, xk) =
αk, then x = u+

∑n
k=1 αkxk and (3.2.2) is

Q0u = R

(
u+

n∑
k=1

αkxk, µ

)
. (3.2.3)

This equation defines u as a function of the variables µ, α1, . . . , αn. Since
Rx(0, 0) = −Fx(0, 0) + (I −B0) = 0 we get(

Q0x−R(u+
n∑

k=1

αkxk, µ)

)
u

∣∣∣∣∣ u=0
µ=0,α1=···=αn=0

= Q0

where Q0 is a continuously invertible operator, so all the conditions of
the implicit function theorem are fulfilled. Therefore (3.2.3) has a unique
solution for every µ, α1, . . . , αn when ‖µ‖ and |αk| are small:

u = u(µ, α1, . . . , αn).

This solution must be orthogonal to all xk, k = 1, . . . , n, and to define
values α1, . . . , αn we have the system

(u(µ, α1, . . . , αn), xk) = 0, k = 1, . . . , n (3.2.4)

which is called the Liapunov–Schmidt equation of branching.
Using the Liapunov–Schmidt method one can investigate so-called post-

critical behavior of a system, say, post-buckling of a von Kármán plate.

3.3 Critical Points of a Functional

From now on, we shall consider operators and real-valued functionals given
in a real Hilbert space H. So let Φ(x) be a functional on H.
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Definition 3.3.1. x0 ∈ H is called a local minimal (maximal) point of
Φ(x) if there is a ball B = {x | ‖x−x0‖ ≤ ε}, ε > 0, such that for all x ∈ B
we have Φ(x) ≥ Φ(x0) (Φ(x) ≤ Φ(x0)). Minimal and maximal points are
called extreme points of Φ(x). If Φ(x) ≥ Φ(x0) for all x ∈ H, then x0 is a
point of absolute minimum of Φ(x).

We prove the following

Theorem 3.3.1. Assume:

(i) Φ(x) is given on an open set S ⊂ H;

(ii) there exists grad Φ(x) at x = x0 ∈ S;

(iii) x0 is an extreme point of Φ(x).

Then grad Φ(x0) = 0.

Proof. Let h be an arbitrary element of H. The functional Φ(x0 + th) is a
function in a real variable t that attains its minimum at t = 0. Since

dΦ(x0 + th)
dt

∣∣∣
t=0

= 0,

we have
(grad Φ(x0), h) = 0. (3.3.1)

Since h is arbitrary, the conclusion follows.

Definition 3.3.2. A point x0 at which grad Φ(x0) = 0 is called a critical
point of Φ(x).

In fact, we implicitly used this theorem for linear problems when Φ(x)
was a (quadratic) functional of total energy of an elastic body and (3.3.1)
was an equation defining a generalized solution of the corresponding prob-
lem. Similar results will be valid for some nonlinear problems in what fol-
lows.

In preparation, we introduce some definitions.

Definition 3.3.3. A functional Φ(x) is called weakly continuous at x = x0
if for every sequence {xk} converging weakly to x0 the numerical sequence
Φ(xk) tends to Φ(x0) as k → ∞. It is called weakly continuous on an open
set S ⊂ H if it is weakly continuous at every point of S.

Definition 3.3.4. A functional Φ(x) given on H is called growing if

inf
‖x‖=R

Φ(x) → ∞ as R → ∞.

We obtained a necessary condition for existence of critical points of a
functional. Now we point out some sufficient conditions for this that have
important applications in mechanics.
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Lemma 3.3.1. Assume Q is a weakly closed and bounded set in H. A
weakly continuous functional Φ(x) is bounded on Q and attains its minimal
and maximal values in it.

Proof. First we prove that the values of Φ(x) on Q are bounded from above.
If not, there is a sequence {xn} ⊂ Q such that Φ(xn) → ∞ as n → ∞.
By hypothesis {xn} contains a subsequence {xnk

} weakly convergent to
x0 ∈ Q and so

Φ(xnk
) → Φ(x0) �= ∞ as nk → ∞,

which contradicts the assumption. Boundedness from below is thus clearly
seen.

Let d = infx∈Q Φ(x). By definition of infimum there is a sequence {zn}
for which Φ(zn) → d as n → ∞. As above, it contains a subsequence {znk

}
converging weakly to z0 ∈ Q. By weak continuity of Φ(x) we get Φ(z0) = d.
The proof for the maximal value is similar.

Note that a ball B(R) = {x | ‖x‖ ≤ R} has the properties of Q of the
lemma.

In what follows, some problems of mechanics can be reduced to a problem
of finding critical points of the functional

Ψ(x) = ‖x‖2 + Φ(x)

with Φ(x) a weakly continuous functional. The functional Ψ(x) is not
weakly continuous because of the term ‖x‖2 and so Lemma 3.3.1 does
not apply.

Theorem 3.3.2. Let Φ(x) be a weakly continuous functional. On a ball
B(R) = {x | ‖x‖ ≤ R}, the functional Ψ(x) = ‖x‖2 + Φ(x) attains its
minimal value.

Proof. By Lemma 3.3.1, Φ(x) and hence Ψ(x) is bounded from below on
B(R). Let d = inf Ψ(x) on B(R) and {xn} be a sequence in B(R) such that
Ψ(xn) → d as n → ∞. By weak compactness of B(R) we can produce a
subsequence {xnk

} which converges weakly to x0 ∈ B(R). Moreover, from
the bounded numerical sequence {‖xnk

‖} we can take a subsequence which
tends to some number a, a ≤ R. Redenote the last subsequence as {xn}
again.

We show that ‖x0‖ ≤ a. Indeed, since xn ⇀ x0 then limn→∞(xn, x0) =
‖x0‖2 and we have

‖x0‖2 = lim
n→∞ |(xn, x0)| ≤ lim

n→∞ ‖xn‖ ‖x0‖ = a‖x0‖

which gives ‖x0‖ ≤ a.
By weak continuity of Φ(x), we get Φ(xn) → Φ(x0) as n → ∞ and

Ψ(xn) → d = a2 + Φ(x0) simultaneously. Since x0 ∈ B(R),

Ψ(x0) = ‖x0‖2 + Φ(x0) ≥ inf
x∈B(R)

Ψ(x) = d = a2 + Φ(x0),
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and so ‖x0‖ ≥ a. With the above, this implies ‖x0‖ = a and thus x0 is a
point at which Ψ(x) takes its minimal value on B(R).

Remark 3.3.1. Since {xnk
} from the proof converges weakly to x0 and the

sequence {‖xnk
‖} converges to ‖x0‖ = a, this sequence converges to x0

strongly in H.

Definition 3.3.5. Assume inf Φ(x) = d > −∞ on H. A sequence {xn} is
called a minimizing sequence of Φ(x) if Φ(xn) → d as n → ∞.

In the proof of Theorem 3.3.2 we have established that under the condi-
tions of that theorem any sequence minimizing Ψ(x) contains a subsequence
that converges strongly to an element at which the minimum of Ψ(x) oc-
curs. Now we can formulate

Theorem 3.3.3. Assume that a functional Ψ(x) = ‖x‖2 + Φ(x), where
Φ(x) is weakly continuous on H, is growing. Then:

(i) there exists x0 ∈ H at which Ψ(x) takes its minimal value;

(ii) any minimizing sequence of Ψ(x) contains a subsequence which con-
verges strongly to a point at which Ψ(x) takes its minimal value:
moreover, every weakly convergent subsequence of {xn} converges
strongly to a minimizer of Ψ(x);

(iii) if a point x0 at which Ψ(x) takes its minimal value is unique, then a
minimizing sequence converges to x0 strongly;

(iv) if grad Φ(x0) exists at a point of minimum x0, then

2x0 + grad Φ(x0) = 0.

Proof. By Theorem 3.3.2, on a ball ‖x‖ ≤ R the functional Ψ(x) takes
its minimal value. Since Ψ(x) is growing we can take R so large that the
minimum is attained inside the open ball ‖x‖ < R. So statements (i) and
(ii) follow from Theorem 3.3.3 and Remark 3.3.1. Statement (iv) follows
from Theorem 3.3.1. The proof of (iii) is carried out in a way similar to
that given in Section 1.23.

Now we consider the application of the Ritz method to solve the problem
of minimizing Ψ(x) under the restrictions of Theorem 3.3.3. First we state
the equations of Ritz’s method. Let g1, g2, g3, . . . be a complete system in
H such that every finite subsystem is linearly independent. Denote by Hn

a subspace of H which is spanned by g1, . . . , gn.
The approximation of the Ritz method to minimize the functional Ψ(x)

is now formulated as follows:

• Find a minimizer xn of Ψ(x) on Hn.
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• Note that if Ψ(x) has grad Ψ(x) then the equations to find the nth
Ritz approximation are

(grad Ψ(xn), gk) = 0, k = 1, . . . , n, xn ∈ Hn.

Theorem 3.3.4. Under the restrictions of Theorem 3.3.3, the following
hold:

(i) for each n there exists a solution xn ∈ Hn, the nth Ritz approximation
of the minimizer of Ψ(x);

(ii) the sequence of Ritz approximations is a minimizing sequence of Ψ(x),
and thus

(iii) the sequence {xn} contains at least one weakly convergent subse-
quence whose weak limit is a minimizer of Ψ(x) — in fact, this sub-
sequence converges strongly to the minimizer;

(iv) every weakly convergent subsequence of {xn} converges strongly to a
minimizer of Ψ(x); if a minimizer of Ψ(x) is unique, then the whole
sequence {xn} converges to it strongly.

