

AGILE AND BUSINESS
ANALYSIS

BCS, THE CHARTERED INSTITUTE FOR IT

BCS, The Chartered Institute for IT champions the global IT profession and the interests
of individuals engaged in that profession for the benefit of all. We promote wider social
and economic progress through the advancement of information technology, science
and practice. We bring together industry, academics, practitioners and government to
share knowledge, promote new thinking, inform the design of new curricula, shape
public policy and inform the public.

Our vision is to be a world-class organisation for IT. Our 70,000 strong membership
includes practitioners, businesses, academics and students in the UK and internationally.
We deliver a range of professional development tools for practitioners and employees.
A leading IT qualification body, we offer a range of widely recognised qualifications.

Further Information
BCS, The Chartered Institute for IT,
First Floor, Block D,
North Star House, North Star Avenue,
Swindon, SN2 1FA, United Kingdom.
T +44 (0) 1793 417 424
F +44 (0) 1793 417 444
www.bcs.org/contact

http://shop.bcs.org/

AGILE AND BUSINESS ANALYSIS
Practical guidance for IT
professionals

Lynda Girvan and Debra Paul

© 2017 BCS Learning & Development Ltd

All rights reserved. Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted by the Copyright Designs and Patents Act 1988, no part of this publication may be reproduced, stored
or transmitted in any form or by any means, except with the prior permission in writing of the publisher, or in the
case of reprographic reproduction, in accordance with the terms of the licences issued by the Copyright Licensing
Agency. Enquiries for permission to reproduce material outside those terms should be directed to the publisher.

All trade marks, registered names etc. acknowledged in this publication are the property of their respective
owners. BCS and the BCS logo are the registered trade marks of the British Computer Society charity number
292786 (BCS).

Published by BCS Learning & Development Ltd, a wholly owned subsidiary of BCS, The Chartered Institute for IT,
First Floor, Block D, North Star House, North Star Avenue, Swindon, SN2 1FA, UK.
www.bcs.org

ISBN: 978-1-78017-322-1
PDF ISBN: 978-1-78017-323-8
ePUB ISBN: 978-1-78017-324-5
Kindle ISBN: 978-1-78017-325-2

British Cataloguing in Publication Data.
A CIP catalogue record for this book is available at the British Library.

Disclaimer:
The views expressed in this book are of the authors and do not necessarily reflect the views of the Institute
or BCS Learning & Development Ltd except where explicitly stated as such. Although every care has been
taken by the authors and BCS Learning & Development Ltd in the preparation of the publication, no warranty
is given by the authors or BCS Learning & Development Ltd as publisher as to the accuracy or complete-
ness of the information contained within it and neither the authors nor BCS Learning & Development Ltd
shall be responsible or liable for any loss or damage whatsoever arising by virtue of such information or any
instructions or advice contained within this publication or by any of the aforementioned.

BCS books are available at special quantity discounts to use as premiums and sale promotions, or for use in
corporate training programmes. Please visit our Contact us page at www.bcs.org/contact

Typeset by Lapiz Digital Services, Chennai, India.

iv

CONTENTS

	 List of figures� ix
	 List of tables� xii
	 Authors’ biographies� xiii
	 Foreword� xiv
	 Preface� xvii

1.	 BUSINESS ANALYSIS IN AGILE ENVIRONMENTS� 1
	 Introduction� 1
	 The rationale for business analysis� 3
	 Business agility� 5
	 The agile business analyst� 6
	 The agile business analysis book� 8

2.	 AGILE PHILOSOPHY AND PRINCIPLES� 11
	 Introduction� 11
	 The origins of agile� 12
	 The Agile Manifesto� 16
	 The 12 agile principles� 19
	 Agile approaches� 20
	 Agile practices� 21
	 Conclusion� 22

3.	 ANALYSING THE ENTERPRISE� 24
	 Introduction � 24
	 The business analysis perspective� 25
	 Agile Manifesto for buiness analysts� 31
	 Agile business thinking� 32
	 Conclusion� 39

4.	 ADOPTING AN AGILE MINDSET� 41
	 Introduction� 41
	 Relating the agile principles to business analysis� 41
	 Collaborative working� 43
	 Self-organising teams � 46
	 Continuous improvement� 49
	 Iterative development and incremental delivery� 52
	 Planning for and building in change� 55
	 Doing the right thing and the thing right� 56
	 Conclusion� 57

v

CONTENTS

5.	� UNDERSTANDING AGILE METHODS AND FRAMEWORKS� 59
	 Introduction� 59
	 Key elements in agile methods� 59
	 Popular agile methods and approaches� 61
	 Scaled agile approaches� 73
	 Conclusion� 75

6.	� MODELLING THE BUSINESS CONTEXT� 78
	 Introduction� 78
	 Organisational agility� 79
	 Using modelling techniques� 82
	 Modelling at a business level� 86
	 Conclusion� 94

7.	� WORKING WITH STAKEHOLDERS AND ROLES� 96
	 Introduction� 96
	 The nature of stakeholders � 96
	 The multi-skilled team� 99
	 Customer categories� 103
	 Stakeholder engagement� 106
	 Stakeholder categories, roles and perspectives� 110
	 Conclusion� 119

8.	 DECOMPOSING GOALS� 121
	 Introduction� 121
	 The relevance of goal-based analysis� 121
	 Goal and functional decomposition� 123
	 Understanding goal levels� 126
	 Using goals to achieve business agility� 128
	 Using goals to define iterations and releases� 128
	 Conclusion� 129

9.	 PRIORITISING THE WORK� 130
	 Introduction� 130
	 The importance of prioritisation� 130
	 Prioritising requirements� 131
	 Applying prioritisation� 137
	 Prioritisation decomposition� 138
	 Prioritisation issues� 139
	 Conclusion� 144

10.	� DECIDING THE REQUIREMENTS APPROACH� 145
	 Introduction� 145
	 The requirements engineering framework� 145
	 Planning the requirements approach� 149
	 Issues with requirements engineering� 151
	 Agile requirements engineering� 152
	 Requirements elicitation techniques� 154
	 The role of business analysis in elicitation� 156
	 Conclusion� 158

vi

CONTENTS

11.	 MODELLING USERS AND PERSONAS� 159
	 Introduction� 159
	 Benefits of a modelling approach to requirements� 159
	 Modelling users and functionality� 161
	 Analysing users and roles� 164
	 Analysing personas and misuse characters� 168
	 Analysing the system context and scope� 172
	 Visualising user journeys� 178
	 Conclusion� 179

12.	 MODELLING STORIES AND SCENARIOS� 180
	 Introduction� 180
	 Modelling system usage� 180
	 User stories� 182
	 Scenarios � 193
	 Behaviour driven development� 195
	 Story mapping� 197
	 Conclusion� 202

13.	� ORGANISING TASKS AND REQUIREMENTS� 204
	 Introduction� 204
	 Types of requirement� 205
	 The requirements catalogue� 208
	 The itemised backlogs� 209
	 Requirements catalogue or solution backlog?� 213
	 Recording non-functional requirements� 214
	 Hierarchy of requirements� 216
	 Conclusion� 221

14.	� ESTIMATING AGILE PROJECTS� 222
	 Introduction� 222
	 Agile estimation approaches� 222
	 Why and when to estimate� 223
	 Estimation techniques� 224
	 Conclusion� 231

15.	 �PLANNING AND MANAGING ITERATIONS� 233
	 Introduction� 233
	 The iteration� 233
	 Iterations and goals� 236
	 Planning the iteration� 238
	 Managing and monitoring the iteration� 249
	 Reviewing the iteration� 253
	 The role of business analysis in agile iterations� 256
	 Conclusion� 258

vii

CONTENTS

16.	� CONSIDERATIONS WHEN ADOPTING AGILE� 259
	 Introduction� 259
	 Agile adoption� 260
	 The business analyst role in an agile world� 265
	 Conclusion� 269

	 Index� 271

viii

LIST OF FIGURES

Figure 1.1	 Business Analysis Maturity Model™� 3
Figure 1.2	 Business analysis activities� 5
Figure 2.1	 Waterfall development approach� 12
Figure 2.2	 The main elements of agile� 15
Figure 2.3	 The manifesto for agile software development� 16
Figure 3.1	 Three BA perspectives � 26
Figure 3.2	 Pre-project analysis work� 27
Figure 3.3	 POPIT™ model� 28
Figure 3.4	 Pre-project business analysis� 29
Figure 3.5	 An Agile Manifesto for business improvement� 31
Figure 3.6	 Aspects of systems thinking� 33
Figure 3.7	 Principles of Lean thinking� 35
Figure 3.8	 The ‘8 wastes’� 36
Figure 3.9	 Organisation versus customer value perception� 38
Figure 4.1	 Six core agile values for business analysts� 42
Figure 4.2	 Mehrabian’s elements of communication� 44
Figure 4.3	 Tuckman’s stages of group development� 48
Figure 4.4	 Kaizen PDCA cycle� 51
Figure 4.5	 Iterative development adapted for process improvement� 53
Figure 4.6	 External and internal sources of change� 55
Figure 5.1	 Example of a Kanban board� 71
Figure 6.1	 The iterative nature of business environment and strategy
	 analysis� 81
Figure 6.2	 Informal model of a business situation� 83
Figure 6.3	 The FMM� 85
Figure 6.4	 The Simplified FMM� 87
Figure 6.5	 Value chain for training service � 88
Figure 6.6	 BAM of a training business system� 89
Figure 6.7	 Business process model for bespoke course development� 90
Figure 6.8	 Business use case model� 92
Figure 6.9	 Example of business epics � 93
Figure 6.10	 Template for a business epic card� 93
Figure 7.1	 The T-shaped BA professional� 100
Figure 7.2	 �Example of different types of T-shaped professionals in a

development team� 103
Figure 7.3	 Types of business customer� 104
Figure 7.4	 Organisation versus customer value perceptions� 106
Figure 7.5	 Stakeholder wheel� 107
Figure 7.6	 Power/interest grid� 108

ix

LIST OF FIGURES

Figure 7.7	 The relationship between stakeholders and roles� 111
Figure 7.8	 Business/governance roles on change projects� 112
Figure 7.9	 Architectural domain roles on change projects� 114
Figure 7.10	 External stakeholder roles on change projects� 115
Figure 7.11	 Stakeholder roles within the development team� 117
Figure 8.1	 Organisational chart showing a high-level business process� 122
Figure 8.2	 Functional decomposition of the goal, ‘Open a café’� 123
Figure 8.3	 Goal decomposition of the goal, ‘Open a café’ � 124
Figure 8.4	 Decomposed goals for the ‘Serve hot drinks’ goal� 125
Figure 8.5	 Cockburn’s levels of goals� 127
Figure 8.6	 Examples of different goal levels� 127
Figure 9.1	 Calculation for WSJF� 133
Figure 9.2	 Prioritised list of requirements or work items using
	 MoSCoW� 136
Figure 9.3	 Release schedule showing MoSCoW priorities� 138
Figure 9.4	 Decomposed requirements/goals with priority levels� 139
Figure 9.5	 Questions used during prioritisation� 141
Figure 10.1	 Requirements engineering framework� 146
Figure 10.2	 Slices of requirements engineering applied iteratively� 149
Figure 10.3	 A suggested FMM plan for the requirements approach� 150
Figure 10.4	 Traditional approach to requirements engineering� 151
Figure 10.5	 An agile approach to eliciting requirements� 153
Figure 10.6	 A low fidelity throwaway prototype� 156
Figure 10.7	 Business analyst standing between customer and
	 development team� 157
Figure 10.8	 The business analyst role in facilitating collaboration� 157
Figure 11.1	 IT systems and processes in ‘the simplified FMM’� 160
Figure 11.2	 The value of modelling� 161
Figure 11.3	 Using models to provide context from business to iteration� 162
Figure 11.4	 User analysis matrix� 165
Figure 11.5	 Approach for user role development workshop� 166
Figure 11.6	 Role card description� 169
Figure 11.7	 Personas for customers of a holiday company� 170
Figure 11.8	 Persona for a customer of a training provider� 170
Figure 11.9	 Misuse character card� 171
Figure 11.10	 Context diagram for course booking system� 173
Figure 11.11	 Showing ‘use’ on a context diagram� 173
Figure 11.12	 Use case levels� 174
Figure 11.13	 Discovered use case� 175
Figure 11.14	 Briefly described use case� 175
Figure 11.15	 Fully described use case� 176
Figure 11.16	 Activity diagram for use case� 177
Figure 11.17	 ‘As is’ user journey� 178
Figure 12.1	 The simplified Functional Model Map� 181
Figure 12.2	 Example user story� 189
Figure 12.3	 Example user story ‘confirmation’� 192
Figure 12.4	 Approach to developing scenarios� 194
Figure 12.5	 BDD collaboration� 196
Figure 12.6	 Story map backbone� 199
Figure 12.7	 Story map populated with decomposed stories� 200

