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• Page 1. k = 1, 2, . . . should read k = 0, 1, . . ..

• Page 11, 2nd displayed equation. Upper limit of integral should read π
instead of 2π.

• Page 22, 5th line from top. Missed closing parenthesis after yn.

• Page 22, 8th line from top. “X, Y ” should read “of X, Y ”.

• Page 33, first line of (1.10.4). y′′(t) should read y′′n(t).

• Page 36, first line of the equation array near the top. Missing superscript
“2” after the large closing parenthesis.

• Page 39, equation (1.10.14). Insert negative signs on both sides:

−(w1, w2) = −
∫∫
Ω

Dαβγδργδ(w1)ραβ(w2) dx dy (1.10.14)

• Page 45, equation (1.10.26). Should read

−(u,v) = −
∫

Ω

cijklεkl(u)εij(v) dΩ. (1.10.26)

• Page 50, 3rd line above last displayed equation. “minimal index” should
read “maximal index”.

• Page 52, bottom. Remark. The equation x = Ax could have been stated
as x = A(x), since the contraction mapping theorem applies to nonlinear
operators as well as mappings on general metric spaces.

• Page 57, middle, “The values of q . . . ”. Remark. Here it is understood
(since we can speak of an operator norm only for a linear operator) that
the reader is to consider only the case in which all ci = 0.
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• Page 60. Remark. In textbooks it is more frequent that the first integral
term in (1.14.11) is called the work of internal forces when taken with a
minus sign. Then the principle of virtual displacements reads that the sum
of the work of internal and external forces on any virtual displacements is
zero. So the paragraph immediately following Definition 1.14.1 could be
reworded as follows:

We can also obtain (1.14.11) from the principle of virtual dis-
placements (work). This asserts that in the state of equilibrium,
the sum of the work of internal forces (which is now the varia-
tion of internal energy with sign “-”) and external forces on all
virtual (admissible) displacements is zero.

• Page 62, equation (1.14.14). Should read∫
Ω

F (x, y)wi(x, y) dx dy +
m∑

k=1

Fkwi(xk, yk) +
∫

γ

f(s)wi(x, y) ds = 0

(1.14.14)

• Page 68, proof of Hausdorff criterion. Remark. A subsequence is a
portion of the initial sequence preserving ordering of the members. In
the sufficiency proof we must choose a subsequence in such a way that
i1 < i2 < i3 < · · · . This is possible since on each step during the choice
we have an infinite number of appropriate members.

• Page 83, near the top. Remark. Here we make use of Theorem 2.3.2.

• Page 74, displayed formula between (1.17.5) and (1.17.6). Change y∆k
to

y∆k1
.

• Page 101, end of the first paragraph of the proof. “by definition of weak
convergence” should read “by the definition of a weakly Cauchy sequence”.
Alternatively, one could replace the phrase in question by

since a weakly Cauchy sequence is bounded, the numerical se-
quence {(xn, y0)} is bounded as well.

Remark. Although the proof is given in a real Hilbert space, the theorem
is valid in a complex space as well. For the complex case one need only
supply absolute value signs around inner products.

• Page 107, Remark 1.23.1. “(1.23.7)” should read “(1.23.6)”.

• Page 115, three lines below equation (1.26.2). “Then (1.26.1)” should read
“Then (1.26.2)”.

• Page 117, displayed equation at end of proof. Missing asterisk on “Pk−1”.

• Page 123, fourth line from bottom. “gn, . . . , gn” should read “g1, . . . , gn”.
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• Page 140, 3rd line after the end of the proof. “ball is compact” should
read “ball is precompact”.

• Page 141, third line after the end of the proof. Delete the phrase “in
C(0, 1) and”.

• Page 153, proof of Theorem 2.10.3. In the first line of the first displayed
formula, R(λA) should read R(λ, A).

• Page 156. The last formula on this page should be finished with a period.
The first line on page 157 should start as: “Since . . . as well, we have
proved the needed property for the term in parenthesis.”

• Page 155. In Section 2.11 (page 155) we change terminology for eigenvalues
when we call µ from equation (2.11.1) the eigenvalue when it corresponds
to nontrivial solutions of equation

(I − µA)x = 0.

In the generalized setup of the eigenfrequency problem for a membrane
which is governed by the equation

∆u = −ω2u,

the term ∆u corresponds to operator I, whereas the right-hand side term
u corresponds to operator A of (2.11.1). Thus µ = is equal to the squared
eigenfrequency of the membrane, ω2.