Proof. (i) Solvability of the problem for the nth approximation of solution
by the Ritz method follows from Theorem 3.3.3.

(ii) Let x0 be a solution to the main problem

Ψ(x0) = d = inf
x∈H

Ψ(x).

As the system g1, g2, g3, . . . is complete, there is x(n) ∈ Hn such that

‖x0 − x(n)‖ = δn → 0 as n → ∞.

Since Ψ(x) is continuous we get

|Ψ(x(n)) − Ψ(x0)| = εn → 0 as n → ∞.

But xn is a minimizer of Ψ(x) on Hn, so

d = Ψ(x0) ≤ Ψ(xn) = inf
x∈Hn

Ψ(x) ≤ Ψ(x(n)).

Therefore
|Ψ(xn) − Ψ(x0)| ≤ εn → 0 as n → ∞

and thus {xn} is a minimizing sequence of Ψ(x).
The other statements follow from Theorem 3.3.3.

Note that Theorem 3.3.4 can be applied to linear and nonlinear problems
of mechanics.
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3.4 Von Kármán Equations of a Plate

Theorem 3.3.4 will be applied to the boundary value problem of equilibrium
of a plate described by the von Kármán equations, which are

∆2w = [f, w] + q in Ω ⊂ R2, (3.4.1)

∆2f = −[w,w] in Ω, (3.4.2)

where w(x, y) is the normal displacement of the middle surface Ω of the
plate, f(x, y) is the Airy function, q = q(x, y) is the transverse external
load, and

[u, v] =
∂2u

∂x2

∂2v

∂x2 +
∂2u

∂y2

∂2v

∂y2 − 2
∂2u

∂x∂y

∂2v

∂x∂y
.

We consider the Dirichlet problem for these equations:

w
∣∣
∂Ω =

∂w

∂n

∣∣∣
∂Ω

= 0, (3.4.3)

f
∣∣
∂Ω =

∂f

∂n

∣∣∣
∂Ω

= 0. (3.4.4)

Let us consider the integro-differential equations

a(w,ϕ) = B(f, w, ϕ) +
∫

Ω
qϕ dΩ, (3.4.5)

a(f, η) = −B(w,w, η), (3.4.6)

where

a(w,ϕ) =
∫

Ω

{
∂2w

∂x2

(
∂2ϕ

∂x2 + ν
∂2ϕ

∂y2

)
+ 2(1 − ν)

∂2w

∂x∂y

∂2ϕ

∂x∂y
+

+
∂2w

∂y2

(
∂2ϕ

∂y2 + ν
∂2ϕ

∂x2

)}
dΩ,

B(f, w, ϕ) =
∫

Ω

{(
∂2f

∂x∂y

∂w

∂y
− ∂2f

∂y2

∂w

∂x

)
∂ϕ

∂x
+

+
(
∂2f

∂x∂y

∂w

∂x
− ∂2f

∂x2

∂w

∂y

)
∂ϕ

∂y

}
dΩ,

ν being Poisson’s ratio, 0 < ν < 1/2.
Note that a(u, v) is the scalar product (1.10.4) (with an omitted mul-

tiplier — the bending rigidity) of the energy space EPC for an isotropic
plate, and we shall use this notation in this section.

Suppose that (3.4.5) and (3.4.6), with respect to the unknown function
w, f , being smooth (of C(4)(Ω)) and satisfying the boundary conditions
(3.4.3) and (3.4.4), are valid for every ϕ, η which also satisfy (3.4.3) for these
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functions and their normal derivatives on the boundary. The usual tools of
the calculus of variations show that the pair (w, f) is a classical solution to
the von Kármán equations (3.4.1) and (3.4.2). This means that we can use
(3.4.5) and (3.4.6) to define a generalized solution to the problem under
consideration. We note that (3.4.5) expresses the virtual work principle for
the plate, and (3.4.6) is the equation of compatibility. So we introduce

Definition 3.4.1. A pair (w, f), w, f ∈ EPC , is called a generalized so-
lution to the problem (3.4.1)–(3.4.4) if it satisfies the integro-differential
equations (3.4.5)–(3.4.6) for any (ϕ, η), ϕ, η ∈ EPC .

For correctness of the definition the load q = q(x, y) must be such that
the term

∫
Ω qϕ dΩ is a continuous linear functional in EPC ; for this it

suffices that, say, q be of L1(Ω) (cf., Section 1.14).
Under the restrictions of the definition, all terms in (3.4.5) and (3.4.6)

make sense as each of the first derivatives of any of the functions under
consideration are of Lp(Ω) with any p < ∞. Indeed, a typical term which
is not present in a linear statement of the plate problem is bounded as∣∣∣∣∫

Ω

∂2f

∂x2

∂w

∂y

∂ϕ

∂y
dΩ
∣∣∣∣ ≤

(∫
Ω

∣∣∣∣∂2f

∂x2

∣∣∣∣2 dΩ
)1/2

·

·
(∫

Ω

∣∣∣∣∂w∂y
∣∣∣∣4 dΩ

)1/4(∫
Ω

∣∣∣∣∂ϕ∂y
∣∣∣∣4 dΩ

)1/4

, (3.4.7)

and hence is finite.
We could present a functional whose gradient in the space EPC ×EPC is

defined by (3.4.5) and (3.4.6); unfortunately it is not of the form required by
Theorem 3.3.4. That is why we shall reformulate the problem with respect
to the only unknown function w, defining f as an operator with respect
to w and construct a functional of w whose critical point is a generalized
solution of the problem. We now embark on this program.

So let w be a fixed but arbitrary element of EPC . Consider B(w,w, η)
as a functional with respect to η in EPC . It is clearly linear. By (3.4.7)
written for a typical term with f = w, thanks to the imbedding theorem
in EPC , we get

|B(w,w, η)| ≤ m‖w‖2
EP

‖η‖EP
,

i.e., the functional is continuous and so we can apply the Riesz representa-
tion theorem to get

−B(w,w, η) = (c, η)EP
= a(c, η).

Being uniquely defined by w ∈ EPC , the element c ∈ EPC can be considered
as a value of a nonlinear operator

c = C(w), a(C(w), η) = −B(w,w, η). (3.4.8)

Before studying the properties of C we introduce
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Definition 3.4.2. An operator A mapping from a Banach space X to
a Banach space Y is called compact if it is continuous in X and takes
every bounded set of X into a precompact set in Y . An operator is called
completely continuous if it takes every weakly convergent sequence of X,
xn ⇀ x0, into a sequence A(xn) converging strongly to A(x0).

Lemma 3.4.1. A completely continuous operator F mapping a Hilbert
space X into a Banach space Y is compact.

Proof. F is continuous since when a sequence {xn} converges to x0 strongly
in X then it converges to x0 weakly, too.

Next we take a bounded set S in X and let {xn} be a sequence lying in S.
From {xn}, thanks to its boundedness, we can choose a subsequence {xnk

}
converging weakly to x0 ∈ X. Then, by definition of complete continuity,
we get the sequence {F (xnk

)} converging to F (x0) strongly. This means
F (S) is precompact, hence F is compact.

It is known that there are compact operators in a Hilbert space which
are not completely continuous.

Corollary 3.4.1. If F (x) is a completely continuous operator, then the
functional ‖F (x)‖2 is a weakly continuous functional in X.

The proof is evident. Now we can prove

Lemma 3.4.2. The operator C(w) defined by (3.4.8) is completely con-
tinuous.

Proof. When the functions u, v, w ∈ EPC are smooth, direct integration by
parts gives

B(u, v, w) = B(v, u, w) = B(v, w, u) = B(w, u, v); (3.4.9)

the limit passage shows that this is valid for u, v, w ∈ EPC . So

−B(w,w, η) =
∫

Ω

{(
∂w

∂x

)2
∂2η

∂y2 +
(
∂w

∂y

)2
∂2η

∂x2 − 2
∂w

∂x

∂w

∂y

∂2η

∂x∂y

}
dΩ.

Next we take an arbitrary sequence {wn} converging weakly to w0 in EPC

and consider

|a(C(wn) − C(w0), η)| = |B(wn, wn, η) −B(w0, w0, η)|.
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Using the Hölder inequality, we bound a typical term of the right-hand side
of this equality as follows:

dn =

∣∣∣∣∣
∫

Ω

[(
∂wn

∂x

)2

−
(
∂w0

∂x

)2
]
∂2η

∂y2 dΩ

∣∣∣∣∣
=
∣∣∣∣∫

Ω

(
∂wn

∂x
− ∂w0

∂x

)(
∂wn

∂x
+
∂w0

∂x

)
∂2η

∂y2 dΩ
∣∣∣∣

≤
∥∥∥∥∂wn

∂x
− ∂w0

∂x

∥∥∥∥
L4(Ω)

(∥∥∥∥∂wn

∂x

∥∥∥∥
L4(Ω)

+
∥∥∥∥∂w0

∂x

∥∥∥∥
L4(Ω)

)∥∥∥∥∂2η

∂y2

∥∥∥∥
L2(Ω)

.