x

LIST OF FIGURES

Figure 12.8	 Using the story map to define deliverables� 202
Figure 13.1	 Types of requirement� 205
Figure 13.2	 Three different views of the backlog� 210
Figure 13.3	 Example requirements catalogue definition of access
	 requirements� 215
Figure 13.4	 Visible non-functional requirements and constraints� 216
Figure 13.5	 Hierarchy of requirements� 217
Figure 13.6	 Decomposed business use case into system use cases� 218
Figure 13.7	 Decomposed business use case showing external actor
	 component� 219
Figure 13.8	 Hierarchy of use cases leading to user story development� 220
Figure 14.1	 Estimation cycle� 223
Figure 14.2	 Relative sizing using jelly beans� 225
Figure 14.3	 Planning Poker® cards� 229
Figure 14.4	 Planning Poker® process� 230
Figure 15.1	 Cycle of an iteration � 235
Figure 15.2	 Iteration activities� 235
Figure 15.3	 The layered approach to iterations� 236
Figure 15.4	 The relationship between iterations, releases and goals� 237
Figure 15.5	 Calculating team velocity� 240
Figure 15.6	 Backlog refinement activities� 245
Figure 15.7	 Agile board� 246
Figure 15.8	 Example of a burndown chart showing story points� 250
Figure 15.9	 Example of a burndown chart showing remaining effort� 252
Figure 15.10	 A burnup chart showing progress of iterations � 253
Figure 15.11	 Common retrospective questions � 255
Figure 16.1	 Scott Ambler’s ‘Software Development Context Framework’� 263
Figure 16.2	 Levels of influence when adopting agile� 264
Figure 16.3	 Key characteristics of an agile business analyst� 266
Figure 16.4	 BA role in agile � 267
Figure 16.5	 Main elements of agile� 269

xi

LIST OF TABLES

Table 1.1	 Structure of this book� 9
Table 2.1	 Agile development methods� 14
Table 2.2	 The 12 agile principles explained� 19
Table 2.3	 Agile work practices� 22
Table 4.1	 The three elements of communication� 43
Table 5.1	 Key elements in agile methods� 60
Table 5.2	 Four key Scrum events� 63
Table 5.3	 Three Scrum roles� 64
Table 5.4	 Three Scrum artefacts� 65
Table 5.5	 Five rules of XP� 66
Table 5.6	 DSDM life cycle phases� 68
Table 5.7	 Roles defined within DSDM � 69
Table 5.8	 Four phases of the UP� 70
Table 5.9	 Agile toolkit of Lean software development� 72
Table 6.1	 Strategic analysis techniques� 80
Table 6.2	 Three perspectives of the FMM� 85
Table 6.3	 Cockburn’s levels of goal� 86
Table 9.1	 Prioritisation techniques� 137
Table 10.1	 Techniques for evolving requirements iteratively� 154
Table 11.1	 Techniques to analyse users and usage� 163
Table 11.2	 Guidelines for brainwriting� 167
Table 12.1	 Techniques for modelling stories and scenarios� 182
Table 12.2	 Levels in a user story hierarchy� 183
Table 12.3	 Patterns for splitting compound user stories� 187
Table 12.4	 Guidelines for writing user stories� 190
Table 12.5	 Scenario formats� 195
Table 12.6	 BDD structure and example� 197
Table 14.1	 Commonly used estimation units� 226
Table 16.1	 POPIT™ analysis of agile adoption� 260
Table 16.2	 Key factors for adopting or scaling agile� 261

xii

AUTHORS’ BIOGRAPHIES

Lynda Girvan is a principal consultant and trainer for Assist Knowledge Development
(AssistKD). Lynda has over 25 years’ experience in business analysis, agile develop-
ment, agile coaching and transformational change programmes across both public and
private sectors. Lynda developed and leads the agile business analysis training portfolio
for AssistKD and was a key contributor during the creation and development of the
Advanced Diploma in Business Analysis. Lynda is a co-author of the BCS publication,
Developing information systems (2014) and has spoken at European and international
conferences on agile and business analysis. Lynda is a member of BCS.

Debra Paul is the managing director of Assist Knowledge Development. Debra has
worked in business analysis (BA) and business change for over 30 years and has expe-
rience in a range of sectors and organisations. Debra is the editor and co-author of the
best-selling BCS publication, Business analysis (2014), and co-author of Business analy-
sis techniques (2014) and The human touch (2012). Debra has extensive knowledge and
expertise in applying a range of BA tools, techniques and best practices and is a regular
speaker at conferences and seminars. She was the chief architect for the Advanced
Diploma in Business Analysis. Debra is a Chartered Fellow of BCS and a founder mem-
ber of the BA Management Forum.

xiii

FOREWORD

I thought I would begin with an agile foreword:

1.	 Buy this book.
2.	 Read it.
3.	 Follow the advice in it.
4.	 Recommend it to your colleagues.
5.	 Repeat steps 2 through 4 as appropriate.
6.	 If it’s a print copy, store it on your shelf to show to everyone how smart you

must be.

And now for a more traditional foreword    .

Analysis is so important for agile teams that we do it every single day. Every. Single.
Day. The implication is that we need one or more people on the team who has analysis
skills; the more people the better in my opinion. Agile analysis skills are critical in the
agile world.

But do agile teams need people who are just analysts? Sometimes yes, but very often
no. In most situations, agile teams need people who are generalising specialists, people
with strengths in one or more specialities (such as agile analysis); a broad understand-
ing of the software process and the domain they’re working in; and the willingness to
learn new skills and share their own with others. This is a different staffing strategy
from that which is typical of organisations still taking a traditional approach to IT.

This begs the question of when do we need people who are specialised in agile analysis?
The answer is ‘at scale’. When a team faces a complex domain, it is common to see one
or more people who focus on exploring, understanding and then communicating the
inherent complexities to the rest of the team. In other words, an agile analyst. Similarly,
when a team has geographically distributed stakeholders, then having analysts at the
various locations makes a lot of sense. When a large agile team, or agile programme,
is organised into a collection of smaller subteams it is common to put analysts on
the team who work closely with the programme’s product owner to communicate the
requirements to their subteams. These analysts working on geographically distributed
and/or large teams are referred to as ‘junior product owners’ in some organisations
or business analysts in others. The point, contrary to what you may have heard, is that
some teams need agile analysts.

xiv

FOREWORD

I’m the guy behind the agile modeling (AM) method (see AgileModeling.com), which
was the first serious look at how modelling and documentation activities fit in on agile
teams. I led a group of people, several hundred from around the world, to develop the
initial version of AM in the 2001/2002 time frame. It’s evolved since then of course,
capturing collaborative lightweight strategies for analysis, architecture, design and even
documentation activities for agile teams. Needless to say I’m excited that this book has
been written.

What should you hope to gain from reading this book? Here are my suggestions for what
you want to learn:

1.	 Discover the agile mindset: whenever you think, ‘that won’t work for me
because I’m in a different situation’, the best thing to do is to assume that
you’re completely and utterly wrong about that (you very likely will be) and
therefore need to work things through. Being agile, having the mindset to
collaboratively work in an agile manner, can take a long time to truly learn.

2.	 Keep analysis light yet sufficient: when it comes to ‘doing agile’ the biggest
change is often the focus on keeping your work and the artefacts that you
create as light as possible. In agile modelling, we promote strategies such
as working with the audience of an artefact to learn what they really need,
preferring direct communication with others as opposed to documentation
hand-offs, and capturing requirements in the form of executable tests.

3.	 Focus on working collaboratively with others: modelling is something you
should do with others, ideally using inclusive tools such as whiteboards and
sticky notes. Many heads are better than one.

4.	 Embrace an evolutionary approach to analysis: as I said earlier, analysis is
so important that we do it every single day on an agile team. This is because
of the agile philosophy of embracing change – we accept the fact that our
stakeholders' requirements will evolve over time, necessitating an ongoing
and evolutionary approach to analysis (and architecture, and design and all
other aspects of solution delivery).

5.	 Seek active stakeholder participation: one of the more radical ideas in agile
modelling, one that we adopted from usage-centred design, is that the people
who are best suited to perform requirements-oriented modelling are your
stakeholders. If we can find ways to get our stakeholders actively involved
in our modelling efforts, something that inclusive tools (whiteboards, paper)
and inclusive techniques (such as the simple model types described in this
book) enable, then we are much more likely to find out what our stakeholders
actually need.

6.	 Continuously improve: part of the agile mindset is to regularly reflect on what
is working well, and what isn’t working so well, so that we can potentially
learn from and address the challenges we face. Similarly, the Lean mindset
tells us to experiment with potential improvements, study their effectiveness,
and then adopt new ways of working accordingly. We can always get better.

7.	 Constantly expand your intellectual toolkit: there are some great modelling
techniques described in this book, including many common ones such as
user stories, epics and personas. These techniques are of course the tip
of the iceberg – there are hundreds of strategies out there that you should

xv

AGILE AND BUSINESS ANALYSIS

	 experiment with and learn when (and when not) to apply them in practice.
The more techniques you have in your intellectual toolkit, the greater the
chance you’ll choose the right one for the situation you face.

8.	 Be enterprise aware: one of the hallmarks of working in a disciplined agile
manner is to recognise that your team is only one of many within your
organisation. You need to work with other teams to accomplish your goals;
few agile teams are rarely whole, regardless of the rhetoric you may have
heard, and that’s OK. Furthermore, your team should strive to do what’s right
for your organisation, not just what is convenient for you. All teams should
work towards a common vision, should follow common conventions and
should strive to work together effectively.

I believe that this book captures critical ideas and skills for anyone wanting to improve
their agile analysis skills. This is critical for all agile team members, but is particularly
important for anyone in the role of product owner or agile analyst. Your investment in
reading this book will be time well spent. Enjoy!

Scott Ambler
Author of Agile modeling

Co-author of Disciplined Agile delivery
November 2016

xvi

PREFACE

Our idea for a book that looked at business analysis from an agile perspective, and agile
from a business analysis perspective, arose following many discussions with colleagues
and customers. We were concerned that the development of business analysis, and the
inroads made in appreciating the benefits it can offer, were in danger of being eroded
if agile was adopted by organisations and projects without consideration of the busi-
ness analysis world view. A review of available publications highlighted that business
analysis was not widely explored within agile and the application of agile principles to
business analysis (and, conversely, the application of business analysis to agile projects)
were not clearly defined anywhere.

Therefore, the topics in this book aim to address this gap and provide comprehensive
and practical guidance, enabling business analysts to understand how and when they
can support agility at an enterprise, programme and project level. To do this, we needed
to provide sufficient details of the agile philosophy, methods and practices plus the
relevant business analysis approaches and techniques. The more we considered how
these two disciplines would work in combination, the more we felt it was a ‘marriage
made in heaven’ that had significant potential to improve information systems activity
and outcomes and, consequently, the efficiency and effectiveness of organisations.

In order to provide the coverage we felt necessary, the book forges a path from the
origins of agile, through the different levels and aspects of information systems work
and, ultimately, looks at how agile might be adopted by an organisation. We felt it was
important that all these dimensions were explored if the landscape of business analysis
was to be represented thoroughly. Similarly, it was important to encompass the agile
world across this landscape.

One of the key aspects we think important, is the need to tailor the approach adopted
to information systems work in the light of the organisational context and the scope of
the problem to be addressed. Given that agile originated as a software development
approach, adapting it to business improvement projects requires careful consideration.
Comments made to us about ‘following the Scrum method’ do not align with our world
view, which is to always consider the most appropriate way of achieving the desired
outcomes that will benefit the enterprise. This is reflected throughout the book as
we have described various approaches and techniques in order to support business
analysts, and any other IS professionals interested in this topic, in building a toolkit and
applying it in an informed way.

xvii

AGILE AND BUSINESS ANALYSIS

The extensive coverage of this book was an ambitious undertaking. As a result, we
needed help and support from a number of people. In particular we would like to thank
the following two people.

Simon Girvan: Simon is a Fellow of the BCS and a Chartered Engineer, who has over
10 years’ experience working in agile teams in the UK and Australia. He is currently in
a technical director role within UK Government, leading several agile teams working on
complex bespoke software projects.

Simon’s experience implementing agile principles with non-software projects, and
within traditional governance contexts, gives him a perspective on agile development
that aligns well with business analysis.

Simon wrote the book sections on estimation, iterations, methods and the history of
agile. He was also a reviewer of many chapters and created most of the diagrams used
in the book.

Alan Paul: Alan has over 30 years of experience of change programmes and software
projects, and has worked in a range of roles including analyst, project manager and
technical strategy director.

Alan has worked on projects that have applied various methods and techniques, includ-
ing structured and agile approaches; this has given him unique insights into the issues
that can arise during information system development.

Alan reviewed every chapter in the book and contributed to the sections on analysing
the enterprise and estimating.

