ERRATA \& NOTES
 Calculus of Variations and Functional Analysis

L.P. Lebedev and M.J. Cloud

November 26, 2004

- Chapter 1. As a supplementary exercise, the reader may wish to show that the Euler equation for a functional of the form

$$
I(u)=\iint F\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}\right) d x d y
$$

is

$$
F_{u}-\frac{\partial F_{u_{x}}}{\partial x}-\frac{\partial F_{u_{y}}}{\partial y}+\frac{\partial^{2} F_{u_{x x}}}{\partial x^{2}}+\frac{\partial^{2} F_{u_{y y}}}{\partial y^{2}}+\frac{\partial^{2} F_{u_{x y}}}{\partial x \partial y}=0 .
$$

- Page 93, Example 1.14.1. The phrase "symmetry in c " refers to symmetry in the dependence on c about zero.
- Page 160, Theorem 3.0.2. The parenthetical phrase "(independent of ε)" should obviously read "(dependent only on ε)".
- Page 172,9 th line from bottom. "limit of" should read "limit point of".
- Page 177, 7th line from bottom. "Exercise ??" should read "Example 3.3.1"
- Page 214, last displayed formula on the page. Should read

$$
f(\mathbf{y})-f(\mathbf{x})=\left.\int_{0}^{1} \nabla f(\mathbf{z})\right|_{\mathbf{z}=t \mathbf{y}+(1-t) \mathbf{x}} \cdot(\mathbf{y}-\mathbf{x}) d t
$$

- Page 219, two formulas for the inner product in L^{2}. Delete power of $1 / 2$ from the right-hand side.
- Page 246,5 th displayed equation from the top. Add a period to end the sentence.
- Page 250, proof of Theorem 3.13.1. Change "hence $N \neq \emptyset$ " to "hence N has nonzero elements."
- Page 276, proof of Theorem 3.17.3, "It is easy to show that ...". Here we can fill in the details needed to show that a continuous linear operator acting from a normed space X into a normed space Y maps weakly Cauchy sequences into weakly Cauchy sequences. Suppose A is continuous and $\left\{x_{n}\right\}$ is weakly Cauchy in X. We want to show that $\left\{A x_{n}\right\}$ is weakly Cauchy in Y. So we take an arbitrary continuous linear functional F given on Y and apply it to $\left\{A x_{n}\right\}$. But this amounts to applying $F A$, which is clearly a continuous linear functional on X, to $\left\{x_{n}\right\}$. Since $\left\{F A\left(x_{n}\right)\right\}$ is a Cauchy sequence, so is $\left\{F\left(A x_{n}\right)\right\}$.

