Department of Mathematical Sciences, Clemson University.

Calculations and Asymptotics of the Baseball Card Collector Problem

Lee G. Gilman

Objectives

- Statement of problem
- Probability Formula for the single copy (non greedy) case
- Sample results for $n=50, r=3$
- Derivation of the asymptotic formula

The Problem

We are given a set S of n distinct elements and during each time interval we take a subset of S of size r
We want to know the probability that we will have seen all n elements at some time $t>0$.

Actually, we are interested in when t is sufficiently large so that the probability is sufficiently close to 1 . The probability will never be exactly 1 (i.e., the same subset of r elements may appear for every time interval.)

Inclusion/Exclusion Derivation of Probability Formula

For each trial, we collect one of $\binom{n}{r}$ subsets. For t trials, we have $\binom{n}{r}^{t}$ total possible subsets that we can choose from. Using inclusion-exclusion, we wish to count all of the ways we can choose subsets
(given by $\binom{n}{r}^{t}$ for t trials) and then subtract all such possibilities where less than n Using inclusion-exclusion, we wish to count all of the ways we can choose subsets
(given by $\binom{n}{r}^{t}$ for t trials) and then subtract all such possibilities where less than n cards are collected.
Let's say that k elements do not appear. For each trial, there are $\binom{n}{k}$ ways of
electing which k elements are not to appear. For t trials, we have $\binom{n-k}{r}^{t}$ ways of
Let's say that k elements do not appear. For each trial, there are $\binom{n}{k}$ ways of
selecting which k elements are not to appear. For t trials, we have $\binom{n-k}{r}^{t}$ ways of choosing t subsets, none of which contain any of the k elements. Using inclusion-exclusion, we get the following result:

The probability Formula:

For the non-greedy baseball card collector problem, the probability of having seen all n cards at time t is

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left(\frac{\binom{n-k}{r}}{\binom{n}{r}}\right)^{t}
$$

Here, n is the size of the entire set S, r is the size of the subsets of S that are taken at each time interval. t is the number of time intervals, and k is a dummy variable that ranges from 0 to n.

Computations for $n=50$

The probability formula was entered into Maple and run for $n=50, n=100$, $n=150, n=200$, and $n=250$.
On the next two slides are the results for $n=50$.

Computations for $n=50$

t	$\operatorname{Pr}(t)$
0	0
10	0
20	0
30	0
40	0.006
50	0.081
60	0.273
70	0.506
80	0.696

Computations for $n=50$

t	$\operatorname{Pr}(t)$
90	0.824
100	0.902
110	0.946
120	0.971
130	0.984
140	0.991
150	0.995
160	0.997
170	0.999
180	0.999

Graph for $n=50$

Maple was used to graph the probability curve for $n=50$. This graph is shown below.

Asymptotics

We investigate the $\frac{\binom{n-k}{r}}{\binom{n}{r}}$ term in the equation.

$$
\begin{aligned}
& \frac{\binom{n-k}{r}}{\binom{n}{r}}=\frac{(n-k) \ldots(n-k-r+1)}{n(n-1) \ldots(n-r+1)} \\
& =\left(\frac{n-k}{n}\right)^{r} \frac{\left(1-\frac{0}{n-k}\right) \ldots\left(1-\frac{r-1}{n-k}\right)}{\left(1-\frac{0}{n}\right) \ldots\left(1-\frac{r-1}{n}\right)}
\end{aligned}
$$

Since $1-\frac{x}{n} \simeq e^{\frac{-x}{n}}$, we have:

$$
=\left(\frac{n-k}{n}\right)^{r} \frac{e^{-\frac{k}{n}} e^{-\frac{k+1}{n}} \ldots e^{-\frac{k+r-1}{n}}}{e^{-\frac{1}{n}} e^{-\frac{2}{n}} \ldots e^{-\frac{r-1}{n}}}
$$

Asymptotics

We now have this formula:

$$
\left(\frac{n-k}{n}\right)^{r} \frac{e^{-\frac{k}{n}} e^{-\frac{k+1}{n}} \ldots e^{-\frac{k+r-1}{n}}}{e^{-\frac{1}{n}} e^{-\frac{2}{n}} \ldots e^{-\frac{r-1}{n}}}
$$

Note that for small $\mathrm{k},\left(\frac{n-k}{n}\right)^{r}$ goes toward 1 and this term drops out. We sum the exponents in the numerator from 1 to $r-1$.

$$
\begin{gathered}
=-\sum_{i=0}^{r-1} \frac{k+i}{n} \\
=-\left(\frac{k}{n} \sum_{i=0}^{r-1} 1+\frac{1}{n} \sum_{i=0}^{r-1} i\right) \\
=-\frac{k r}{n}-\frac{(r-1)(r-2)}{2 n}
\end{gathered}
$$

Asymptotics

We now sum the exponents of the denominator.

$$
\begin{gathered}
=-\sum_{i=1}^{r-1} \frac{i}{n} \\
=-\frac{(r-1)(r-2)}{2 n}
\end{gathered}
$$

Subtract this from the sum of the exponents in the numerator.

$$
\begin{gathered}
=-\frac{k r}{n}-\frac{(r-1)(r-2)}{2 n}-\left(-\frac{(r-1)(r-2)}{2 n}\right) \\
=-\frac{k r}{n}
\end{gathered}
$$

So we have $e^{\frac{-k r}{n}}$.

Asymptotics

Let's put this result into our original probability formula.

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} e^{\frac{-k r t}{n}}
$$

For k sufficiently small, the k 's drop out and we have:

$$
\left(1-e^{\frac{-r t}{n}}\right)^{n}
$$

(if k is large, the sum tends to go toward 0 .) Now, let's set $e^{\frac{-r t}{n}} \simeq \frac{x}{n}$. Then we have:

$$
\left(1-e^{\frac{-r t}{n}}\right)^{n} \simeq e^{-x}
$$

Asymptotics

If $x=e^{-c}$, we have:

$$
e^{\frac{-r t}{n}}=\frac{e^{-c}}{n}
$$

Then, $\left(1-e^{\frac{-r t}{n}}\right)^{n} \simeq e^{-e^{-c}}$

Asymptotics

$$
\begin{gathered}
e^{\frac{-r t}{n}}=\frac{e^{-c}}{n} \\
\log \left(e^{\frac{-r t}{n}}\right)=\log \left(\frac{e^{-c}}{n}\right) \\
\log \left(e^{\frac{-r t}{n}}\right)=\log \left(e^{-c}\right)-\log (n) \\
\frac{-r t}{n}=-c-\log (n) \\
\frac{-r t}{n}+\log (n)=-c
\end{gathered}
$$

So we get the following formula for c :

$$
\frac{r t}{n}-\log (n)=c
$$

References

[1] R.B. Bapat and T.E.S. Raghavan Nonnegative Matrices and Applications, Cambridge University Press, 1997.

I would also like to thank Shannon Purvis for helping me format this presentation and getting it prepared.