We were also very fortunate to have colleagues and friends who supported us by
reviewing several chapters and suggesting changes to the narrative: Martin Pearson,
AssistKD Marketing Director, conducted a thorough and detailed review of several chap-
ters as the book neared completion. James Cadle, AssistKD Director, and Terri Lydiard,
Teal Business Solutions Ltd., reviewed the narrative for particular chapters in order to
ensure clarity and correctness. Julian Holmes, ThoughtWorks Ltd, worked with us over
several meetings to define the initial structure for the book. Carol Christmas undertook
a full and thorough review of an early draft of the book.

The BCS publishing team provided ongoing support and encouragement and we would
particularly like to thank Ian Borthwick, Becky Youe and Florence Leroy.

This book was a labour of love because we felt it was such an important topic. It required
many conversations, coffees and cakes before we felt it offered a valuable contribution
to the business analysis and agile domains. We hope all readers will gain insights and
useful guidance that will support them in their professional work.

Lynda Girvan
Debra Paul

February 2017

xviii

1	� BUSINESS ANALYSIS IN AGILE
ENVIRONMENTS

This chapter covers the following topics:

yy the rationale for business analysis;

yy business agility;

yy the agile business analyst;

yy the agile business analysis book.

INTRODUCTION

All businesses have to be on constant alert for changes that may cause problems or
offer opportunities for them. These changes may originate from industry factors such
as competitor actions, or may involve broader developments such as demographic or
technology changes. In addition to these external forces, there can also be internal
drivers for change including new ideas raised by executive managers. While some
drivers for change are highly visible, others can be very subtle and easy to overlook so
identifying change drivers may not be straightforward. However, making the changes
happen is often where the real challenge begins.

For several decades, change has been enabled by technological developments and has
involved the introduction of new or enhanced software products. Initially, changes to
software were seen as sufficient and the broader context into which the new software
was to be released tended to be overlooked; the computer system was seen as offering
sufficient new features to generate the efficiencies and improvements needed by the
business. This approach began to change in the late 1980s when greater awareness
of the need to ensure that new software was accompanied by the relevant changes to
processes and jobs came to the fore.

Challenges have persisted, though, and the intervening decades have continued to be
marked by highly publicised information systems (IS) project failures. As a result, there
have been many initiatives to introduce methods and techniques that will improve the
quality of the delivered change solution including structured analysis methods, the
Unified Modelling Language (UML), systems thinking and business process re-engi-
neering. There have also been attempts to move away from the more traditional, linear
methods for systems development and business change projects. Instead, there has
been an increasing adoption of iterative and incremental development approaches that

1

AGILE AND BUSINESS ANALYSIS

offer a greater emphasis on ‘just in time’ delivery; these approaches align with, and have
contributed to, the development of the agile philosophy.

The last few years have been marked by the widespread adoption of agile methods
within the IS industry. This may be seen as a response to the traditional and structured
software development methods, which have been challenged as not meeting the needs
of today’s fast-moving business environments. While the original agile philosophy was
focused upon the development of software, it has become apparent that software devel-
opment projects need to ensure that they are ‘business relevant’ if they are to support
the activities conducted to perform the business work. To do this, the application of agile
principles needs to move beyond software to encompass the entire business system if
benefits are to accrue for organisations.

Three particular issues have been identified:

1.	 The rush to adopt agile in recent years: it has often seemed as if many
organisations and individuals wanted to jump on the agile ‘bandwagon’ just
to make sure that they weren’t left behind, but did this without giving due
thought to the adoption of Agile.

2.	 The cynical response to agile from some: this has been rooted in previous
experiences with initiatives that had promised to avoid IS project failure –
structured methods, object-orientation, governance, to name but a few.
However, as IS professionals, it is important that we reflect on the agile
philosophy, tools and approaches in order to consider how they could
improve and extend business analysis work in order to deliver increased
benefit to organisations.

3.	 The software focus: the Agile Manifesto (explored in Chapter 2) is clear
that the agile philosophy and principles are concerned with software
development. However, this has been recognised for several decades as
only one element of the business improvement domain. Business analysis
is concerned with resolving business problems and, typically, these need
the people, organisation, process, information and technology aspects to be
considered, not just the technology element. Although the original Manifesto
and philosophy focused on ‘working software’, it is important that business
solutions are holistic; this is at the heart of business analysis. Failing to take
a holistic view raises the risk of solving the manifest symptoms rather than
the root causes of problems, and of investing in technology and applications
that provide only partial solutions.

Consequently, we feel that the valuable ideas that have been developed within the agile
domain should be explored within the context of delivering business outcomes rather
than software products. The role of the business analyst, with its focus on defining
the problem to be solved and evaluating the options to do this, needs to be consid-
ered within this context. Accordingly, this book examines agile work practices through
the business and business analysis lenses, discussing the use of agile methods and
techniques within a business context and the role of the business analyst in conducting
this work.

2

BUSINESS ANALYSIS IN AGILE ENVIRONMENTS

THE RATIONALE FOR BUSINESS ANALYSIS

It is instructive to consider why we need business analysis within IS projects. Business
analysis originally developed as a discipline responsible for analysing requirements
where the analysis activity was firmly located within the organisational context and
analysts were familiar with the jargon, rules, standard practices and business processes
of that context. Although systems analysis had been a key activity within the IT systems
development process for many years, problems had arisen because of an identified
lack of understanding on the part of the systems analysts about the broader context
beyond the IT system. There were criticisms that systems analysts focused solely
on specifying the system requirements and failed to consider what the organisation
actually needed. For example, sometimes the organisation needed business system –
rather than solely IT system – change, but this was not within the remit of the systems
analyst. Accordingly, the broader role of the business analyst emerged, which had both
a business and system focus, and approaches such as requirements engineering were
developed to ensure that both business and solution requirements were identified,
prioritised and delivered.

The maturation of business analysis

The increasing maturity of business analysis over the last two decades gave rise to
the creation of the BA maturity model in Figure 1.1. This model captures the trajectory
of the development of the business analyst role as the scope of the role expanded and
business analysts gained in authority.

Figure 1.1  Business Analysis Maturity Model™

The three levels shown capture the different flavours of the business analyst role as
follows:

yy the initial focus on defining requirements as a basis for IT system development
or enhancement;

3

AGILE AND BUSINESS ANALYSIS

yy the extended focus to include process improvement plus the attendant impacts
on people and organisational structure;

yy the movement into a role of trusted advisor on business improvement, with a
focus on asking ‘What problem are we trying to solve?’ and establishing the
best means of addressing the problem.

Many change programmes and projects begin with an idea or initiative. This idea is
formalised by the programme initiation, which includes a definition of the objectives,
deliverables and timescale. However, sometimes, the idea is weak and may offer limited
benefits, or may not improve the organisation at all. A typical example involves the pur-
chase of a software package (or possibly an enterprise-wide suite of software packages)
because it is felt that this will deliver benefit to the organisation. Without any analysis
of the problem to be solved and the options available to the organisation, there is a high
risk that the desired business outcomes will not be achieved and the project will fail.
In the worst case, such an initiative could absorb a lot of (wasted) money and possibly
cause damage to the organisation.

The maturation of business analysis has led to an increasing recognition that an initiat-
ing idea needs to be investigated to ensure that the genuine problem is addressed, and
the available options are identified and evaluated before setting off down a path of no
return. Business analysts have a toolkit of techniques and approaches that help them to
analyse often vague and ambiguous business situations such as, ‘we need to be more
efficient’, ‘the processes are a bit clunky’, ‘we have to improve our capability’. Therefore,
they are well placed to take on the work of uncovering the root causes of problems and
clarifying the issues to be resolved. One of the key aspects of business analysis involves
recognising that there are different perspectives on any business situation and without
the development of a shared understanding and consensus view, it is going to be dif-
ficult to find a solution that will be acceptable to the key stakeholders. Business analysis
also takes a holistic view, ensuring that all aspects of the business situation are con-
sidered during investigation and solution definition. The IT system may be at the heart
of the solution, enabling the business improvement, but without consideration of the
people, their processes, work practices and information needs – and the organisational
structure and culture – the solution will not deliver the promised benefits.

The business analysis landscape

In recent years, business analysis has become a broad discipline with professional
business analysts working in advisory roles helping to ensure that IS investment funds
are spent wisely. A good definition of the role of the business analyst has been defined
by the UK Department for Work and Pensions:

The role of the BA is to ensure the vision and services are realised, to challenge
and act as the critical friend, to represent the needs of all users and to translate
the needs of the whole of DWP.

(Defined by DWP BA Community, reproduced with permission)

The range of activities required to conduct business analysis is shown in Figure 1.2. These
activities focus on ensuring that the problem situation is understood before moving
towards the desired outcomes. They emphasise the need to analyse the business needs

4

BUSINESS ANALYSIS IN AGILE ENVIRONMENTS

and to evaluate the range of potential options, before defining the detailed requirements
for change. While the model shows the overall direction of the work, it does not dictate
a strict linear sequence. In practice, there will be iterations between and within many
of the activities.

Figure 1.2  Business analysis activities

Business Objec�ves and Strategy

Investigate
Situation

Analyse
Needs

Evaluate
Options

Define
Requirements

Deliver
Changes

Source: Paul et al. (2014)

Business analysts need an extensive toolkit of skills and techniques if they are to carry
out these activities effectively. Adding the agile approaches and techniques to this toolkit
will help business analysts to conduct these activities more effectively and support the
delivery of timely, effective solutions. It is important to recognise that this is not only
within an organisation that has adopted agile software development; some of the agile
tools, for example, MoSCoW prioritisation (see Chapter 9) can be extremely useful in a
range of situations.

BUSINESS AGILITY

The term ‘business agility’ is often used these days. All businesses recognise that they
need business agility but there are two questions we need to consider; ‘What is business
agility?’ and ‘How is it achieved?’

Let’s look at the first question: ‘What is business agility?’ It is the ability of an organisa-
tion to be responsive to forces within the business environment and to be adaptable
when change is required. Agile organisations are able to act when the environment
changes and are able to adopt new ideas. They have flat structures, with processes
and systems that embrace change. Their cultures are open and adaptable, their people
empowered and flexible.

Systems thinking incorporates the concept of self-regulating business systems that can
monitor the business environment through feedback loops and adapt to the changes
encountered. To do this, the business system – or department, division or even entire
organisation – needs to understand the rationale for its existence. Why does it do
what it does? What are its values? Simon Sinek (2011) expounded the importance of

5

AGILE AND BUSINESS ANALYSIS

understanding why an organisation exists before exploring the what and the how of the
organisation’s operations. This is at the core of the organisation with business agility. If
the staff need to constantly ask how they should respond to situations or have to request
approval for everyday decisions, the organisation is not displaying agility – it is as simple
as that.

How then is business agility achieved? To return to Sinek, it has to start with a clear
understanding of the underlying rationale and values of the organisation. This should
drive how the organisation operates and should provide the employees with a basis for
decision-making. Empowerment should be embedded within the organisational culture
and should be observable at all levels. Processes should not involve tasks with a pri-
mary focus on ‘ticking the box’ – the work should have a real purpose and, fundamen-
tally, that should be concerned with delivering the organisation’s products or services in
line with meeting the needs of customers. The customers should be at the heart of the
agile organisation. This is not always the case, however. For example, one of the most
disliked innovations in recent years has been the introduction of the self-checkout in
supermarkets. However, as most customers welcome anything that makes it quicker
and easier to pay for goods, why is this the case? A brief foray into the ‘bagging area’
soon provides the answer. The systems are set up to meet the needs of the organisation
rather than the customers. As a result, at any moment, the system could lock up and
demand the attendance of a store employee, whether because the customer was too
slow putting a scanned item into the aforementioned bagging area or, even worse, put-
ting the item in a bag that is being carried rather than in the designated bagging area.

Some organisations focus on defined targets such as those encapsulated in their ser-
vice level agreements (SLAs) and believe that ‘fulfilling the SLA’ is sufficient to ensure
good customer service, even if this has just involved sending an email during the des-
ignated time period to confirm that the situation is still under investigation. Continually
calling to say that no action has been taken is of no use to a customer, even if the inter-
nal communication target can be ticked as achieved!

How can the agile approach help with business agility? If we apply the agile philosophy
as a basis and understand the nature of adaptable business systems and the realisation
of value from service, we have a basis for developing business agility. Business analysts
who understand Lean, systems and service (Chapter 3) and adopt the core agile values
(Chapter 4) will be able to support their organisations better, as they can introduce rel-
evant techniques and philosophies into their business change work.

THE AGILE BUSINESS ANALYST

There are two distinct aspects where the agile approach is relevant to business analysis:

1.	 the role of the business analyst in enabling business agility through the use
of the agile philosophy and approaches;

2.	 the role of the business analyst in supporting the use of agile techniques
during business improvement and software development projects.

Let’s look at these in more detail.