By the imbedding theorem in EPC , which is a subspace of W 2,2(Ω), we get

dn ≤ m1

∥∥∥∥∂wn

∂x
− ∂w0

∂x

∥∥∥∥
L4(Ω)

(‖wn‖EP
+ ‖w0‖EP

)‖η‖EP

and, thanks to the boundedness of a weakly convergent sequence,

dn ≤ m2‖wn − w0‖W 1,4(Ω)‖η‖EP

where m1 and m2 are constants.
Gathering all such bounds, we obtain

|a(C(wn) − C(w0), η)| ≤ m3‖wn − w0‖W 1,4(Ω)‖η‖EP
.

Putting η = C(wn) − C(w0), we finally obtain

‖C(wn) − C(w0)‖EP
≤ m3‖wn − w0‖W 1,4(Ω) → 0 as n → ∞

since the imbedding operator of W 2,2(Ω) into W 1,4(Ω) is completely con-
tinuous (a particular case of Sobolev’s imbedding theorems in W 2,2(Ω)).
The last limit passage shows that C is completely continuous.

From this lemma we see that (3.4.6) with a given w ∈ EPC has the
unique solution

f = C(w). (3.4.10)

If {wn} converges to w0 weakly in EPC , then {fn} = {C(wn)} converges
to f0 = C(w0) strongly in EPC .

From now on we consider f in (3.4.5) to be determined by (3.4.10).
For a fixed w ∈ EPC , by bounds of the type (3.4.7), we see that the

functional
B(f, w, ϕ) +

∫
Ω
qϕ dΩ

is linear and continuous with respect to ϕ ∈ EPC . So applying the Riesz
representation theorem, we have a representation

B(f, w, ϕ) +
∫

Ω
qϕ dΩ = a(U,ϕ)
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where U ∈ EPC is uniquely determined by w ∈ EPC ; so we define an
operator G, U = G(w), acting in EPC , by

B(f, w, ϕ) +
∫

Ω
qϕ dΩ = a(G(w), ϕ). (3.4.11)

In much the same way that Lemma 3.4.2 is proved we can establish

Lemma 3.4.3. G is a completely continuous operator in EPC .

Now the following is evident:

Lemma 3.4.4. The system of equations (3.4.5)–(3.4.6) defining a gen-
eralized solution of the problem under consideration is equivalent to the
operator equation

w = G(w) (3.4.12)

with a completely continuous operator G acting in EPC .

Now we introduce a functional

I(w) =
1
2
a(w,w) +

1
4
a(f, f) −

∫
Ω
qw dΩ

where, as we said, f is defined by (3.4.8).
The decisive point of this section is

Lemma 3.4.5. For every w ∈ EPC , we have

grad I(w) = w −G(w). (3.4.13)

Proof. In accordance with the definition of the gradient of a functional, we
consider

dI(w + tϕ)
dt

∣∣∣
t=0

=
1
2
d

dt
a(w+ tϕ, w+ tϕ)

∣∣∣
t=0

+
1
2
a

(
f,
df

dt

) ∣∣∣
t=0

−
∫

Ω
qϕ dΩ

where f = C(w + tϕ). It is clear that

1
2
d

dt
a(w + tϕ, w + tϕ)

∣∣
t=0 = a(w,ϕ).

Using the definition (3.4.8) of C, with regard for the equality B(w,ϕ, η) =
B(ϕ,w, η), a particular case of (3.4.9), we calculate directly that

a

(
df

dt

∣∣∣
t=0

, η

)
= −2B(w,ϕ, η)

and so

a

(
f,
df

dt

) ∣∣∣
t=0

= −2B(w,ϕ, f) = −2B(f, w, ϕ).
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It follows that

dI(w + tϕ)
dt

∣∣∣
t=0

= a(w,ϕ) −B(f, w, ϕ) −
∫

Ω
qϕ dΩ

and, thanks to (3.4.11),

dI(w + tϕ)
dt

∣∣∣
t=0

= a(w,ϕ) − a(G(w), ϕ) = a(w −G(w), ϕ).

This, by definition of the gradient of a functional, means that (3.4.13)
holds.

Combining Lemmas 3.4.3 and 3.4.4, we have

Lemma 3.4.6. A critical point w of I(w) defines the pair (w,G(w)) that
is a generalized solution of the problem under consideration.

So we reduce the problem of finding a generalized solution of the problem
to the problem of the minimum of a functional (it is not equivalent as there
are in general solutions which are not points of minimum of the functional).

To apply Theorem 3.3.3, it remains to verify

Lemma 3.4.7. The functional 2I(w) is growing and has the form

‖w‖2
EP

+ Φ1(w)

where

Φ1(w) =
1
2
a(f, f) − 2

∫
Ω
qw dΩ

is a weakly continuous functional, f being defined by (3.4.10).

Proof. 2I(w) is growing since

2I(w) ≥ a(w,w) − 2
∣∣∣∣∫

Ω
qw dΩ

∣∣∣∣ = ‖w‖2
EP

− 2
∣∣∣∣∫

Ω
qw dΩ

∣∣∣∣
and

2I(w) ≥ ‖w‖2
EP

−m‖w‖EP
→ ∞ if ‖w‖EP

→ ∞
as q is assumed to be such that

∫
Ω qw dΩ is a continuous functional with

respect to w ∈ EPC .
Weak continuity of Φ1(w) is a consequence of Corollary 3.4.1 and Lemma

3.4.2 for a(f, f) = ‖C(w)‖2
EP

and the fact that the continuous linear func-
tional

∫
Ω qw dΩ is weakly continuous (by definition).

So we can reformulate Theorem 3.3.3 in the case of the plate problem as
follows
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Theorem 3.4.1. Assume q is such that
∫
Ω qw dΩ is a continuous linear

functional with respect to w in EPC . Then any critical point of the grow-
ing functional I(w) which has at least one point of absolute minimum is a
generalized solution of the plate problem in the sense of Definition 3.4.1;
any minimizing sequence of I(w) contains at least one subsequence which
converges strongly to a generalized solution of the problem; each of the
weak limit points of the minimizing sequence, which are strong limit points
simultaneously, is a generalized solution to the problem under considera-
tion.

The reader can also reformulate Theorem 3.3.4 in the present case to
justify application of the Ritz method (and thus the method of finite el-
ements) to von Kármán equations. Note that in this modification of the
method we must find f exactly from (3.4.6). But it is not too difficult to
show that f can be found approximately, also by the Ritz method, and the
corresponding theorem on convergence remains valid in the present case.

3.5 Buckling of a Thin Elastic Shell

Following an article by I.I. Vorovich [27] (and [28]), we now consider a
buckling problem for a shallow elastic shell described by equations of von
Kármán’s type. We want to study stability of the momentless state (here
w = 0) of the shell. Assume the external load to be proportional to a
parameter λ. For every λ, existence of the momentless state of the shell is
seen. We formulate the equations of equilibrium as follows:

∆2w = −λ
(
T1
∂2w

∂x2 + T2
∂2w

∂y2 + 2T12
∂2w

∂x∂y
− F1

∂w

∂x
− F2

∂w

∂y

)
+

+ [f, w + z],

∆2f = − {2[z, w] + [w,w]} . (3.5.1)

We study a problem with Dirichlet conditions

w
∣∣
∂Ω =

∂w

∂n

∣∣∣
∂Ω

= f
∣∣
∂Ω =

∂f

∂n

∣∣∣
∂Ω

= 0. (3.5.2)

Here z = z(x, y) ∈ C(3)(Ω) is the equation of mid-surface of the shell. It is
supposed that the tangential stresses T1, T2, T12 are given, belong to L2(Ω)
and, as assumed during derivation of the equations, satisfy equations of
the two-dimensional theory of elasticity with forces (F1, F2). Other bits of
notation are taken from the previous section.
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The equations of a generalized statement of the problem under consid-
eration are as follows:

a(w,ϕ) = λ

∫
Ω

[
T1
∂w

∂x

∂ϕ

∂x
+ T2

∂w

∂y

∂ϕ

∂y
+ T12

(
∂w

∂x

∂ϕ

∂y
+
∂w

∂y

∂ϕ

∂x

)]
dx dy

+B(f, w + z, ϕ), (3.5.3)

a(f, η) = −2B(z, w, η) −B(w,w, η). (3.5.4)

Using standard variational tools, we can derive from these the equations
(3.5.1) if a solution is assumed to be sufficiently smooth; conversely, we can
derive (3.5.1) from (3.5.3)–(3.5.4). So we can take the latter equations to
formulate

Definition 3.5.1. A pair w, f from EPC is called a generalized solution to
the problem (3.5.1)–(3.5.2) if it satisfies the integro-differential equations
(3.5.3)–(3.5.4) for any ϕ, η ∈ EPC

The problem under consideration has a trivial solution w = f = 0. We
are interested in when there exists a nontrivial solution, i.e., in solving a
nonlinear eigenvalue problem.

First we mention that, as in Section 3.4, we solve the equation (3.5.4)
and then exclude f ∈ EPC from the equation (3.5.3) using the solution f
of (3.5.4) when w ∈ EPC is given. It is clear that

f = f1 + f2

where the fi are defined by the equations

a(f1, η) = −2B(z, w, η), a(f2, η) = −B(w,w, η).