• Page 157. In the formulation of Theorem 2.11.1 it is more common to
use the notation {0} for the space consisting of the single element zero,
so with this notation, the formula for the intersection of the subspaces is
H(µk)

⋂
H(µn) = {0}.

• Page 159. Last line of Corollary 2.11.2 should read “where x ∈ M is a
solution to (2.11.6).”

• Page 167, proof of Theorem 2.14.1. “Since ‖A‖ = sup‖x‖≤1 |(Ax, x)|”
should read “Since ‖A‖ = sup‖x‖≤1 |(Ax, x)| 6= 0”.

• Page 175. First equation display should have “n + 1” instead of “n” as
subscripts on λ and µ (3 occurrences).

• Page 180, first line. “A−1” should read “A”.

• Page 182, first displayed equation. “Fx(x, µ0)” should read “Fx(x0, µ0)”.

• Page 185. Theorem 3.3.1, 2nd line of proof. Remark. “minimum”, more
generally, could read “extremum”.

• Page 186. Lines 9–10. “is thus clearly seen” should read “is seen simi-
larly”.
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• Page 187. Theorem 3.3.3, part (ii). The statement should read “(ii) any
minimizing sequence {xn} of Ψ(x) contains a . . . ”.

• Page 222, near the bottom. “n to Ω” should read “n to ∂Ω”.

An extra section

A Spanish edition of Functional Analysis in Mechanics is currently under prepa-
ration by Prof. Francisco Caicedo (Dept. of Mathematics, National University
of Colombia). This edition will conclude with an epilogue, the purpose of which
is to place the material into proper perspective for the engineering reader. The
English version of the additional text appears below.

Epilogue to the Spanish edition

Functional analysis is relatively difficult for one whose background is limited
to standard courses in engineering mathematics. The busy practitioner may
wonder whether it makes sense to tackle this seemingly abstract area. What
sorts of useful information can be gleaned from all these axioms, definitions, and
theorems? Indeed, the applicability of any unfamiliar branch of mathematics
can be hard to judge at first glance. Now that the reader has spent at least some
time with the material, however, we are in a much better position to advance a
case in favor of functional analysis. Let us begin by discussing the mathematical
objects and tools that engineers use in mechanical design.

Many standard mechanics problems can be solved numerically. In view of
this, and given the ever-increasing sophistication of computer hardware and
software, we might expect that less and less mathematical/scientific capabil-
ity will continue to be required from the average engineer — culminating in
a situation where computers handle almost every step of the design process.
The happy human operator could then forget about such burdensome things as
physical laws and the assumptions that underlie numerical solution methods!
However, a more sober outlook must account for the fact that many engineer-
ing problems are in some sense nonstandard: they fall well outside the range
of problems for which any given software package was developed and tested.
For these problems, unfortunately, simple and “direct” calculation approaches
can fail miserably. So the competent designer must be ready to carefully inter-
pret numerical output and render a sound judgement as to its reliability. This,
in turn, requires familiarity with the general properties of the problem under
investigation.

Every model of mechanics should be regarded as approximate. Even the
most precise models still neglect the atomic structure of materials, the details
of the reactions between bodies, the effects of complicated surface imperfections,
etc. It is therefore fallacious to assert that a certain mathematical boundary
value problem must be well-posed because the physical problem that it “de-
scribes” seems well-posed in practice. For example, a body under load and free
of geometric restrictions can be in equilibrium. But any negligibly small change
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in the load, making it non-self-balanced, brings us to an equilibrium problem
that has no solution. Having formulated a boundary value problem then, we
should study its properties not only by comparing solutions with experimen-
tal data (which, by the way, is possible under very restrictive conditions and
in large part only on boundary surfaces) but also through the use of rigorous
mathematical tools.

In addition, all modern numerical methods used to investigate the motions
and strain states of real bodies are based on a two-step procedure. First, a
continuous model, represented by a boundary value problem for a system of
differential or integro-differential equations, is composed. Inherent in this are
limiting and averaging processes based on some set of imperfect constitutive
laws for the material. Second, the boundary value problem is discretized. In
some sense this is a step backward: differential equations are converted to a
system of simpler — normally algebraic — equations which can be solved (again,
approximately) using a finite number of elementary arithmetic operations. The
discrepancy between the solutions of the two corresponding problems may be
significant, even when both can be well-posed.