6

BUSINESS ANALYSIS IN AGILE ENVIRONMENTS

Business analysis enabling business agility

The underlying premise of several philosophies – agile, lean thinking, systems thinking,
service thinking to name a few – is that any business system or process has an underly-
ing rationale for its existence. In other words, we need to be able to state the reason why
the system exists. Understanding the underlying rationale enables us to determine what
needs to be in place to make the business work more effectively. These philosophies
are covered in Chapter 3 of this book; understanding and applying them is key to being
an agile business analyst.

It has been said (by one of the authors!) on numerous occasions that the role of the
business analyst should be the most agile of the business improvement roles. This is
because business analysis can apply the agile philosophy and techniques in a number
of contexts or situations:

yy by challenging ideas, views and issues raised by business managers and staff
in order to determine their relative importance and ascertain whether or not
they align with the organisational strategy and tactics;

yy by ensuring that different customer perspectives about a situation are
understood and supporting the development of a shared perspective;

yy by using techniques that allow the business stakeholders to provide relevant,
timely information;

yy by ensuring that options are always considered to determine where the best
business outcomes can be achieved;

yy by prioritising proposals and requirements at different levels of decomposition
and focusing on the achievement of business goals;

yy by aligning the different elements of the holistic view to ensure that change
projects do not separate into individual silos.

The adoption of an agile mindset, when undertaking business analysis, helps to gener-
ate business agility within an organisation. Agile business analysts should understand
why the use of agile is of benefit, what agile work practices are available and how they
should be used. They also need to extend their toolkit to encompass agile approaches
and techniques.

Agile business analysts should support business agility both before the inception of a
programme of change and during a change project, helping to ensure that change initia-
tives are focused on meeting the needs of the organisation and delivering the desired
outcomes.

Business analysis on agile software projects

Several agile software development methods have emerged since the late 1980s,
including Rapid Application Development, Dynamic Systems Development Method
(DSDM), Extreme Programming, Scrum and Disciplined Agile 2.0. These methods and
more are discussed in Chapter 5. However, one of the factors common to these methods
is that they do not recognise the business analyst role. So, does this mean that the use

7

AGILE AND BUSINESS ANALYSIS

of agile methods removes the need for business analysis? To answer that question, let’s
revisit why business analysis was originally developed. It was to address an issue that
had afflicted systems analysis – the communication gap that existed between techni-
cal and business staff. That’s not to say that all systems analysts had communication
problems, but it was an issue that business staff often complained about. And so the
concept of a more business-focused analyst role was created.

The agile principles, discussed in Chapter 2, include a principle that identifies the
importance of a face-to-face conversation between a developer and a business user
when uncovering requirements. Highlighting the importance of a conversation to clar-
ify requirements means that business analysis is needed, even if the work is done by
someone with a different job title.

Within agile teams, the concept of a generalising specialist (discussed in Chapter 7)
is often used where an individual may possess cross-functional skills in addition to
the area within which they specialise, and utilise these skills at the point that they are
needed. This would seem to imply that the developer may take on the business analyst
role – which is fine as long as they have the requisite business analysis skills, knowl-
edge and attitude, and provided the conversation is at an individual project team level
and not spanning multiple business areas.

Is this the best way to do this though? Business analysts have extensive toolkits of tech-
niques and approaches that they have often developed over several years; this is also
the case for other roles within software development such as developers, testers and so
on. Therefore, in practice, the answer is ‘it depends’. Often, it is useful for a developer to
analyse the information being provided by the business user as part of a conversation.
However, where there are more extensive business analysis activities to be conducted
– such as determining business requirements or developing business models – then
greater skills may be needed and a specialist business analyst will probably provide a
more efficient and accurate service.

THE AGILE BUSINESS ANALYSIS BOOK

This book was written with three aims in mind:

1.	 to help business analysts understand how agile works and their role in
software development projects;

2.	 to enable business analysts to apply the agile philosophy, principles and
techniques during their business improvement work;

3.	 to help anyone engaged in developing software without the participation of
business analysts to understand the relevance and application of business
analysis.

To achieve these aims, we decided that we needed to ensure that agile was presented
clearly for a business analysis audience and that the links to business change projects
were clarified. As a result, this book covers a wide range of topics that are included in
order to support business analysts as they work on projects using agile and deliver
skills that will enable their organisations to work with agility. The chapter breakdown is
set out in Table 1.1 below.

8

BUSINESS ANALYSIS IN AGILE ENVIRONMENTS

Table 1.1  Structure of this book

Chapter 1: Business
analysis in agile
environments

The development of business analysis and the
rationale for applying business analysis within an agile
world.

Chapter 2: Agile
philosophy and principles

The origins of agile and the fundamental philosophy
and principles upon which all agile activities are based.

Chapter 3: Analysing the
enterprise

The analysis and business thinking approaches that
can help when applying agile to organisations.

Chapter 4: Adopting an
agile mindset

Adapting the core agile values to business analysis.

Chapter 5: Understanding
agile methods and
frameworks

The evolution of agile methods, and the characteristics
of the methods and frameworks used in agile software
development.

Chapter 6: Modelling
the business context

Techniques to model the business context to enable
the application of agile on business change projects.

Chapter 7: Working with
stakeholders and roles

The range of stakeholder roles encountered on
business change projects, including the variety of
customer roles. The stakeholder roles specified by
Scrum and DSDM.

Chapter 8: Decomposing
goals

The technique of goal decomposition, how it is applied
within business and the relevance to agile business
analysis.

Chapter 9: Prioritising the
work

The need for prioritisation and the range of techniques
that may be used on agile projects. The relevance of
prioritisation to an agile mindset.

Chapter 10: Deciding the
requirements approach

The project characteristics and planning the relevant
approach to the requirements work.

Chapter 11: Modelling
users and personas

Techniques used to analyse and model the user
community.

Chapter 12: Modelling
stories and scenarios

Techniques to analyse and model the features and
functionality required by system users.

Chapter 13: Organising
tasks and requirements

The approaches used to organise and manage
requirements on change projects. Comparing and
contrasting the requirements catalogue with the
solution backlog.

Chapter 14: Estimating
agile projects

Techniques used to estimate the work on agile
projects, including estimating for iterations.

Chapter 15: Planning and
managing iterations

The ceremonies and techniques used to govern
iterative development.

Chapter 16:
Considerations when
adopting agile

The implications of adopting and adapting agile in
complex business environments, and the role of the
business analyst on agile projects.

9

AGILE AND BUSINESS ANALYSIS

The range of topics covered in this book is extensive and includes the agile philosophy,
and the popular agile methods and techniques, viewed through a business analysis
lens. These topics are intended to provide business analysts with a toolkit that will
enable them to contribute effectively to agile projects and enhance the agility of their
organisations.

REFERENCES

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

Sinek, S. (2011) Start with why: how great leaders inspire everyone to take action. London:
Penguin.

10

2	 AGILE PHILOSOPHY AND PRINCIPLES

This chapter covers the following topics:

yy the origins of agile;

yy the Agile Manifesto;

yy the 12 agile principles;

yy agile approaches;

yy agile practices.

INTRODUCTION

Agile is a lightweight software development approach that evolved in the mid-1990s
and resulted in an Agile Manifesto and an accompanying set of ‘12 principles of agile
software’ published in February 2002. Since then, it has grown in popularity and is now
an extremely common and fashionable umbrella term for a number of methods and
processes. It is used by thousands of development teams across the world, and is the
subject of numerous books, papers and training courses. In that time, it has evolved
and changed, and is not only applied to software products, but also to other types of
development.

There are many synergies between agile and business analysis. Agile favours highly
collaborative working between the customer and product development team; a focus on
the early and frequent delivery of tangible solutions; and an iterative approach that is
highly responsive to changing requirements. While the major focus of the agile approach
is on the development of software, the concepts can apply to business analysts work-
ing on change projects, where the project focus is on business rather than technology
changes. However, to do this successfully, business analysts need to understand the
rationale and philosophy that underpin the agile approach.

While the rest of this book will focus on how it may be applied to business analysis,
this chapter explains how agile has developed and provides an introduction to the agile
philosophy, principles and methods.

11

AGILE AND BUSINESS ANALYSIS

THE ORIGINS OF AGILE

Before the term, ‘agile’ was coined, software had been successfully created for
decades. Until the early 1990s, linear planning techniques were commonly used, which
isn’t surprising, given that software development originated from computer systems
engineering. These linear systems are commonly referred to as ‘waterfall’, due to the
way that they were drawn in Winston W. Royce’s influential article from 1970, ‘Managing
the development of large software systems’. Interestingly, Royce did not actually use the
term ‘waterfall’ in his paper; however, he is renowned for developing this approach and
its resulting use ever since.

Royce represented a common approach to developing complex software systems, as
shown in Figure 2.1.

Figure 2.1  Waterfall development approach

Unfortunately, Royce’s paper was widely misunderstood. He presented the above model
as ‘risky and invites failure’, and was proposing modifications to make it much more
iterative and incremental. However, that element of his work is largely forgotten, and
his waterfall picture remains in common use, although the names of the stages have
changed a little over time.

As discussed in the BCS publication Developing information systems, the waterfall
method and its variations are effective for some types of development. However, as

12

AGILE PHILOSOPHY AND PRINCIPLES

Royce himself stated, it is less suitable for many types of project, as capturing and
baselining all the requirements early in the development life cycle, and expecting them
not to change, is a significant drawback for many, if not most, projects.

The evolution of iterative methods

New methods began to emerge in the 1980s and 1990s as a response to some of the
challenges that developers faced when using a waterfall approach. One of the first to
become popular was Rapid Application Development (RAD), which involved creating
prototypes and using them to elicit requirements, validate designs and evolve toward
usable solutions. RAD began at the New York Telephone Company and was refined by
IBM in the 1980s. A book, Rapid application development, by James Martin, with contribu-
tions from several others, was published in 1991.

Although RAD is a method in its own right, it also spawned a number of alternative
approaches that are based on some of the same principles. One popular example is
the Spiral model, developed by Barry Boehm (1988), one of James Martin’s collabora-
tors. This model introduced the concept of incremental planning, definition, design and
development of software so that each time around the spiral the risks are reduced and
the end result is more predictable.

A different iterative development method emerged in the late 1990s that combined
some of the rigour and whole life cycle elements of the waterfall life cycle, with incre-
mental delivery and a particular focus on modelling. It was based on the research of
three men who originally collaborated to create their most famous work, a modelling
notation known as the UML. James Rumbaugh, Grady Brooch and Ivar Jacobson (known
as ‘The Three Amigos’), developed ‘The unified software development process’ in 1999
with Philippe Kruchten, who provided the overall architecture for the iterative approach.

At the time, they were working for the Rational Software Corporation and their process
therefore became available as the Rational Unified Process (RUP). RUP is risk driven,
iterative and takes a use case- and architecture-centric approach.

The founding agile methods

Through the 1990s, a number of alternative ways to organise and structure the devel-
opment of software products began to emerge and shape the thinking that eventu-
ally evolved into ‘agile’ in 2001. These approaches were referred to collectively as
‘Lightweight Methods’. The key developments are described in Table 2.1 below.

The Agile Alliance

It was Kent Beck who first sowed the seeds of the agile movement, with the publication
of his book in 1999 and his invitation to various leaders in XP to join him at a retreat in
Oregon. Significantly, he didn’t just invite XP thought leaders, but also several other peo-
ple who had similar interests. These included Alistair Cockburn (Crystal), Jim Highsmith
(ASD) and Dave Thomas (co-author of The Pragmatic Programmer) (2000). At this initial
meeting, they discussed the similarity of XP with other methods and decided to meet
again, with a broader range of people, to explore common ground.

13

AGILE AND BUSINESS ANALYSIS

Table 2.1  Agile development methods

Year Name of
method/
approach

Description

1992 Crystal Alistair Cockburn started the Crystal family of
methodologies, which advocated co-located developers,
frequent delivery of usable code to users and reflective
improvement.

1994 Dynamic
Systems
Development
Method (DSDM)

The DSDM consortium was founded to provide some
structure to the emerging RAD movement that was
gaining in popularity at the time, but was proving difficult
for companies to adopt.

1995 Scrum Jeff Sutherland and Ken Schwaber introduced the
‘Scrum Development Process’ at the OOPSLA (Object
Oriented Programming, Languages and Applications)
conference. Scrum is now the most widely practiced agile
methodology.

1997 Feature Driven
Development
(FDD)

Emerged when Jeff de Luca was working on a large
software development project for a bank in Singapore. He
had hired Peter Coad, who had a particular focus on using
fine-grained features to plan and drive the project, to lead
on the overall modelling. This approach, together with
other processes that de Luca had developed, captured the
attention of his peers and he was persuaded to write it
down and publish it.

1999 Extreme
Programming
(XP)

In the mid-1990s, Chrysler began a programme to replace
the many legacy payroll systems written in COBOL. The
team responsible, led by Kent Beck, pulled together all the
practices that became known as XP; this was published in
Beck’s book of the same name in 1999.