Using the Riesz representation theorem we can find from these that

f1 = Lw, f2 = C(w). (3.5.5)

In Section 3.4 it was shown that C(w) is a completely continuous oper-
ator. The same is valid for the linear operator L (we leave it to the reader
to show this).

In Section 2.5, we introduced the self-adjoint bounded operator C that
is now redenoted as K. It is defined by

a(Kw,ϕ) =
∫

Ω

[
T1
∂w

∂x

∂ϕ

∂x
+ T12

(
∂w

∂x

∂ϕ

∂y
+
∂w

∂y

∂ϕ

∂x

)
+ T2

∂w

∂y

∂ϕ

∂y

]
dx dy.

K is compact in EPC as follows from Sobolev’s imbedding theorem.
Applying the Riesz representation theorem to the relation (3.5.3) wherein

f is defined by (3.5.5), we find an operator equation for a generalized
solution of the problem under consideration

w −G(λ,w) = 0. (3.5.6)



3.5 Buckling of a Thin Elastic Shell 197

The next point is to define a functional whose critical points are solutions
to (3.5.6). It is

I(λ,w) =
1
2
a(w,w) +

1
4
a(f, f) − λJ(w)

where

J(w) =
1
2

∫
Ω

[
T1

(
∂w

∂x

)2

+ 2T12
∂w

∂x

∂w

∂y
+ T2

(
∂w

∂y

)2
]
dx dy.

I(λ,w) is the total energy of the system “shell-load.”

Lemma 3.5.1. For every w ∈ EPC we have

grad I(λ,w) = w −G(λ,w). (3.5.7)

The proof is similar to that for Lemma 3.4.4 and is omitted, as is the
proof that G(λ,w) is a completely continuous operator in w ∈ EPC .

Next we consider the functional a(f, f). It is seen that

a(f, f) = a(f1, f1) +A3(w) +A4(w),
A3(w) = 2a(f1, f2) = −4B(z, w, f2),

A4(w) = a(f2, f2) =
1
2
B(f2, w, w).

Here Ak(w) is a homogeneous function of order k with respect to w, i.e.,

Ak(tw) = tkAk(w).

We leave it to the reader to show that a(f, f), along with each of its parts,
is a weakly continuous functional on EPC (for a(f, f), this is a consequence
of Corollary 3.4.1).

It is evident that J(w) is a weakly continuous functional in EPC . So we
have

Lemma 3.5.2. For every real number λ, the functional I(λ,w) takes the
form

I(λ,w) =
1
2
‖w‖2

EP C
+ Ψ(λ,w), Ψ(λ,w) =

1
4
a(f, f) − λJ(w),

where Ψ(λ,w) is a weakly continuous functional.

From now on, we assume that

J(w) > 0 if w �= 0, w ∈ EPC . (3.5.8)

This assumption has the physical implication that almost everywhere in
the shell the stress state of the shell is compressive.
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To study stability of the non-buckled state of the shell (that is, when
w = 0), beginning from L. Euler’s work on stability of a bar, one solves the
linearized (here around zero state) eigenvalue problem that is now

grad
[
1
2
a(w,w) +

1
4
a(f1, f1)

]
= λ gradJ(w). (3.5.9)

The lowest eigenvalue of the latter, denoted λE and called the Euler lowest
critical value, is usually considered as a value when the main, trivial form
of equilibrium of the shell becomes unstable. We shall analyze this method
for the shell.

We begin with the eigenvalue problem (3.5.9).

Lemma 3.5.3. There is a countable set λk of eigenvalues λk > 0 of the
equation (3.5.9) considered in EPC .

Proof. We first mention that the scalar product

〈w,ϕ〉 = a(w,ϕ) +
1
2
a(Lw,Lϕ), f1 = Lw,

induces the norm in EPC which is equivalent to the usual one since

a(w,w) ≤ 〈w,w〉 ≤ ma(w,w).

Using the new norm, we can rewrite (3.5.9) in the form

w = λK1w

where K1 is determined, thanks to the Riesz representation theorem, by
the equality

〈K1w,ϕ〉 =
∫

Ω

[
T1
∂w

∂x

∂ϕ

∂x
+ T12

(
∂w

∂x

∂ϕ

∂y
+
∂w

∂y

∂ϕ

∂x

)
+ T2

∂w

∂y

∂ϕ

∂y

]
dx dy.

It is easily seen that K1, as well as K, is strictly positive, self-adjoint, and
compact, and thus we can use Theorem 2.14.2 which gives even more than
the lemma states.

For the trivial solution w = f = 0, the total energy I(λ,w) = 0. A state
of the shell at which I(λ,w) takes its minimal value is, in a certain sense,
stable. So it is of interest what is the range of λ in which I(λ,w) can take
negative values.

Theorem 3.5.1. Assume T1, T12, T2 ∈ L2(Ω) and wE is an eigenfunction of
the linearized boundary value problem (3.5.9) corresponding to its smallest
eigenvalue λE , the Euler critical value. Then for every λ of the half-line

λ > λ∗ ≡ λE − A2
3(wE)

4A4(wE)J(wE)
(3.5.10)

there exists at least one nontrivial solution of the nonlinear boundary value
problem (3.5.6) at which I(λ,w) is negative.
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The proof is a consequence of the following three lemmas. The first of
them is auxiliary.

Lemma 3.5.4. Assume that w ∈ EPC satisfies

∂2w

∂x2

∂2w

∂y2 −
(
∂2w

∂x∂y

)2

= 0 (3.5.11)

in the sense of L1(Ω) (almost everywhere in Ω). Then w = 0.

Proof. If w ∈ C(2)(Ω), then (3.5.11) means the Gaussian curvature of the
surface z = w(x, y) vanishes so the surface is developable and, thanks to
the boundary conditions (3.5.2), w = 0.

If w /∈ C(2)(Ω), we take another route. For arbitrary w ∈ EPC , F ∈
W 2,2(Ω), the following formula holds:∫

Ω

[(
∂2F

∂x∂y

∂w

∂y
− ∂2F

∂y2

∂w

∂x

)
∂w

∂x
+
(
∂2F

∂x∂y

∂w

∂x
− ∂2F

∂x2

∂w

∂y

)
∂w

∂y

]
dx dy

= 2
∫

Ω

[
∂2w

∂x2

∂2w

∂y2 −
(
∂2w

∂x∂y

)2
]
F dx dy. (3.5.12)

(This is easily seen after integrating by parts for smooth functions; the
limit passage shows that it is valid for the needed classes.) In (3.5.12) we
put

F =
1
2
(x2 + y2)

which gives for w satisfying (3.5.11)∫
Ω

[(
∂w

∂x

)2

+
(
∂w

∂y

)2
]
dx dy = 0.

This, together with the boundary conditions for w, completes the proof.

Lemma 3.5.5. The functional I(λ,w) is growing for every λ > 0; that is,
we have I(λ,w) → ∞ as ‖w‖EP

→ ∞.

Proof. On the unit sphere S = {w : a(w,w) = 1} of EPC consider the set
S1 defined by

1
2
a(w,w) − λJ(w) >

1
4
.

Then on the image of S1 under the mapping w �→ Rw, we get

I(λ,Rw) ≥ 1
2
a(Rw,Rw) − λJ(Rw)

= R2
[
1
2
a(w,w) − λJ(w)

]
>

1
4
R2, w ∈ S1. (3.5.13)
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Next consider I(λ,Rw) when w ∈ S2 = S \ S1. Here

1
2
a(w,w) − λJ(w) ≤ 1

4
. (3.5.14)

Let us introduce the weak closure of S2 in EPC , denoted by ClS2. First we
show that ClS2 does not contain zero. If to the contrary it does contain
zero then there is a sequence {wn} ∈ ClS2 such that a(wn, wn) = 1 and
wn ⇀ 0 in EPC (or, equivalently, in W 2,2(Ω)). By the imbedding theorem
in W 2,2(Ω), the sequences of first derivatives of {wn} tend to zero strongly
in Lp(Ω) for any p < ∞ and thus J(wn) → 0, which contradicts (3.5.14)
since

1
2

≡ 1
2
a(wn, wn) ≤ 1

4
+ λJ(wn).

Next we show that for all w ∈ ClS2,

A4(w) ≥ c∗ (3.5.15)

wherein c∗ is a positive constant. Indeed, if (3.5.15) is not valid there is a
sequence {wn} ∈ ClS2 such that A4(wn) → 0 as n → ∞. This sequence
contains a subsequence which converges weakly to w0 belonging to ClS2
too. Since A4 is a weakly continuous functional,

A4(w0) = 0.

This means that
a(f2, f2) = 0, f2 = C(w0).

Returning to (3.5.5), we get

B(w0, w0, η) = 0

or, equivalently, ∫
Ω

[
∂2w0

∂x2

∂2w0

∂y2 −
(
∂2w0

∂x∂y

)2
]
η dx dy = 0

for any η ∈ EPC . As EPC is dense in L2(Ω),

∂2w0

∂x2

∂2w0

∂y2 −
(
∂2w0

∂x∂y

)2

= 0

almost everywhere in Ω and, by Lemma 3.5.3, it follows that w0(x, y) = 0.
This contradicts the fact that w0 belongs to ClS2 which does not contain
zero.