In continuum mechanics we can regard the correspondences between loads or
other external factors and strain states or velocity fields as “functions” in some
sense. These are more general than the functions of elementary mathematics,
however; they can provide mappings between sets of vector or tensor functions
residing in infinite dimensional spaces. At the same time, problems solvable
by computers are necessarily formulated in finite dimensional spaces, not to
mention the fact that machine calculations themselves are performed using fi-
nite precision. Common sense dictates that we cannot accurately approximate
all the elements of an infinite dimensional space using only a finite number
of elements. General theory also confirms that there exist situations in which
accurate approximation is impossible via rote use of standard programs. En-
lightened use of such programs therefore requires enough theoretical background
to adequately distinguish these situations from those in which computational
methods can be expected to bring accurate results.

Questions involving the composition of mechanical models and discretization
of corresponding boundary value problems now fall within the applied disciplines
such as physics and mechanics. Experts in these areas are often more successful
than mathematicians in performing these tasks, because they can invoke the
kind of intuition that comes from direct experience with numerous models and
the real objects they are intended to represent. But the study of mathematical
models and their properties, as well as the behavior of associated numerical
solution schemes, has become the province of the mathematician (unlike the
situation in the days of Newton, Euler, or Lagrange, when certain individuals
could stand at the forefront of both mathematics and the physical sciences).

The theoretical study of mechanics problems — their well-posedness and
other properties, as well as the legitimacy of numerical solution methods —
constitutes a substantial portion of functional analysis. This is not the classical
mathematical analysis normally taught to engineers. The difference lies in the
fact that the boundary value problems of continuum mechanics are usually de-
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scribed in infinite dimensional spaces where classical analysis has limited reach.
Nonetheless, functional analysis is not independent of the calculus introduced by
Newton and Leibnitz. Rather it serves to extend calculus in combination with
the calculus of variations, the methods of classical algebra, and other useful
branches of classical mathematics. Functional analysis has elaborated its own
terminology and tools, many of which were borrowed from these older areas.

What we can expect from the study of a particular problem using functional
analytic methods? First, these methods do not yield explicit numerical or an-
alytical solutions. But they can confirm (or deny) the applicability of some
numerical solution methods. They can also help us establish certain qualita-
tive properties of boundary value problems. A qualitative study should start
by establishing the existence (or non-existence) of solutions depending on the
classes to which the external parameters belong. Then follows an investigation
into the uniqueness and, after that, the smoothness, of solutions. Next, continu-
ity of the dependence of solutions on external parameters should be examined.
This requires a viewpoint on functions as whole entities, and is closely related
to notions of mechanical stability. We can also establish such system proper-
ties as periodicity of solutions and steady-state behavior. An important class
of questions amenable to functional analysis centers on the spectra for various
mechanical models. Here the situation differs greatly from that presented in
standard linear algebra. So a researcher should be familiar with this circle of
questions, at least.

Functional analysis promotes a viewpoint in which we regard the state of a
body as a unified mathematical object. Here we begin to deal with transforma-
tions of internal parameters under changes in external load, etc., much as we
do in linear algebra: by considering matrices as unified objects that operate on
and transform vectors. Operators for boundary value problems of continuum
mechanics are much more complex though, and it is instructive to see which
results from linear algebra carry over without significant modification.

Even those who work in applications should understand the pitfalls of any
given area. Sometimes an acute awareness of these comes to the fore when
empirical tests performed on a design fail to match theoretically-based expec-
tations. During such moments it is helpful to know how the trouble may have
arisen — from an inadequate model, perhaps, or the use of an inappropriate
numerical scheme. But it is certainly better to avoid this situation in advance
through suitable modifications made to standardized computer code. For exam-
ple, if a careful qualitative study of a problem indicates that singularities may
arise during its solution, then a method can be chosen to accommodate this
(e.g., via asymptotic analysis done prior to the numerical computation stage).
But this can happen only when the researcher is aware of such a possibility.

Functional analysis offers practical tools for the quantitative description of
mechanics problems and their solutions — tools understandable only to those
familiar with its terminology and main results. As time goes on it will continue
to prove indispensable to anyone who wishes to do serious work in continuum
mechanics and many other areas. As the old saying goes, a good theory is the
most practical thing.
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