2000 Adaptive
Software
Development
(ASD)

This concept was coined in a book published by Jim
Highsmith in 2000. The approach grew out of RAD and
proposed a collaborative approach, with repeated cycles
of Speculate, Collaborate, Learn to deal with complex and
fast-changing problems.

On 11 February 2001, a group of 17 people met at ‘The Lodge’ at Snowbird Ski Resort
in Utah to talk, ski, relax and try to find common ground between their thoughts on
software development. They represented the leading thinkers from XP, Scrum, DSDM,
ASD, Crystal, FDD and Pragmatic Programming, along with others who wanted a viable
alternative to heavyweight, documentation-driven development processes.

14

AGILE PHILOSOPHY AND PRINCIPLES

Two days later, they had agreed on a name to replace the term ‘lightweight’ (which had
been used up to that point but was not well liked), a manifesto that embodied the values
they all believed in and a set of guiding principles. The Agile Alliance was born.

The agile mindset

One of the remarkable things about those two days at the ski lodge in Utah is that 17
people with very different backgrounds and perspectives managed to reach agreement
on what agile means. They were applying different approaches, and had different ways
of achieving similar outcomes. Yet, they were still able to agree a set of principles and
values that they could all sign up to.

This is why agile should be regarded as a mindset – a way of thinking, and not a method
to be learned. This mindset should be supported by methods and techniques that help
projects to adhere to the principles and values, as shown in Figure 2.2.

If agile is thought of in this way, it is possible to see why there are different agile
approaches and methods that can all support the same principles, even though they dif-
fer in execution. Unfortunately, this also means that it is not possible to instruct some-
one in how to be agile; they have to adopt the mindset. While you can teach a process,
you cannot teach a way of thinking, and just applying an agile process or technique will
not mean that you are applying the agile principles and values.

Agile is a philosophy to be felt and comprehended, such that it guides the way in which
work is approached. It is not a method to follow.

Figure 2.2  The main elements of agile

15

AGILE AND BUSINESS ANALYSIS

Although this is not a universally held view, it is held strongly by the authors of this book.
While it can be possible to treat agile as a recipe to be followed for straightforward pro-
jects, as complexity increases this becomes less and less likely to succeed. In practice,
projects are not simple, and in order to succeed with an agile approach, the team must
have or gain an agile mindset.

THE AGILE MANIFESTO

The most important and most visible result of that meeting in Utah, shown in Figure 2.3,
was the publication of the manifesto for agile software development.

Figure 2.3  The manifesto for agile software development

The manifesto for agile software development (often shortened to the Agile Manifesto)
is short but powerful; in a few words it manages to encapsulate a wide range of con-
cepts, ideas, prejudices, values and experiences of software development. Although the
key focus is on software development, once unpacked, there is very little that is actu-
ally software specific. That’s why various commentators over the years have proposed
amendments and changes. Indeed, in Chapter 3, we shall propose our own version,
reflecting a business perspective and more applicable to business analysts. However,
the original words remain unchanged on the website, and, for the most part, still hold
true for many situations.

Although simple, the Agile Manifesto is often misunderstood. In particular, the final
clause is often forgotten or ignored: ‘That is, while there is value in the things on the
right, we value the items on the left more.’ It is really important to remember that agile
projects still require processes, tools, documentation and plans; it is just that these

16

AGILE PHILOSOPHY AND PRINCIPLES

are not the most important artefacts or deliverables. It is the outcome delivered by the
project that is the actual value.

Let’s look at the individual statements of the Manifesto in greater detail.

Individuals and interactions over processes and tools

Creating solutions is a team sport. Team members need to communicate with one
another. They need to ask questions, discuss ideas, debate ways forward and support
one another. Particularly with more complex problems, the ancient adage that ‘two
heads are better than one’ still holds true. Of course, tools and processes are also
important, sometimes critical. They can help teams be consistent, encourage the right
things to be done in the right order and optimise repetitive tasks. In fact, without tools,
some common agile practices like continuous integration or version control would be
much harder. But, on balance, agile teams should get the people parts right first.

Working software over comprehensive documentation

The perspective of a software development team is that it exists to produce working
software, that has been tested and delivers an expected outcome to the users to a
desired level of quality. Good software should also be properly documented, of course,
and poor documentation can diminish or nullify the value offered to the customer. For
example, if the customer isn’t able to set up the software because they don’t understand
the controls, they will not realise any value from it. Similarly, ongoing maintenance and
further development of the software will require the relevant documentation.

Having said this, no matter how good the documentation, at the end of the day it is the
software, or a working solution, that the customer needs. An important word in the
Manifesto value is ‘comprehensive’. There can be a tendency in some teams to gener-
ate huge volumes of documentation in great detail. It is often as if there is a feeling of
comfort in producing documentation – if we analyse and document everything, we won’t
be caught out! Similarly, where a method permits tailoring (as many do), inexperienced
or cautious project managers have a tendency to include more artefacts than required.
Does an architectural prototype intended to help the customer understand how the
interface might work really require a test plan and a support guide? Probably not. When
it comes to documentation, as with most other elements of agile development, teams
should aim for Just Enough, Just in Time.

This is just as true for non-software solutions. Overly focusing on the word ‘software’
can be dangerous, particularly for larger, more integrated solutions, or when trying to
solve business problems with a holistic solution. Business analysts often work at higher
levels of abstraction, where IT or technology is only one aspect of the solution, and may
use models like POPIT™ (discussed in Chapter 3) to explore how people, the organisa-
tion or processes also need to be changed.

Business analysts may find that this value challenges some of their work within project
teams, particularly with regard to requirements documentation. However, experienced
business analysts are skilled in deciding the requirements approach, and this includes
determining the artefacts that will best deliver the project objectives. To achieve this,

17

AGILE AND BUSINESS ANALYSIS

the Lean principle of Just Enough, Just in Time should be borne in mind. The require-
ments should provide sufficient detail to allow working solutions to be created; there
should be a much lighter touch for requirements that are not to be implemented within
the current release.

Customer collaboration over contract negotiation

This value is based upon the premise that the people who know best what a system
should do are the customers who will be using it. They will know what business
outcomes they are trying to achieve, and, as your system takes shape, they will be best
able to judge whether it looks like it will help them. Since most projects are compli-
cated and have to encompass numerous requirements of different types and of varying
complexity, it is hard to define exactly what those needs are in advance. This is the
fundamental problem encountered when applying the Waterfall development life cycle,
where requirements must be agreed and signed off before design and implementation
begin.

Inevitably, at some point, there will be changes made to the requirements or an earlier
misunderstanding about what is needed will emerge and require clarification. Under
the Waterfall model, this would require a formal change request process to be followed,
with all the consequential effort this would demand. Since this situation is common,
agile teams like to pre-empt it with contracts that are less prescriptive and with high
levels of engagement and collaboration with customers.

This presents many problems. Customers are often very busy or they may be located at
different, or dispersed locations. There may also be different types of customer (explored
in Chapter 7), all of whom may have a different perspective on the system under devel-
opment. This is where business analysis can be invaluable. Business analysts are able
to analyse and manage stakeholders and as they will typically hold knowledge of the
business domain, can help the customer to better understand the potential the software
will offer and the real business needs to be met. The level of collaboration is expected
to be much greater on an agile project and, as a result, business analysts can expect to
have a different kind of relationship with customers.

Responding to change over following a plan

This is probably the single most important element of agile software development; the
expectation that things will change, and the adoption of processes, practices and princi-
ples that not only expect change but embrace it.

This is also the element of agile that causes the most angst, and challenges orthodox
development methods the most. It is inherently logical to want to know what you can
expect, when and for what cost. Most project management and systems engineering
approaches aim towards delivering a certain set of things, on a certain date, with a cer-
tain amount of budget, in the hope that this will reduce risk. Senior stakeholders want to
be able to make promises to others about what they can expect, and it seems perfectly
sensible to want to be able to give them an answer.

18

AGILE PHILOSOPHY AND PRINCIPLES

In reality the only certainty is that things change: technologies, business strategies,
competitors, personnel. Solution development methods that expect, anticipate and deal
with change will be more likely to navigate those changes with the least impact and
the highest chance of succeeding; that’s why agile teams value responding to change.

This does not mean that plans are bad. On the contrary, plans are essential, but they
must be able to change when the environment that affects them changes.

THE 12 AGILE PRINCIPLES

The Agile Manifesto is supported by a set of 12 principles, drafted during the original
meeting in February 2002 and finalised over the following few months. Table 2.2 shows
the 12 principles, and briefly describes why they are important.

Table 2.2  The 12 agile principles explained

Our highest priority is to satisfy
the customer through early and
continuous delivery of valuable
software.

The customer is the most important
stakeholder, and what is most important
to them is knowing that you will solve their
problem for them. It is even better if they can
receive something of value early.

Welcome changing requirements,
even late in development. Agile
processes harness change for the
customer’s competitive advantage.

Requirements change for all sorts of
reasons. Agile teams expect this and
anticipate it.

Deliver working software
frequently, from a couple of
weeks to a couple of months,
with a preference for the shorter
timescale.

The best way to know if something is right
is to see it in action. This helps to refine
requirements for future releases, raises
customer confidence in the software
development team and offers the potential to
realise value early.

Business people and developers
must work together daily
throughout the project.

Most projects are too complicated to assume
that written down requirements will capture
every detail. Being able to ask questions and
clarify understanding throughout the project
is essential – the best way to do that is face
to face.

Build projects around motivated
individuals. Give them the
environment and support they need,
and trust them to get the job done.

People build solutions, and people do better
work when they are motivated, empowered
and have the right tools for the job. The
impact on quality and productivity caused by
not doing this should not be underestimated.

(Continued)

19

AGILE AND BUSINESS ANALYSIS

Table 2.2  (Continued)

The most efficient and effective
method of conveying information to
and within a development team is
face-to-face conversation.

While other forms of communication are
important, for many things, face to face is by
far the best.

Working software is the primary
measure of progress.

It is better to measure progress in terms of
the actual thing you are delivering, rather
than other factors (like effort spent) since
that’s what the customer really cares about.

Agile processes promote
sustainable development. The
sponsors, developers and users
should be able to maintain a
constant pace indefinitely.

People build solutions, and people don’t
do good work when they are overworked,
stressed or neglecting other parts of their
life. Good agile teams don’t rely on a hero
culture.

Continuous attention to technical
excellence and good design
enhances agility.

Delivering quickly is not an excuse for poor
engineering. In fact, good design can make it
easier to add new capability quickly.

Simplicity – the art of maximising
the amount of work not done – is
essential.

It is easy to make things hard, big and
complex. Often, it is harder, but far more
valuable, to make things simple.

The best architectures,
requirements and designs, emerge
from self-organising teams.

A self-organising team that is fully focused
on the goal will offer more relevant answers
than those imposed upon them.

At regular intervals, the team
reflects on how to become more
effective, then tunes and adjusts its
behaviour accordingly.

No team is ever perfect and the environment
it operates in is never static. The best teams
identify regularly the adjustments they
should make in order to improve.

The agile principles are largely self-explanatory, and although seemingly heavily
weighted toward software development, in the main, may be applied to other types
of project or solution. They embody the values in the Manifesto and provide concrete
examples about how the values should be demonstrated.

The principles describe not only how an agile team works, but how its members should
think, behave and feel. Compromising these principles, perhaps when changing a pro-
cess to suit a particular project, can cause inconsistency and a lack of coherent focus;
this will often lead to problems at a later stage.

AGILE APPROACHES

As discussed earlier, several ‘lightweight’ development processes existed at the time
the Agile Manifesto was created; additional such methods have emerged since. They are

20

AGILE PHILOSOPHY AND PRINCIPLES

now described collectively as ‘agile’ methods. Chapter 5 will describe some of the more
popular methods in detail. However, in overview, the key methods are:

yy Scrum: a very popular method that borrows its title from the rugby scrum, and
uses it as a metaphor for the daily progress update meeting. Scrum has short
iterations (sprints) that each focus on delivering working software, a tightly
prioritised ‘backlog’ for both the sprint and the product, and specifies a ‘Product
Owner’ role who sets the priorities.

yy XP: the source of many popular agile practices, and the key founding method.
A disciplined approach with high customer involvement, continuous planning,
continuous testing and rapid delivery in very short intervals.

yy DSDM: provides project governance and scaling around XP or RAD approaches.
It has three main phases called pre-project, project and post-project and
includes defined formal stages within the project phase. Fitness for Business
Purpose is the primary criteria for delivery and acceptance of a system and
MoSCoW is used for prioritisation.

yy RAD: both an umbrella term for a range of agile and iterative approaches, and
a method described by James Martin (1991) in its own right. RAD takes the
analysis, design, build and test phases and repeatedly iterates through them
developing prototypes and versions of increasing functionality.

yy Unified Process (UP): an iterative and incremental framework, with several
implementations including the RUP, OpenUP and AgileUP. A highly tailorable
framework that takes a RAD approach that is architecture-centric and risk-
focused. The phases of the UP are called Inception, Elaboration, Construction
and Transition, and each has a different focus.

yy Lean: originating in manufacturing in the 1970s, the principles of Lean were
applied to software development by Mary and Tom Poppendieck (2003) in their
book, Lean software development. Lean focuses on the delivery of value to the
customer and on eliminating waste from the process.

yy Kanban: an approach that originated in Lean manufacturing and has been
further developed by David Anderson (2010). Kanban is based on workflow
visualisation, typically on a physical board, addressing issues that cause
problems, limiting the team’s work in progress and balancing the demands on
the team.