Since |A3(w)| ≤ c1 on S, we get, thanks to (3.5.15),

I(λ,Rw) ≥ c∗R4 −
(

1
4
R2 + c1R

3
)
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when w ∈ ClS2 and so for sufficiently large R, with regard for (3.5.13), we
obtain

I(λ,Rw) ≥ 1
4
R2

for all w ∈ S. This means that I(λ,w) is growing.

By Theorem 3.3.3 it follows that, for any λ, the functional I(λ,w) takes
its minimal value in EPC . But w = 0 is also a critical point of the functional,
so to conclude the proof of Theorem 3.5.1 we formulate

Lemma 3.5.6. Under the conditions of Theorem 3.5.1, the minimal value
of I(λ,w) is negative if λ satisfies (3.5.10).

Proof. Consider I(λ, cwE) where c is a constant. It is seen that

I(λ, cwE) = c2
[
1
2
a(wE , wE) +

1
4
a(LwE , LwE) − λJ(wE)

]
+

+ c3A3(wE) + c4A4(wE), (f1 = LwE).

Further, from (3.5.9) it follows that

1
2
a(wE , wE) +

1
4
a(LwE , LwE) = λEJ(wE).

Hence

I(λ, cwE) = c2
[
(λE − λ)J(wE) + cA3(wE) + c2A4(wE)

]
.

The minimum of I(λ, cwE)/c2 considered as a function of the real variable
c is taken at

c0 = −1
2
A3(wE)/A4(wE);

this minimum is equal to

min
c

(c−2I(λ, cwE)) = (λE − λ)J(wE) −A2
3(wE)/A4(wE).

So for λ satisfying (3.5.10), we get

I(λ, c0wE) < 0

and thus at w0, a minimizer of I(λ,w) at the same λ,

I(λ,w0) < 0.

This completes the proof of the lemma, and therefore of Theorem 3.5.1.

A very important result follows from Theorem 3.5.1.
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Corollary 3.5.1. Assume that there is an eigenfunction wE corresponding
to the Euler critical value λE such that

A3(wE) �= 0.

In this case we have a sharp inequality λ∗ < λE .

This result is of fundamental importance in the theory of stability of
shells, since from it we have that if A3(wE) �= 0, then the problem of
stability cannot be solved by linearization in the neighborhood of a mo-
mentless state of stress, used since Euler in the theory of stability of rods.
If A3(wE) �= 0, then we must investigate the problem of stability of a shell
in its nonlinear formulation.

Theorem 3.5.2. Let T1, T2, T12 ∈ L2(Ω). Then there is a value λl ≤ λ∗

such that for any λ < λl the nonlinear problem (3.5.6) has the unique
solution w = 0.

Proof. Assume w is a solution of (3.5.6), i.e., the pair w, f = Lw + C(w)
from EPC satisfies (3.5.3)–(3.5.4) for arbitrary ϕ, η ∈ EPC . Setting ϕ = w
and η = f in (3.5.3)–(3.5.4) we get

a(w,w) = 2λJ(w) +B(f, w,w) +B(f, z, w),
a(f, f) = −2B(z, w, f) −B(w,w, f).

Summing these equalities term by term, we have the identity

a(w,w) + a(f, f) = 2λJ(w) −B(z, f, w). (3.5.16)

Using the elementary inequality |ab| ≤ a2 + 1
4b

2, we get an estimate

|B(z, f, w)| =
∣∣∣∣∫

Ω

(
∂2f

∂x2

∂2z

∂x2 +
∂2f

∂y2

∂2z

∂y2 − 2
∂2f

∂x∂y

∂2z

∂x∂y

)
w dxdy

∣∣∣∣
≤
∫

Ω

[(
∂2f

∂x2

)2

+
(
∂2f

∂y2

)2

+ 2
(
∂2f

∂x∂y

)2
]
dx dy+

+
1
4

∫
Ω

[(
∂2z

∂x2

)2

+
(
∂2z

∂y2

)2

+ 2
(
∂2z

∂x∂y

)2
]
w2 dx dy.

Integrating by parts in the expression for a(f, f) gives

a(f, f) =
∫

Ω

[(
∂2f

∂x2

)2

+
(
∂2f

∂y2

)2

+ 2
(
∂2f

∂x∂y

)2
]
dx dy

and thus, from (3.5.16), it follows that

a(w,w) ≤ 2λJ(w) +
1
4

∫
Ω

[(
∂2z

∂x2

)2

+
(
∂2z

∂y2

)2

+ 2
(
∂2z

∂x∂y

)2
]
w2 dx dy.

(3.5.17)
Now we need a lemma which will be proved later.
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Lemma 3.5.7. On the surface S = {w | J(w) = 1} in EPC , the functional

I1(w) = a(w,w) − 1
4

∫
Ω

[(
∂2z

∂x2

)2

+
(
∂2z

∂y2

)2

+ 2
(
∂2z

∂x∂y

)2
]
w2 dx dy

has finite minimum denoted by 2λ∗∗.

We are continuing the proof. From this lemma, it follows that

I1(w) ≥ 2λ∗∗J(w)

since all of the functionals are homogeneous with respect to w of order 2.
Thus, from (3.5.17), we get

(2λ∗∗ − 2λ)J(w) ≤ 0,

from which it follows that if λ ≤ λ∗∗ then

J(w) ≤ 0.

This is possible only at w = 0, and the proof is complete.

Proof of Lemma 3.5.7. Assume {wn} is a minimizing sequence of I1(w)
on S and, by contradiction, that the minimum on S is not finite, i.e.,
I1(wn) → −∞ as n → ∞. It is quite obvious that ‖wn‖EP

→ ∞.
Define w∗

n = wn/‖wn‖EP
. We can consider the sequence {w∗

n} to be
weakly convergent to an element w∗

0 ∈ EPC . In this case

J(wn) = ‖wn‖2
EP
J(w∗

n)

so
J(w∗

n) = J(wn)/‖wn‖2
EP

→ 0 as n → ∞.

Since J is weakly continuous then J(w∗
0) = 0 and thus w∗

0 = 0. This means
that w∗

n ⇀ 0.
By the imbedding theorem we get

sup
Ω

|w∗
n(x, y)| → 0

and so

an =
∫

Ω

[(
∂2z

∂x2

)2

+
(
∂2z

∂y2

)2

+ 2
(
∂2z

∂x∂y

)2
]

(w∗
n)2 dx dy → 0 as n → ∞.

Thus

lim
n→∞ I1(wn) = lim

n→∞ ‖wn‖2
EP

(
1 − 1

4
an

)
= +∞,

a contradiction. Similar considerations demonstrate that a minimizing se-
quence {wn} of I1 is bounded. Then there is a subsequence that converges
weakly to an element w0. This element belongs to S since J(w) is weakly
continuous. The structure of I1 provides that I1(w0) = λ∗∗.
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As a result of Theorem 3.5.2 we get the estimates

−∞ < λ∗∗ ≤ λl ≤ λ∗ ≤ λE < ∞. (3.5.18)

From the statement of Lemma 3.5.7, it is seen that λ∗∗ can be defined as
the lowest eigenvalue of the boundary value problem

grad I1(w) = 2λ gradJ(w). (3.5.19)

Let us consider a particular case of a von Kármán plate. Here z(x, y) = 0
and thus the problem (3.5.19) takes the form

grad(a(w,w)) = 2λ gradJ(w).

But the equation (3.5.9) determining the λE for the plate coincides with
this one as f1 = Lw = 0 for a plate. Thus λE = λ∗∗ and (3.5.18) states
that λl = λE for the plate. This implies an important

Theorem 3.5.3. In the case of a plate (z(x, y) = 0), under the conditions
of Theorem 3.5.1, the equality λl = λE is satisfied. In other words, for
λ ≤ λE there is a unique generalized solution, w = 0, of the problem under
consideration; if λ > λE then there is another solution of the problem, at
which the functional of total energy of the plate is strictly negative.

This theorem establishes the possibility of applying Euler’s method of
linearization to the problem of stability of a plate.

We note that many works (not mentioned here) are devoted to math-
ematical questions in the theory of von Kármán’s plates and shells. The
corresponding boundary value problems of the theory are a touchstone of
abstract nonlinear mathematical theory because of their importance in ap-
plications, as well as their not too complicated form.

3.6 The Nonlinear Problem of Equilibrium of the
Theory of Elastic Shallow Shells

We consider another simple modification of the nonlinear theory of elastic
shallow shells when the geometry of the mid-surface of the shell is identified
with the geometry of a plane. This modification of the theory is widely
applied in engineering calculations. Nonlinear theory of shallow shells in
curvilinear coordinates is considered in [26] in detail.