There are many other agile methods in use today. This includes hybrid methods such
as ScrumBan and numerous in-house customisations that individual companies have
developed.

AGILE PRACTICES

Given the popularity and widespread adoption of agile, and the profusion of different
approaches, it is not surprising that there are numerous agile practices and techniques.
The Agile Alliance maintains a guide to these agile practices on their website. Some
of the most commonly used practices are listed in Table 2.3 below and are explored
throughout this book.

21

AGILE AND BUSINESS ANALYSIS

Table 2.3  Agile work practices

Requirements
practices

yy Backlog: a prioritised list of requirements or work items
that is frequently updated

yy Definition of done/definition of ready: setting acceptance
criteria for a requirement

yy Personas: a way of identifying and describing users of the
system

yy User stories: a way of capturing requirements
yy Story mapping
yy Story splitting: breaking down stories that are too big
yy 3Cs: a way of structuring user stories: Card, Conversation,
Confirmations

Estimation
practices

yy Planning Poker
yy Point estimates
yy Relative estimation
yy Velocity: a way of predicting how much work the team can
do

Team
leadership and
organisation
practices

yy Iterations/timeboxing
yy Daily meeting (Scrum)
yy Burndown chart: a measure of progress in this iteration
yy Task board/Kanban board
yy Retrospective: a review meeting to identify things to change
in the next iteration

yy Scrum of scrums: a way to manage multiple teams working
on related projects

Software
development
practices

yy Pair programming
yy Test driven development (TDD)
yy Behaviour driven development (BDD)
yy Refactoring

Testing and
release
practices

yy Automated build
yy Continuous integration
yy Version control

CONCLUSION

This chapter has discussed the history and development of agile, and has described the
values and principles at its core. Having originated from a software development base,
the Agile Manifesto and principles have a strong software focus. However, agile may be
applied to a much wider context and can be beneficial if used on other types of change
project such as process improvement or skill development.

22

AGILE PHILOSOPHY AND PRINCIPLES

REFERENCES

Anderson, D.J. (2010) Kanban: successful evolutionary change for your technology
business. Washington, DC: Blue Hole Press.

Beck, K. (1999) Extreme programming explained: embrace change. Canada: Addison
Wesley.

Boehm, B.W. (1988) A Spiral Model of software development and enhancement. ACM
SIGSOFT Software Engineering Notes, August. Available from: http://csse.usc.edu/
TECHRPTS/1988/usccse88-500/usccse88-500.pdf [6 December 2016].

Cadle, J. (ed.) (2014) Developing information systems: practical guidance for IT profession-
als. Swindon: BCS.

Highsmith, J.A. (2000) Adaptive software development: a collaborative approach to manag-
ing complex systems. New York: Dorset House Publishing Co. Inc.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The unified software development pro-
cess. Reading, MA: Addison Wesley.

Martin, J. (1991) Rapid application development. USA: Macmillan.

Poppendieck, M. and Poppendieck, T. (2003) Lean software development: an agile toolkit.
Boston, MA: Addison Wesley.

Royce, W.W. (1970) Managing the development of large software systems, Proceedings
of IEEE Wescon. Available from: www-scf.usc.edu/~csci201/lectures/Lecture11/
royce1970.pdf [6 December 2016].

FURTHER READING

Agile Alliance. Available from: www.agilealliance.org [6 December 2016].

Ambler, S. (2009) The Agile Scaling Model (ASM): adapting agile methods for complex
environments, IBM Rational. Available from: www.webfinancialsolutions.com/wp-
content/uploads/2011/10/Adapting-Agile-Methods-for-Complex-Environments.pdf [6
December 2016].

Ambler, S. and Lines, M. (2012) Disciplined Agile delivery. New Jersey: IBM Press, Pearson.

Hunt, A. and Thomas, D. (1999) The pragmatic programmer. Reading, MA: Addison Wesley
Professional.

Interview with Jeff de Luca (2007) ‘Jeff de Luca on Feature Driven Development – inter-
view April 2007’. Available from: www.it-agile.de/fileadmin/docs/FDD-Interview_en_
final.pdf [6 December 2016].

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

The Agile Manifesto. Available from: http://agilemanifesto.org [9 January 2017].

23

http://www.it-agile.de/fileadmin/docs/FDD-Interview_en_final.pdf
http://www.it-agile.de/fileadmin/docs/FDD-Interview_en_final.pdf
http://agilemanifesto.org

3	 ANALYSING THE ENTERPRISE

This chapter covers the following topics:

yy the business analysis perspective;

yy Agile Manifesto for business analysts;

yy agile business thinking: systems thinking; Lean thinking; service thinking.

INTRODUCTION

Agile is usually mentioned and applied within the context of software development but
the underlying philosophy and principles can – and should – be applied much more
widely. However, to do this requires the adoption of a mindset that aligns with the agile
philosophy and then for this to be applied to business needs; for some this will require
fundamental change in the way they think and behave. Where an agile mindset is applied
within an organisation, it will enable greater adaptability and the delivery of business
changes that have the potential to bring early benefit to the organisation.

A good example concerns the development of a new product: this may be a new service
to be offered, such as a training course, a software application or possibly a physical
item such as a piece of furniture. When developing different types of product, many
ideas and requirements may be put forward but some of them may not enhance the
product at all or may not be worth the expense or delay required to incorporate them.
In some situations, there may be requirements that can be deferred. For example, a
company may offer an item of furniture in a limited range of fabrics initially, with the
intention of extending the range of options at a later point. Similarly, there may be a
possibility of providing additional features, such as extra reading materials to extend the
learning from a training course, additional software functionality or even extending the
geographical area in which a product or service may be offered. Enabling early delivery
of an initial version of the product requires the project team to adopt an agile way of
thinking, ensuring that the required features are prioritised and recognising that some
requirements do not need to be fulfilled at the outset – or even at all.

Some organisations associate agile working practices with the use of a particular
method, such as Scrum, or certain techniques, such as user stories, without fully adopt-
ing an agile mindset. This can limit the potential of agile and diminish opportunities for
achieving business benefits because the use of agile is focused on software develop-
ment rather than business improvement. While this is the case for many organisations,

24

ANALYSING THE ENTERPRISE

others are beginning to recognise that it may be applied more broadly and can offer
benefits to business change initiatives. This broader, more holistic view, with a focus on
business rather than software, opens up the agile landscape and provides an opportu-
nity for further business value to be realised.

This is where business analysts should have a central role, changing the focus from the
IT system to more holistic business improvement initiatives that may or may not involve
the use of technology. It is important to recognise that we don’t need to use a specific agile
method or technique in order to adopt an agile mindset, and that user stories and sprints
are not compulsory. It is more important to think and behave in line with the agile philoso-
phy and principles, prioritising ideas and requirements, focusing on the most beneficial
aspects and understanding when a particular feature should be delivered.

This chapter explores the evolving role of business analysis in an agile landscape and
sets out an Agile Manifesto for business analysts that introduces a new way of thinking.

THE BUSINESS ANALYSIS PERSPECTIVE

The formal responsibilities of the business analyst role are well defined where a linear
approach is adopted on a software development project. There are likely to be clear
stages covering the pre-project or feasibility study, detailed requirements engineering,
business acceptance testing, change implementation and benefits realisation. Each of
these stages will require the involvement of business analysts as the project moves
through a waterfall or V model life cycle. When a business analyst is working within an
agile environment, it is still important to carry out this work but the likelihood is that it
will be conducted differently. Essentially, there are three business analysis perspectives
that are relevant to an agile change project:

yy the Enterprise BA conducting pre-project business analysis;

yy the Programme BA working across the change programme;

yy the Project BA working within the development team.

These three roles and perspectives are reflected in Figure 3.1.

The Enterprise BA: pre-project business analysis

New initiatives tend to arise frequently within organisations. This may be because of
factors within the external business environment or as a result of new ideas generated
by internal stakeholders. Whichever is the case, it is important to assess the feasibility
of a proposed project or initiative because it helps to determine three things:

1.	 why a project has been proposed and whether it is viable and will meet the
business need;

2.	 what the solution should comprise – the combination of changes to the
POPIT™ aspects of processes, organisation, people, information and
technology;

3.	 how the solution should be developed – for example, is an agile approach
relevant and, if so, are there likely to be any difficulties in adopting agile?

25

AGILE AND BUSINESS ANALYSIS

Figure 3.1 Three BA perspectives

This work is sometimes called pre-project analysis and requires business analysis
involvement to consider the areas shown in Figure 3.2 below.

Too often change projects are initiated that are not well founded. Typical examples are:

yy where a solution has been identified without there being sufficient understanding
of the problem or opportunity;

yy where an idea has been allowed to evolve into a project without any evaluation
of the situation or the available options.

26

ANALYSING THE ENTERPRISE

Figure 3.2  Pre-project analysis work

Early business analysis work is essential if an organisation is to be assured that a
proposed investment is well founded and the project is relevant. And, this is the case
whether we adopt a linear or agile approach to the work. In a similar vein, Scott Ambler,
in his Disciplined Agile Framework, highlights the importance of an Inception phase
to determine the basis for a development project, including the need to discuss the
vision for the work with stakeholders and assess the feasibility of the proposed project.
Ambler and Lines comment

we recognize the need to point the ship in the right direction before going full-
steam ahead.

(Disciplined Agile Delivery, 2012, page 14)

The goals of this stage include clarifying the business problem to be addressed and
identifying the approach required to complete the work; the achievement of these goals
requires the application of business analysis to the particular situation.

Business analysis skills are essential for the successful conduct of this work. An analyti-
cal approach is at the heart of working with stakeholders to define a consensual vision;
a feasibility assessment is only possible if a holistic view of the situation is taken and
options are analysed.

The recommended solution is likely to require changes to several of the elements shown
in the POPIT™ model in Figure 3.3.

The POPIT™ elements are:

27

AGILE AND BUSINESS ANALYSIS

Figure 3.3  POPIT™ model

Process The definitions of the processes, how they are communicated
to the business staff, the level of IT support, the documentation
used when carrying out the processes.

People The skills of the people, their motivation levels, their awareness
of the business objectives they are required to support.

Organisational
context

The management structure and governance approach, the defi-
nition of job roles and responsibilities, the lines of communica-
tion and authority, the working relationships across functional
boundaries.

Information and
Technology

The information needs for the business, the technology support
that delivers the information and supports the processes.

Changes to any combination of the POPIT™ elements will result in a programme of
business changes. The holistic view provided by business analysis is necessary to
define which changes need to be made. The software development project is typi-
cally just one element of a change programme and, as indicated by the interfaces
of the POPIT™ model, needs to be aligned with the other areas such as revised pro-
cesses, working practices and roles. Figure 3.4 reflects the pre-project work that a
business analyst working at the enterprise level performs, helping to ensure that the
right problem is addressed, the rationale for change is understood, relevant options
are evaluated and the solution addresses all of the required POPIT™ elements within
the business system.

28

ANALYSING THE ENTERPRISE

Figure 3.4  Pre-project business analysis

The programme BA: business analysis and the change programme

A change programme is likely to encompass many interrelated and dependent change
projects. While the programme manager will be responsible for coordinating the
projects, it is the business analyst that ensures that the solution development work
continues to focus on the business outcomes. For example, there will be a need for
business analysis to ensure the changes are understood and that there is alignment
between the different elements. Early delivery of working software alone is unlikely to
offer the value anticipated by the organisation; it needs to be accompanied by the other
changes that will make the solution holistic and viable.

However, where an agile approach is to be applied to a change project, any business
analysts working on the broader business changes can apply the agile philosophy and
principles (set out in Chapter 2) to all aspects of the programme. For example, by:

yy working collaboratively with the stakeholders to elicit and analyse the business
and system requirements, and to support the iterative development of the new
features;

yy clarifying the priorities of the required features;

29

AGILE AND BUSINESS ANALYSIS

yy taking a programme-level view of the business changes;

yy ensuring that any increment delivered to the business staff has been considered
holistically and offers a complete unit of change;

yy supporting the deployment of the incremental changes to the business system.