We express the equations describing the behavior of the shell in a nota-
tion which is commonly used along with this version of the theory. Namely,
we let x, y denote the coordinates on the plane that is identified with the
mid-surface of the shell, u, v denote the tangential components of the vector
of displacements of the mid-surface, w denote the transverse displacement
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of the mid-surface, and subscripts x, y denote partial derivatives with re-
spect to x and y. The equations of equilibrium of the shell are

D∇4w +N1(k1 − wxx) +N2(k2 − wyy) − 2N12wxy − F = 0, (3.6.1)

∇2u+ (1 + µ)/(1 − µ)(ux + vy)x +
+ 2/(1 − µ)[(k1w)x + wxwxx + µ(k2w)x + µwywxy] +
+ wywxy + wxwyy = 0,

∇2v + (1 + µ)/(1 − µ)(ux + vy)y +
+ 2/(1 − µ)[(k2w)y + wywyy + µ(k1w)y + µwxwxy] +
+ wxwxy + wywxx = 0, (3.6.2)

D,E, µ being the elastic constants, 0 < µ < 1/2. We consider the shell
under the action of a transverse load F . The components of the tangential
strain tensor are

ε1 = ux + k1w +
1
2
w2

x, ε2 = vy + k2w +
1
2
w2

y, ε12 = uy + vx + wxwy.

(3.6.3)
Let us formulate the conditions under which we justify application of

Ritz’s method to a boundary value problem for the shell, and so for the
finite element method as well, and establish an existence theorem.

We suppose Ω, the domain occupied by the shell, satisfies the same condi-
tions we imposed earlier for the von Kármán plate. Let the shell be clamped
against the transverse translation at three points (xi, yi), i = 1, 2, 3, that
do not lie on the same straight line:

w(xi, yi) = 0. (3.6.4)

It is sufficient (but not necessary) to assume that

w
∣∣
Γ1

= 0 (3.6.5)

holds on a portion Γ1 of the boundary.
Let us call C4 the set of functions w belonging to C(4)(Ω) and satisfying

the conditions (3.6.4)–(3.6.5).
For the tangential displacements u, v, the minimal restrictions in this

consideration must be such that Korn’s inequality of two-dimensional elas-
ticity holds. That is (see Mikhlin [19]), we must have∫

Ω
(u2 + v2 + u2

x + u2
y + v2

x + v2
y) dx dy ≤ m

∫
Ω
[u2

x + (uy + vx)2 + v2
y] dx dy.

(3.6.6)
One of the possible restrictions under which (3.6.6) holds for all u, v with
the unique constant m is

u
∣∣
Γ2

= 0, v
∣∣
Γ2

= 0, (3.6.7)
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Γ2 being some part of the boundary of Ω.
Let us introduce the set C2 of vector functions ω = (u, v) with the

components belonging to C(2)(Ω) and satisfying (3.6.7).
We may suppose that some part of the boundary of the shell is elastically

supported (the corresponding term of the energy of the system should be
included into the expression of the energy norm) or that on some part of the
boundary there is given a transverse load (here the term that is the work
of the load on the boundary must be included into the energy functional).
We will not place these conditions in the differential form; they are well
known and can be derived from the variational statement of the problem.
The presence of these conditions has no practical impact on the way in
which we consider the problem.

Let us introduce energy spaces. Let E1 be a subspace of W 1,2(Ω) ×
W 1,2(Ω) that is the completion of the set C2 in the norm of W 1,2(Ω) ×
W 1,2(Ω). The Korn inequality (3.6.6) implies that on E1 the following
norm is equivalent:

‖ω‖2
E1

=
Eh

2(1 − µ2)

∫
Ω
[e21 + e22 + 2µe1e2 +

1
2
(1 − µ)e212] dx dy,

where
e1 = ux, e2 = vy, e12 = uy + vx,

and h is the shell thickness.
E2, a subspace of W 2,2(Ω), is the completion of C4 in the norm of

W 2,2(Ω). On E2 there is an equivalent norm (the energy norm we intro-
duced for the problem of bending of the plate):

‖w‖2
E2

=
1
2
D

∫
Ω
[(∇2w)2 + 2(1 − µ)(w2

xy − wxxwyy)] dx dy.

The norms on Ei induce the inner products that are denoted with use of
the names of corresponding spaces. Denote E1 × E2 by E.

Definition 3.6.1. u = (u, v, w) ∈ E is called a generalized solution of
the problem of equilibrium of a shallow shell if for an arbitrary δu =
(δu, δv, δw) ∈ E it satisfies the equation∫

Ω
(M1δκ1 +M2δκ2 + 2M12δχ+N1δε1 +N2δε2 +N12δε12) dx dy

=
∫

Ω
Fδw dx dy +

∫
∂Ω
fδw ds, (3.6.8)

where

M1 = D(κ1 + µκ2), M2 = D(κ2 + µκ1), M12 = D(1 − µ)χ,
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N1 =
Eh

1 − µ2 (ε1 + µε2), N2 =
Eh

1 − µ2 (ε2 + µε1), N12 =
Eh

2(1 + µ)
ε12,

κ1 = −wxx, κ2 = −wyy, χ = −wxy,

f being the external load on the edge of the shell.

We note that on the part of the boundary where δw = 0, it is not
necessary to show f . However we shall assume that on this part of the
boundary the function f = 0.

It is seen that all the stationary points of the energy functional

I(u) = ‖w‖2
E2

+
1
2

∫
Ω
(N1ε1 +N2ε2 +N12ε12) dx dy−

−
∫

Ω
Fw dx dy −

∫
∂Ω
fw ds (3.6.9)

are solutions to (3.6.8) since moving all the terms of (3.6.8) to the left-hand
side we get on the left in (3.6.8) the expression for the first variation of the
functional I(u).

Let us note that for the correctness of Definition 3.6.1 it is necessary to
impose an additional requirement: the terms∫

Ω
Fδw dx dy +

∫
∂Ω
fδw ds

must make sense for any δw ∈ E2. The set of these loads is called E∗. By
Sobolev’s imbedding theorems, sufficient conditions for the loads to belong
to E∗ are:

F = F0 + F1

where F0 ∈ L(Ω) and F1 is a finite sum of δ-functions (point transverse
forces);

f = f0 + f1

where f0 ∈ L(∂Ω) and f1 is a finite sum of δ-functions (point transverse
forces on ∂Ω). Under these conditions, the functional∫

Ω
Fδw dx dy +

∫
∂Ω
fδw ds

is linear and continuous in δw ∈ E2.
By the Riesz representation theorem there exists the unique element

g ∈ E2 such that∫
Ω
Fδw dx dy +

∫
∂Ω
fδw ds = (g, δw)E2 . (3.6.10)
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Now we can represent I(u) in a more compact form:

I(u) = ‖w‖2
E2

+
1
2

∫
Ω
(N1ε1 +N2ε2 +N12ε12) dx dy − (g, w)E2 . (3.6.11)

Let us find the tangential displacements u1, u2 through w. For this con-
sider the equation∫

Ω
(N1δε1 +N2δε2 +N12δε12) dx dy = 0

in E1. Reasoning as was done earlier, we can easily establish that this
equation is uniquely solvable in E1 with respect to ω = (u1, u2); the solution
can be written as

ω = G(w),

where G is a completely continuous operator. Let us put this ω into the
expression of I(u). After this substitution, the functional I(u) depends only
on w; it is denoted by ℵ(w). Standard reasoning leads us to the statement
that any stationary point of ℵ(w) is a generalized solution of the problem
under consideration.

The functional ℵ(w) has a structure that is suitable for application of
Theorem 3.3.4. To justify the Ritz method it is enough to show that ℵ(w)
is growing. Let us demonstrate this.

Lemma 3.6.1. Let the external load belong to E∗. Then ℵ(w) is growing;
that is, ℵ(w) → ∞ when ‖w‖E2 → ∞.

Proof. The proof follows from considering the form of ℵ(w). Indeed, under
the above assumptions, we have

N1ε1 +N2ε2 + 2N12ε12 ≥ 0.

Then
|(g, δw)E2 | ≤ ‖g‖E2‖w‖E2 ,

so
ℵ(w) ≥ ‖w‖2

E2
− ‖g‖E2‖w‖E2 .

From this the lemma follows.

Thus we have

Theorem 3.6.1. Let the conditions of Lemma 3.6.1 hold. Then

(i) there is a generalized solution of the problem of equilibrium of the
shell that belongs to E2 and admits a minimum of the functional
ℵ(w);

(ii) any sequence {wn} minimizing the functional ℵ(w) in E2 contains a
subsequence that converges strongly to a generalized solution of the
problem;
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(iii) the equations of the Ritz method (and thus of Galerkin’s method and
so of any conforming modification of the finite element method) have
a solution in each approximation; the set of approximations contains
a subsequence that converges strongly to a generalized solution of the
problem in E2; moreover, any weakly converging subsequence of the
Ritz approximations converges strongly to a generalized solution of
the problem.

3.7 Degree Theory

This is only a sketch of degree theory of a map, which will be used in what
follows. We begin with an illuminating example.

Let f(z) be a function holomorphic on a closed domain D of the complex
plane, and let ∂D, the boundary of D, be smooth and let it not contain
zeros of f(z). Then, as is well known, the number defined by the integral

n =
∮

∂D

f ′(z)
f(z)

dz

is equal to the number of zeros of f(z) inside D with regard for their
multiplicity.

This is extended to more general classes of maps; this is the so-called
degree theory, a full presentation of which can be found in Schwartz [21].

The degree of a finite-dimensional vector-field Φ(x) : Rn → Rn, originally
due to L.E.J. Brouwer, is defined as follows. Let Φ(x) = (Φ1(x), . . . ,Φn(x))
be continuously differentiable on a bounded open domain D with the
boundary ∂D in Rn. Suppose p ∈ Rn does not belong to ∂D, then the set
Φ−1(p), the preimage of p inD, is discrete and, finally, at each x ∈ Φ−1(p),
the Jacobian

JΦ(x) = det
(
∂Φi

∂xj

)
does not vanish. Then the degree of Φ with respect to p and D is

deg(p,Φ, D) =
∑

Φ(x)=p
x∈D

signJΦ(x)

where sign JΦ(x) is the signum of JΦ(x).
If deg(p,Φ, D) �= 0, then there are solutions of the equation Φ(x) = p

in D. If p /∈ Φ(D) then deg(p,Φ, D) = 0 and so deg(p,Φ, D) determines,
in a certain way, the number of solutions of the equation Φ(x) = p.

If there are points x at which Φ(x) = p and JΦ(x) = 0, then we can
introduce the degree of the map using the limit passage. We can always
take a sequence of points pk → p such that JΦ(x) �= 0 at any x ∈ Φ−1(pk);
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the degree of Φ is now defined by

deg(p,Φ, D) = lim
k→∞

deg(pk,Φ, D).

It is shown that this number does not depend on the choice of the sequence
{pk} and also characterizes the number of solutions of the equation Φ(x) =
p in D.

The next step of the theory is to state it for Φ(x) being of C(D) (each
of the components of Φ(x) being of C(D)). This is done by using a limit
passage. Namely, for Φ(x), there is a sequence {Φk(x)} such that Φk(x) ∈
C(1)(D) and each component of Φk(x) converges uniformly on D to a
corresponding component of Φ(x). Then as is shown, there exists

lim
k→∞

deg(p,Φk, D)

which does not depend on the choice of {Φk(x)}; it is, by definition, the
degree of Φ(x) with respect to p and D.

As there is a one-to-one correspondence between Rn and n-dimensional
real Banach space, the notion of degree of a map is transferred to continuous
maps in the latter space. Moreover, it is seen how it can be determined for
a continuous map whose range is a finite-dimensional subspace of a Banach
space.

In the case of general operator in a Banach space, the notion was ex-
tended to operators of the form I + F with a compact operator F on a
real Banach space X by J. Leray and J. Schauder [15]. To do this, they
introduce an approximate operator as follows.

Let D be a bounded open domain in X with the boundary ∂D. As
F is a compact operator, F (D), the image of D, is compact. So, by the
Hausdorff criterion on compactness, there is a finite ε-net Nε = {xk | xk ∈
F (D); k = 1, . . . , n}, such that for every x ∈ D there is an integer k such
that ‖F (x) − xk‖ < ε. Finally, the approximate operator Fε is defined by

Fε(x) =
∑n

k=1 µk(x)xk∑n
k=1 µk(x)

, x ∈ D

where µk(x) = 0 if ‖F (x) − xk‖ > ε and µk = ε− ‖F (x) − xk‖ if ‖F (x) −
xk‖ ≤ ε. This operator is called the Schauder projection operator.

It is easily seen that the range of Fε(x) is a domain in a finite dimensional
subspace Xn of X, the operator Fε is continuous, and, moreover,

‖F (x) − Fε(x)‖ ≤ ε

when x ∈ D.
By the above, we can introduce the degree of I + Fε with respect to p

and Dn = D ∩Xn if p /∈ (I + Fε)(∂Dn). As is shown in Schwartz [21], for
sufficiently small ε > 0 the degree deg(p, I + Fε, Dn) is the same and thus
it is defined as the degree of the operator I + F with respect to p and D.
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The following properties of the degree of an operator I+F with compact
operator F hold:

1. If x+ F (x) �= p in D, then deg(p, I + F,D) = 0;

2. if deg(p, I +F,D) �= 0, then in D there is at least one solution to the
equation x+ F (x) = p;

3. deg(p, I,D) = +1 if p ∈ D;

4. if D = ∪iDi where the family {Di} is disjoint and ∂Di ⊂ ∂D, then

deg(p, I + F,D) =
∑

i

deg(p, I + F,Di);

5. deg(p, I + F,D) is continuous with respect to p and F ;

6. (invariance under homotopy) Let Φ(x, t) = x+ Ψ(x, t). Assume that
for every t ∈ [a, b] the operator Φ(x, t) is compact with respect to x ∈
X and continuous in t ∈ [a, b] uniformly with respect to x ∈ D. Then
the operators Ψa = Ψ(·, a) and Ψb = Ψ(·, b) are said to be compact
homotopic. Let Ψa and Ψb be compact homotopic and p �= x+Ψ(x, t)
for every x ∈ ∂D and t ∈ [a, b]; then

deg(p, I + Ψa, D) = deg(p, I + Ψb, D).

The sixth and third properties give a result that is frequently used to
establish existence of solution of the equation

x+ F (x) = 0. (3.7.1)

We formulate it as

Lemma 3.7.1. Assume F (x) is a compact operator in a Banach space X
and the equation x+ tF (x) = 0 has no solutions on a sphere ‖x‖ = R for
any t ∈ [a, b]. Then in the ball B = {x | ‖x‖ < R} there exists at least one
solution to (3.7.1) and

deg(0, I + F,B) = +1.

In the next section we demonstrate an application of the lemma.

3.8 Steady-State Flow of Viscous Liquid

Following I.I. Vorovich and V.I. Yudovich [27], we consider the steady-
state flow of a viscous incompressible liquid described by the Navier–Stokes
equations

ν∆v = (v · ∇)v + ∇p+ f , (3.8.1)
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∇ · v = 0. (3.8.2)

Let ν > 0. We are treating a problem with boundary condition

v
∣∣
∂Ω = α. (3.8.3)

From now on, we assume:

(i) Ω is a bounded domain in R2 or R3 whose boundary ∂Ω consists of r
closed curves or surfaces Sk, k = 1, . . . , r with continuous curvature.

(ii) There is a continuously differentiable vector-function

a(x) = (a1(x), a2(x), a3(x))

such that

ak(x) ∈ C(1)(Ω), ∇ · a = 0 in Ω, a
∣∣
∂Ω = α.

(iii) On each Sk, k = 1, . . . , r, we have∫
Sk

α · n dS = 0 (3.8.4)

where n is the unit outward normal at a point of Sk.

We note that the condition
r∑

k=1

∫
Sk

α · n dS = 0

is necessary for solvability of the problem.
Let H(Ω) be the completion of the set S0(Ω) of all smooth solenoidal

vector-functions u(x) satisfying the boundary condition, in the norm in-
duced by the scalar product

(u,v)H(Ω) =
∫

Ω
∇u · ∇v dΩ ≡

∫
Ω

rotu · rotv dΩ

and so each of the components of u(x) ∈ H(Ω) is of W 1,2(Ω). Thus in the
three dimensional case, the imbedding operator of H(Ω) into (Lp(Ω))3 is
continuous when 1 ≤ p ≤ 6 and compact when 1 ≤ p < 6; in the two
dimensional case, the imbedding operator is compact into (Lp(Ω))2 for any
1 ≤ p < ∞.

We assume

(iv) fk(x) ∈ Lp(Ω), p ≥ 6/5 in the three dimensional case (k = 1, 2, 3),
p > 1 in the two dimensional case (k = 1, 2).
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Definition 3.8.1. v(x) = a(x)+u(x) is called a generalized solution to the
problem (3.8.1)–(3.8.3) if u(x) ∈ H(Ω) and satisfies the integro-differential
equation

ν(u,Φ)H(Ω) = −
∫

Ω
[(u · ∇)u · Φ + (u · ∇)a · Φ + (a · ∇)u · Φ+

+ (a · ∇)a · Φ + ν rota · rotΦ + f · Φ] dΩ (3.8.5)

for any Φ ∈ H(Ω).

It is easily seen that if a(x) and u(x) belong to C(2)(Ω) then v(x) is a
classical solution to the problem (3.8.1)–(3.8.3).

Note that there are infinitely many vectors a(x) satisfying the assump-
tion (ii) if there is one, but the set of generalized solutions does not depend
on the choice of a(x).

To use Lemma 3.7.1, we reduce equation (3.8.5) to the operator form
u + F (u) = 0, defining F with use of the Riesz representation theorem
from the equality

ν(F (u),Φ)H(Ω) =
∫

Ω
[(u · ∇)u · Φ + (u · ∇)a · Φ + (a · ∇)u · Φ+

+ (a · ∇)a · Φ + ν rota · rotΦ + f · Φ] dΩ. (3.8.6)

The estimates needed to prove that the right-hand side of (3.8.6) is a con-
tinuous linear functional in H(Ω) with respect to Φ follow from traditional
estimates of the terms using the Hölder inequality. But we now show a
sharper result; namely,

Lemma 3.8.1. F is a completely continuous operator in H(Ω).