When working at the programme level, the business analyst is required to support key
stakeholders in making informed business decisions. This is achieved through the busi-
ness analyst choosing and applying a wide range of practised analytical techniques that
the key stakeholders are often not aware of, or practised in.

The project BA: business analysis within the development team

The work of the software development team requires business analysis work to be
conducted if a business-relevant solution is to be delivered. This work is likely to include
activities such as stakeholder engagement, process modelling and requirements analy-
sis, all of which may be necessary to ensure that the development work is aligned with
the needs of the business. Investigating the rationale for requests made by the business
users is one of the key responsibilities of a business analyst and helps to ensure that
effort is not wasted developing features that are unlikely to offer benefit to the organi-
sation. While one of the agile principles states that a face-to-face conversation is the
most effective means of conveying information within the development team, it does not
necessarily follow that this will result in the most useful information being communi-
cated. Sometimes, a conversation with business users that explores the rationale for a
suggested requirement is necessary in order to ensure that there is a genuine business
need to be addressed. Similarly, many business analysts have encountered the situa-
tion where a proposed ‘requirement’ is actually a perceived solution, which requires
further investigation in order to explore the possibilities that improved processes or
technology might be able to offer if the underlying requirement is clearly understood
and expressed.

While it is the case that business analysis work will be required within the development
team, does this mean that a designated business analyst is needed? It is possible that
other members of the development team may take on some of the business analysis
work and act as proxy business analysts. However, care needs to be taken to ensure
that business analysis skills are available within the team in order to avoid problems.
For example, without skilled business analysis, there can be a tendency for all customer
suggestions to be accepted at face value and assumed to be necessary, regardless of
whether they align with the needs of the business. The history of information systems
projects demonstrates that incorporating stated requirements without considering the
underlying rationale can be a recipe for a lot of unnecessary work. The application of
business analysis skills helps to ensure that solutions align with business needs, uncov-
ers tacit knowledge and confirms that investment funds are spent wisely. Achieving
this requires a range of business analysis skills and experience in applying business
analysis techniques. Assuming that these are readily provided by professionals from
other disciplines is at best naïve and, at worst, highly risky.

Business analysts bring a unique skill set to agile development teams. They are able to
look beyond stated requirements to challenge assertions, consider wider impacts and

30

ANALYSING THE ENTERPRISE

evaluate proposed solutions. They have the skills to engage with a range of stakeholders
and have knowledge of the business domain, and this helps to facilitate collaboration
with both customers and developer colleagues.

AGILE MANIFESTO FOR BUSINESS ANALYSTS

While the original Agile Manifesto stated which aspects of software development work
were of a higher priority, the statements need to be updated if there is to be a manifesto
for adopting agile within a business analysis context. While working software is impor-
tant in the business analysis domain, it is rarely the entire solution and sometimes
software is not required at all. Additionally, while working software is of value, it is the
outcome or improved experience produced by the working software that is the domain
of business analysts.

The original focus on software is relevant for IT projects but needs to be extended if it is
to reflect the holistic nature of business change programmes. There needs to be greater
emphasis on improving the entire business system and recognition that the realisation
of business benefits results from business changes, not software delivery. Whereas the
original Agile Manifesto focused on software development, this is too limited for busi-
ness analysts who need a modified manifesto that offers a broader view and has the
potential to inspire agile business change.

A modified version of the Agile Manifesto, which is intended to work as an extension to
the original manifesto, is shown in Figure 3.5 and reflects a business analysis perspec-
tive. This version embraces the Agile Manifesto and philosophy, but also encapsulates
a world view that is relevant to business analysis and the broader business change
context.

Figure 3.5  An Agile Manifesto for business improvement

31

AGILE AND BUSINESS ANALYSIS

The modifications shown in Figure 3.5 reflect the way in which the agile philosophy is
now applied within business contexts. It emphasises that an IT system is not as impor-
tant as ensuring that there is a holistic solution. It also reflects the widely held view
that adherence to a method or approach is less relevant in today’s business world than
adapting the tools to the situation.

However, this requires broader thinking and a focus on business needs and improve-
ment. It also requires a good understanding of prioritisation approaches (see Chapter
9) to ensure that the features that will contribute to the delivery of early benefits are
identified. In short, it needs the involvement of specialists who can marry the business
requirements with the solution development work – the business analysts.

AGILE BUSINESS THINKING

There are several schools of thought that are beneficial to anyone working to improve
how organisations operate. Different ways of thinking are required if we are to focus on
delivering outcomes with the potential to offer value to the customer. Three philosophi-
cal schools of thought are helpful when conducting business analysis within an agile
environment:

yy systems thinking;

yy Lean thinking;

yy service thinking.

These approaches offer relevant insights that have the potential to enhance the busi-
ness analysis work and thereby enrich the business outcomes.

Systems thinking

Systems thinking offers an approach to viewing an organisation and its component
areas as a hierarchy of business systems. A great deal of research has been conducted
into the different aspects and applications of systems thinking. One particularly relevant
development is the Soft Systems Methodology (SSM), which was defined by Checkland
in 1981. Although much of this research was conducted several decades ago, systems
thinking and the SSM are extremely useful in today’s business (and business analysis)
world. They ensure that the underlying rationale for a business system is always kept in
mind, thus reducing the potential for unnecessary work and keeping a focus on changes
that would be beneficial. They also offer a means of viewing business situations holisti-
cally and considering the interdependencies between systems and sub-systems. The
nature of systems thinking was summarised by Peter Senge in The fifth discipline (2006).

Systems thinking is a discipline for seeing wholes. It is a framework for seeing
interrelationships rather than things.

(Peter Senge, 2006)

32

ANALYSING THE ENTERPRISE

There are three key elements considered within systems thinking:

yy the underlying rationale for the system under investigation: Why does this
system exist? What are the values it applies? What priorities does it address?

yy the interrelated elements that conduct the work of the system: What are the
activities, dependencies, rules and so on that enable the work to be carried out?

yy the properties that emerge from the formed system: What is achieved by the
system as a result of all of the elements working together?

These elements are summarised in Figure 3.6 below.

Figure 3.6  Aspects of systems thinking

These three areas are extremely important to understand when analysing business
systems. Let’s look at them individually.

First, they tell us that we need to be cognisant of the underlying rationale – the ‘why’
of a system. This principle is well established in numerous frameworks, including the
SSM, Zachman’s Framework and the OMG Business Motivation Model, and helps ana-
lysts to understand where the primary focus of the work should be placed. Without
understanding the rationale for a system, the analysis work can often be too concerned
with the detail of how things are done rather than trying to understand the relevance of
the system to the organisation. Exploring the rationale for a system also helps analysts
to understand the problem they are attempting to address in order to ensure that the
system objectives are achieved. Recognising the rationale for a system is invaluable
when adopting agile thinking. If we understand the problem to solve and know why the
solution is relevant, we are much more likely to produce something with the potential
to offer value to the organisation.

33

AGILE AND BUSINESS ANALYSIS

Second, the activities and supporting tools, rules and information. Any system is made
up of parts – the elements that make it work – so this is a principle that is very familiar
to most analysts. Historically, we have had a separation between the IS practitioners
and the rest of the organisation, which has caused the term ‘system’ to become syn-
onymous with ‘IT system’. Systems thinking broadens that understanding and causes
analysts to think holistically about business systems and identify how the elements
of a system need to work together to deliver the outcomes that align with the system
rationale. The application of systems thinking helps analysts to enable organisational
agility by ensuring that change releases provide holistic solutions, rather than focusing
solely on software.

Third, additional properties emerge from the synthesis of the elements of a system. The
car is often used as an example. It is made up of many parts, but only as a whole can it
actually move and transport passengers from one location to another. So, the ability to
transport those sitting in the car is the emergent property and all of the elements of the
car have to be working together in order for this property to be provided. It is also the
case that the emergent property may be negative. In the car example, a car’s radiator
can overheat if another working part is not functioning correctly. It is vital that business
analysts understand that systems have emergent properties and these need to be har-
nessed if solutions are to be valuable to customers.

It is the responsibility of the business analyst to look beyond stated problems to find
the underlying root causes and to define a holistic solution. Systems thinking and the
techniques within SSM are invaluable when doing this. They also align with agile think-
ing, as the focus is on understanding which areas within the business system are of the
highest priority and, therefore, where there is the potential for the delivery of benefit at
an early stage.

The POPIT™ model, shown above in Figure 3.3, was developed in order to provide a
framework for thinking holistically about solutions so is also useful when used with
the systems thinking approach. Business analysts can apply the agile philosophy and
principles in all of the four dimensions. So, if considering the processes, the busi-
ness analyst might think about what a process is trying to achieve and the options for
improving it. The analyst might identify that a comprehensive solution formed of many
changes is possible, but that this would require an extended time frame. If adopting an
agile approach, the analyst will work with the business staff to prioritise the potential
changes and define a minimal set that will deliver benefit to the organisation without
undue delay.

Failing to consider the whole business system when making changes can result in unex-
pected emergent properties. For example, automating processes in one area of the
business could cause problems for processes in another area. Without looking at the
business system holistically, and understanding how the individual parts interrelate, it
would be impossible to identify the consequences of a change. Unexpected negative
impacts will have the potential to undermine the value that the service could offer to
the customer.

34

ANALYSING THE ENTERPRISE

Lean thinking

The ‘Lean’ approach originated from the Toyota Production System. Its focus is on
maximising customer value, while minimising waste in order to create better outcomes
for the customer with fewer resources. Lean was essentially a process view of the
organisation that involved thinking about the business from a cross-functional point
of view. This is sometimes called a ‘horizontal’ view because it represents the set of
processes (from different parts of the organisation) that together deliver products or
services to customers. This view of the processes is sometimes called a ‘value chain’.
Such a view contrasts with the ‘vertical’ view of the organisation, which shows each of
the functional areas, such as the customer service department or production facility,
operating separately.

The fundamental concept underpinning the Lean approach is that all functions within
the business system, or organisation, need to work together to deliver the desired
outcome for customers. This desired outcome is usually stated as a value proposition
offered by the organisation. Lean thinking focuses on optimising the workflows through
the horizontal value stream that exists to deliver the organisation’s value proposition.
This horizontal view encompasses people, technologies, assets and departments that
collectively enable the business to deliver its products (or services) with the greatest
level of efficiency. Improving efficiency should enable organisations to reduce expendi-
ture and increase profit margins.

Womack and Jones (2006) defined five key principles that described the Lean concept.
These are shown in Figure 3.7 below.

Figure 3.7  Principles of Lean thinking

35

AGILE AND BUSINESS ANALYSIS

Ohno (1988) identified seven categories of waste that diminish efficiency in organisa-
tions. The seven categories were later extended to include an additional category, the
underutilisation of skills, by James Womack and Daniel Jones. These eight categories of
waste, are often known as the ‘8 wastes’ and are specific areas where wasted resource
and effort may be found in organisations. Therefore, eliminating or reducing the wastes
presents opportunities for improving efficiency. The areas of potential waste are sum-
marised in Figure 3.8. They provide an effective and useful checklist of aspects business
analysts should consider when working on business improvement projects.

Figure 3.8  The ‘8 wastes’

Transport The unnecessary movement of people, materials or information.

Inventory The storage of parts, materials and finished products which are not
required to meet the current customer requirements.

Motion The unnecessary additional movements that are taken by staff in
order to accommodate problems with the layout of the organisa-
tion, defects in the products, overproduction or excess inventory.

Waiting The time spent waiting unnecessarily for parts, information,
instructions or equipment.

Overproduction Making more of an item than is required or making items too far in
advance of when they are needed.

Overprocessing The additional work performed in order to deal with over-
production, defects or excess inventory.

Defects Items needing rework or replacement, as they do not meet the
product specification or are not satisfactory to customers.

Underutilisation
of skills

The underutilisation of the people and their skills, ideas and
creativity.

36

ANALYSING THE ENTERPRISE

Although originally implemented and used within the manufacturing industry, Lean
thinking can apply to other types of organisation where the value streams are con-
cerned with service delivery rather than product manufacturing. Lean is not a technique,
tactic or method; it is a way of thinking that is applied when aiming to improve how an
organisation operates. Lean thinking aligns with both the philosophy outlined in the
Agile Manifesto and with systems thinking, whereby the overall aim is understood and
the elements work together to achieve this in the most effective way. While the focus is
on streamlining the horizontal, value stream view, any changes to processes will inevi-
tably impact upon other areas as shown in the POPIT™ model. As a result, the adoption
of Lean thinking also requires systemic, holistic thinking to ensure that changes to all
of the elements that form the business system are considered.

Lean thinking is highly relevant for business analysts. We may be working on process
improvement projects with a view to streamlining the work and removing inefficiency,
or on projects to develop new or enhanced software that result in corresponding pro-
cess changes. Either way, our analysis will benefit from understanding the ‘8 wastes’
and how they may be used to improve process efficiency. The adoption of Lean thinking
ensures that business analysts focus on establishing the most efficient value stream in
order that the organisation’s value proposition may be delivered to customers.