Proof. Let {un(x)} be a weakly convergent sequence in H(Ω). Then it
converges strongly in (L4(Ω))k (k = 2 or 3). From (3.8.6), we get

ν|(F (um) − F (un),Φ)H(Ω)| =

=
∣∣∣ ∫

Ω
{[(um − un) · ∇]um · Φ − (un · ∇)(um − un) · Φ+

+ [(um − un) · ∇]a · Φ + (a · ∇)(um − un) · Φ} dΩ
∣∣∣

≤ M‖um − un‖L4(Ω)‖Φ‖H(Ω)

with a constant M which does not depend on m,n, or Φ. Setting

Φ = F (um) − F (un)

in the inequality, we obtain

ν‖F (um) − F (un)‖H(Ω) ≤ M‖um − un‖(L4(Ω))k → 0

when m,n → ∞, and so F is completely continuous.
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From Definition 3.8.1 it follows that

Lemma 3.8.2. A generalized solution of the problem under consideration
in the sense of Definition 3.8.1 satisfies the operator equation

u + F (u) = 0; (3.8.7)

conversely, a solution to (3.8.7) is a generalized solution of the problem.

By Lemma 3.7.1, it now suffices to show that all solutions of the equation
u+tF (u) = 0, for all t ∈ [0, 1], lie in a sphere ‖u‖H(Ω) ≤ R for some R < ∞.
First we show this in the simpler case of homogeneous boundary condition
(3.8.3). Here α = 0 and thus a(x) = 0.

Theorem 3.8.1. The problem (3.8.1)–(3.8.3) with α = 0 has at least
one generalized solution in the sense of Definition 3.8.1. Each generalized
solution u(x) is bounded, ‖u‖H(Ω) < R for some R < ∞ and the degree of
I + F with respect to 0 and D = {u ∈ H(Ω) | ‖u‖ < R} is +1.

Proof. As was said, it suffices to show an a priori estimate for solutions to
the equation u + tF (u) = 0 for t ∈ [0, 1]. For a solution, there holds the
identity

(u + tF (u),u)H(Ω) = 0

or, the same,

ν(u,u)H(Ω) + t

∫
Ω
(u · ∇)u · u dΩ = −t

∫
Ω

f · u dΩ.

Integration by parts gives∫
Ω
(u · ∇)u · u dΩ =

1
2

∫
Ω

∑
k

uk
∂

∂xk
(u · u) dΩ

= −1
2

∫
Ω
(u · u)(∇ · u) dΩ = 0 (3.8.8)

since ∇ · u = 0 and thus, for a solution u, we get

|ν(u,u)H(Ω)| =
∣∣∣∣t∫

Ω
f · u dΩ

∣∣∣∣ ≤ νR

2
‖f‖Lp(Ω)‖u‖H(Ω)

with some constant R, or
‖u‖H(Ω) < R.

This completes the proof.

Now we consider the more complicated case of nonhomogeneous bound-
ary conditions (3.8.3). We need some auxiliary results.

Let ωε be a domain in Ω which consists of points covered by all inward
normals to ∂Ω of the length ε. For sufficiently small ε > 0, these normals
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do not intersect and thus in ωε we can use a coordinate system pointing
out for a x ∈ ωε a point Q on ∂Ω and a number s, the distance from Q to
x along the corresponding normal. So for a function g(x) given on ωε, we
write down g(s,Q).

Lemma 3.8.3. There is a solenoidal vector function aε(x) ∈ (C(1)(Ω))k

such that aε(x) = 0 in Ω \ ωε,

aε(x)
∣∣
∂Ω = α, and |aε(x)| ≤ M1/ε in Ω (3.8.9)

with a constant M1 not depending on ε.

Proof. Let us introduce a function q(x) by

q(s,Q) =

{
(ε2 − s2)2/ε4, 0 ≤ s ≤ ε,

0, s > ε.

Let a(x) be a solenoidal vector-function satisfying the assumption (ii) of the
beginning of the section. Under the taken assumptions, there is a vector-
function p(x) such that

a(x) = rotp(x).

It is seen that the vector function aε(x) = rot(qp) is needed.
Note that in the plane case, this is a vector (0, 0, qψ) where ψ(x1, x2) is

the flow function of a(x).

Lemma 3.8.4. For u ∈ H(Ω), we have∫
ωε

|u|2 dΩ ≤ M2
2 ε

2
∫

ωε

∑
i,j

∣∣∣∣ ∂ui

∂xj

∣∣∣∣2 dΩ (3.8.10)

with a constant M2 not depending on u or ε.

Proof. We show (3.8.10) for a smooth function. The limit passage will prove
the general case. So for points of ωε we have

u(s,Q) =
∫ s

0

∂u(t, Q)
∂t

dt.

By the Cauchy inequality∫ ε

0
|u(t, Q)|2 dt =

∫ ε

0

∣∣∣∣∫ s

0

∂u(t, Q)
∂t

dt

∣∣∣∣2 ds
≤
∫ ε

0
s

∫ s

0

∣∣∣∣∂u(t, Q)
∂t

∣∣∣∣2 dt ds
≤ ε2

2

∫ ε

0

∣∣∣∣∂u(t, Q)
∂t

∣∣∣∣2 dt.
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It is easily seen that for any g(x)

m1

∫ ε

0

∫
∂Ω
g2(s,Q) ds dS ≤

∫
ωε

g2 dΩ ≤ m2

∫ ε

0

∫
∂Ω
g2(s,Q) ds dS

and so ∫
ωε

|u|2 dΩ ≤ m2

∫
∂Ω

∫ ε

0
|u(s,Q)|2 ds dS

≤ m2

∫
∂Ω

ε2

2

∫ ε

0

∣∣∣∣∂u∂t
∣∣∣∣2 dt dS

≤ m2

2m1
ε2
∫

ωε

∑
i,j

∣∣∣∣ ∂ui

∂xj

∣∣∣∣2 dΩ.

To apply degree theory to the problem under consideration, it remains
to establish

Lemma 3.8.5. All solutions of the equation

u + tF (u) = 0 (3.8.11)

for all t ∈ [0, 1], are in a ball ‖u‖H(Ω) < R whose radius R depends only
on f , ∂Ω, a, and ν.

Proof. Suppose that the set of solutions to (3.8.11) is unbounded. This
means there is a sequence {tk} ⊂ [0, 1] and a corresponding sequence {uk}
such that uk + tkF (uk) = 0 and

‖uk‖H(Ω) → ∞ as k → ∞. (3.8.12)

Without loss of generality, we can consider {tk} to be convergent to t0 ∈
[0, 1] and, moreover, the sequence {u∗

k}, u∗
k = uk/‖uk‖H(Ω), to be weakly

convergent to an element u0 ∈ H(Ω) since {u∗
k} is bounded.

Let us consider the identity (uk + tkF (uk),uk) = 0, namely,

−ν‖uk‖2
H(Ω) = tk

∫
ωε

(aε · ∇)uk · uk dΩ +

+ tk

∫
Ω
[(aε · ∇)aε · uk + ν rotaε · rotuk + f · uk] dΩ

(3.8.13)

which is valid because of (3.8.8) and a similar equality∫
ωε

(uk · ∇)aε · uk dΩ = 0.
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The first integral on the right-hand side of (3.8.13) is a weakly continuous
functional with respect to uk, and for the second integral we have∣∣∣∣∫

Ω
[(aε · ∇)aε · uk + ν rotaε · rotuk + f · uk] dΩ

∣∣∣∣ ≤ M3‖uk‖H(Ω)

where M3 does not depend on uk. Dividing both sides of (3.8.13) by
‖uk‖2

H(Ω), it follows that

−ν = t0

∫
ωε

(aε · ∇)u0 · u0 dΩ. (3.8.14)

We note that this holds for any small positive ε < ε0 with a fixed ε0 for
which the above construction of the frame for ωε0 is valid. To prove it, take
ε = η < ε0

wk = uk + aε0 − aη

and consider the identity

(uk + tkF (uk),wk)H(Ω) = 0

which takes the form

−ν‖wk‖2
H(Ω) = tk

∫
ωη

(aη · ∇)wk · wk dΩ +

+ tk

∫
Ω
[(aη · ∇)aη · wk + ν rotaη · rotwk + f · wk] dΩ.

Divide this equality by ‖uk‖2
H(Ω) term by term. Consider the sequence

w∗
k = u∗

k + (aε − aη)/‖uk‖H(Ω).

Since ‖uk‖H(Ω) → ∞, we have (aε − aη)/‖uk‖H(Ω) → 0 strongly. Since
‖u∗

k‖H(Ω) = 1, we have that ‖w∗
k‖H(Ω) → 1. Besides, it is clear that w∗

k →
u0 weakly and thus we get the needed equality (3.8.14) again.

Now we show that the limit of the integral on the right-hand side of
(3.8.14) is zero. Thanks to (3.8.9) and (3.8.10), we obtain∣∣∣∣∫

ωε

(aε · ∇)u0 · u0 dΩ
∣∣∣∣ ≤ M1M2

∫
ωε

| rotu0|2 dΩ → 0

as ε → 0. Since ν > 0, we have a contradiction which completes the proof.

Now we can formulate

Theorem 3.8.2. Under assumptions (i)–(iv), there exists at least one gen-
eralized solution of the problem (3.8.1)–(3.8.3) in the sense of Definition
3.8.1. All generalized solutions of the problem are bounded in the energy
space and the degree of the operator I + F of the problem with respect to
zero and a ball about zero with sufficiently large radius is +1.
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Problem 3.8.1. Check which of the assumptions (i)–(iv) are not necessary
in proving Theorem 3.8.1.