Service thinking

Too often we see the phrase ‘we deliver value’ or ‘and this is how value is delivered to
customers’. This may be a promotion from an organisation, as in statements such as
‘we always deliver value to our customers’ or it may be a definition such as ‘business
analysts understand business needs in order to deliver value to their customers’.
However, a service thinking approach causes us to question such statements because
‘value’ is not for the service delivery organisation to decide, rather it is the recipient who
determines whether or not value has been created. In other words, value is in the eye
of the beholder.

This distinction is at the heart of service thinking, which is based upon the concepts
developed in Service Science. Everything delivered by organisations is a ‘service’,
whether tangible goods or intangible services are offered. However, the delivery of
service does not mean that value will ensue; sometimes the service delivered does
not create or enable value for the intended customer. A good example of this is when
devices such as mobile phones provide apps or functionality that are neither desired
nor required by the majority of customers.

Service thinking is concerned with the creation and realisation of value and is based
upon the fundamental principle that value has to be co-created with customers. So,
despite frequent statements about delivering value, organisations cannot deliver value
as this requires involvement, support and action on the part of the customers. Instead
an organisation can propose to offer value by defining a value proposition and ensuring
that the capabilities of the organisation are present to deliver what is proposed. Beyond
this, collaboration with customers is needed to co-create a valuable service.

Figure 3.9 below summarises the possible outcomes from the delivery of a service. If
customers have collaborated and the value proposition meets the expectations, value is
likely to result. However, if the customers have not been involved in co-creating value,

37

AGILE AND BUSINESS ANALYSIS

then the proposition and the expectations may be in conflict and value is unlikely to
result. A version of this may also occur when what is proposed is of no interest to the
customers and a service is delivered that is ignored as an irrelevance.

Figure 3.9  Organisation versus customer value perception

Value
proposition

Customer
expectations

Value
proposition

Customer
expectations

Organisations can offer a value proposition (based on the organisation’s capability to
create and deliver specific goods or services), but customers have to be involved and
have to contribute if there is to be co-creation of value. Traditionally, organisations have
held the view of ‘value-in-exchange’, where an assumption is made that value is deliv-
ered in exchange for payment for the service. However, Service Science provides a
more contemporary understanding whereby value comes from the use of the service.
This concept of ‘value-in-use’ clarifies that value can only be realised if use is made of
a delivered service.

For example, an organisation may believe it has a great product to sell but if it doesn’t
quite meet the customers’ needs or they think it is too expensive, they will not buy the
product and no value will be created. Similarly, a customer may purchase a service –
such as a training course – but if they do not engage with the service – in this case by
ensuring that they learn and apply new skills – then no value will accrue.

So, as stated earlier, from a service thinking perspective, an organisation cannot say
that value has been delivered; it is the customer who determines this. The organisation
can ‘propose’ that value will be delivered but if the value proposition and the delivered
service do not meet the customers’ expectation of value, then value is not realised in
the eyes of the customer. To achieve the realisation of value, customers have to provide
information and other resources that help to co-create a potentially valuable service
and they have to make use of the delivered service in order to ensure that the intended
value is realised.

38

ANALYSING THE ENTERPRISE

Why is service thinking useful to business analysts, particularly within an agile context?
Well, agile thinking focuses on the delivery of solutions that will be valuable for the
recipients, but it is not possible to do this if we don’t understand where value originates
and how it is created.

Service thinking states that value needs to be co-created through collaboration between
the service delivery team and the customers. This co-creation of value takes place in
two ways:

1.	 The customer helps the organisation to understand the nature and
characteristics required from the service.

2.	 The customer accesses and uses the delivered service (which could be
services or goods) in such a way as to gain the proposed value.

Therefore, it follows that business analysts need to understand how their work can
support the co-creation of value within their organisations. The application of the agile
philosophy, principles and techniques will contribute to ensuring that analysts under-
stand customer needs and focus on collaborating with them to co-create value. This is
particularly relevant given the range of activities conducted by business analysts and
the increasing levels of responsibility and authority that business analysts have attained.

CONCLUSION

Business analysts have to be cognisant of the context within which they are working
and the goals to be achieved. They have to ensure that the approach taken to the work is
relevant and useful; following a standard method blindly will not suffice in many situa-
tions. Business analysts should be ensuring that their customer organisations ‘do the
right things’ as well as ‘doing the things right’ (after Drucker 2003).

Business analysis is concerned with addressing business problems and identifying
organisational improvements. These improvements may include changes to various
aspects of the business system: the people, processes, organisational governance,
information and technology. Agile practices have been used primarily for software
development but, if applied in a more holistic way, offer the potential for increasing
organisational agility. System, Lean and service thinking can help business analysts
to approach their work in a more agile manner, focusing on the delivery of solutions
from which business value is realised as early as possible. These approaches provide
frameworks, principles and techniques that will help business analysts to apply an agile
mindset within an organisational context while pursuing valuable business outcomes.

REFERENCES

Ambler, S.W. and Lines, M. (2012) Disciplined Agile delivery – a practitioner’s guide to Agile
software delivery in the enterprise. New Jersey: IBM Press.

Checkland, P. (1981) Systems thinking, systems practice. Chichester: John Wiley & Sons.

Drucker, P.F. (2003) The essential Drucker. New York: HarperPB.

39

AGILE AND BUSINESS ANALYSIS

Ohno, T. (1988) The Toyota Production System: beyond large-scale production. Portland,
OR: Productivity Press.

Senge, P. (2006) The fifth discipline: the art and practice of the learning organization: 2nd
edition. London: Random House Business.

Womack, J.P. and Jones, D.T. (2006) Lean thinking: banish waste and create wealth in your
corporation 2nd edition. London: Simon & Schuster.

FURTHER READING

Hastings, H. and Saperstein, J. (2014) Service thinking: the seven principles to discover
innovative opportunities. New York: Business Expert Press.

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

Spohrer, J.C. and Maglio, P.P. (2010) Toward a science of service systems: value and
symbols. In Maglio, P.P., Kieliszewski, C.A. and Spohrer, J.C. (eds). Handbook of Service
Science: research and innovations in the service economy. New York: Springer, 157–94.

40

4	 ADOPTING AN AGILE MINDSET

This chapter covers the following topics:

yy relating the agile principles to business analysis;

yy collaborative working;

yy self-organising teams;

yy continuous improvement;

yy iterative development and incremental delivery;

yy planning for and building in change;

yy doing the right thing and the thing right.

INTRODUCTION

The agile philosophy offers an astute way of thinking about business systems, so it
makes sense for business analysts to understand what agile means and how it may be
applied. The 12 agile principles (described in Chapter 2) reflect some core values that
underpin agile software development.

This chapter discusses six core agile values to consider how they apply to business
analysis and the development of holistic, business improvement solutions.

RELATING THE AGILE PRINCIPLES TO BUSINESS ANALYSIS

Although the agile principles were written with software development in mind, there is
an underlying world view that has a broader application to business change projects.
This is supported through the ‘Agile Manifesto for business analysts’ discussed in
Chapter 3. Detailed consideration of the agile principles reveals that they are based
upon values such as effective leadership, collaboration and Lean thinking, all of which
are relevant to business analysis work.

The application of the agile principles to the business analysis landscape rather than just
to software development may be a new concept to some business analysts. However,
the adoption of agile thinking can offer significant advantages when used on business
change projects, for example where the following situations are present:

41

AGILE AND BUSINESS ANALYSIS

yy There are opportunities to deliver business benefits at an early stage through
addressing straightforward problems.

yy The high-level business requirements are understood but the more detailed
requirements are unclear and need to evolve.

yy There is a high volume, and rapid pace, of change.

The different levels of business analysis were described in Chapter 1 which explored
how business analysts may work in a variety of business environments. For example,
they may need to understand agile because they are working within a software develop-
ment team, on a change project where improvements are to be delivered incrementally,
or even in an organisation that has adopted agile across its operations. It is clear that
the agile principles present several core values that are relevant to business analysis.

The core agile values for business analysts

There are six core values that may be derived from the 12 agile principles and are highly
relevant to agile business analysis. These are shown in Figure 4.1 and discussed below.

Figure 4.1  Six core agile values for business analysts

42

ADOPTING AN AGILE MINDSET

COLLABORATIVE WORKING

Effective communication and collaboration are essential elements of both agile and
business analysis. Collaborative working is the ability of two or more individuals, groups
or organisations to work together towards a common goal. At the heart of collabora-
tion is the need to engage with colleagues in order to build trust. Without trust, working
relationships become difficult; with trust, an environment for success is fostered. The
importance of developing trust is illustrated well by the two quotations below.

A team is not a group of people who work together. A team is a group of people who
trust each other.

(Simon Sinek, n.d.)

When the trust account is high, communication is easy, instant, and effective.
(Stephen Covey, 2004)

When we work with people, we have an opportunity to build rapport; when we collabo-
rate we have the opportunity to build trust. Establishing trust results in less need for
formality. For example, formal documentation doesn’t always need to be produced to
ensure that work is completed where our experience of working with colleagues tells
us that we can trust them to complete the agreed tasks.

Working in direct contact with another person is the primary way to gain trust. This is
why collaboration is so important within an agile organisation and why it features so
much within agile literature. As a general rule, people don’t tend to trust a person they
have never met.

Elements of communication

When considering how feelings and attitudes are communicated, Albert Mehrabian
(1971) identified three elements of communication and their importance in liking and
trusting the person with whom we are communicating. These three elements, captured
in Table 4.1 are:

Table 4.1  The three elements of communication

Words (verbal) The actual words that are spoken. The literal meaning of
the overall message.

Tone of voice (vocal) How we say the words and the intonation placed on the
words that are spoken.

Body language (visual) This is non-verbal communication that can be facial
expression or body and hand gestures.

Mehrabian’s studies concluded that these elements were represented by the following
percentages, shown here in Figure 4.2.

43

AGILE AND BUSINESS ANALYSIS

Figure 4.2  Mehrabian’s elements of communication

7%

38%
55%

Words (Verbal)

Tone of voice
(Vocal)

Body language
(Visual)

This would suggest that the tone of voice and body language are the most powerful fac-
tors concerning feelings or attitudes during the communication process.

Please note that these percentages only apply when somebody is communicating
a message about their feelings or attitudes and not just any message. This model
does not necessarily apply to other kinds of messages being conveyed.

Mehrabian’s model tells us that as much as 93 per cent of the elements of communica-
tion may be lost if we are not engaged in face-to-face communication. In today’s busi-
ness world, most communication is carried out through emails or various social media
channels. Inevitably this sets up communication barriers, inhibits our ability to interpret
messages and causes difficulties for the development of trust within organisations.

Understanding stakeholders

A key aspect of business analysis work involves engaging with the stakeholder commu-
nity. If an organisation has adopted agile, this helps to ensure greater opportunities for
collaboration and communication. Business analysts have a toolkit of techniques for
analysing and conveying information, all of which support stakeholder engagement and
the achievement of desired business outcomes.

Business analysts understand the importance of analysing stakeholder perspectives.
Within the business analysis toolkit we can find techniques such as world view analysis
and RACI (see Chapter 7), both of which help us to better understand how to work with
stakeholders. Taking the time to understand stakeholders can offer many benefits, such
as supporting collaborative working and analysing different perspectives.

Collaboration and organisational culture

A culture of collaboration is not always present within an organisation. It is sometimes
the case that employees do not collaborate effectively or value collaboration because

44

ADOPTING AN AGILE MINDSET

they do not see their seniors, or others within the organisation, acting in this way.
Instead, they may see their colleagues competing with one another, particularly if there
is a focus on recognising individual, rather than team, performance.

Informal collaboration can be encouraged through networking and social events, which
can help formal collaboration to develop. The culture of collaboration might not always
be seeded within an organisation and those companies with a more formal hierarchical
approach may not adjust as well to some of the principles of agile. It is this underlying
culture that can often preclude agile from being widely adopted within an organisation,
particularly beyond the software development team.

Environmental issues for collaborative working

For many organisations, collaborative working has been critical to the success of agile
development. As a result, some office environments have been redesigned to provide
a layout more conducive to this style of working. This allows teams to be co-located,
either physically or virtually, and often provides an informal workshop-like approach to
developing solutions. If the environment is organised into numerous small office spaces
rather than open-plan layouts it can result in email exchanges rather than face-to-face
communication and can make collaboration more difficult.

Geography can result in teams being physically dispersed, with business analysts in
different locations to the customers and the solution development team. This form of
business model can be challenging when a collaborative approach is required but can
be addressed using technology, for example, video conferencing. Using this technol-
ogy, individuals can see each other and still obtain some of the verbal, vocal and visual
forms of communication that Mehrabian refers to, albeit through a two-dimensional
technology screen.

It is useful to consider whether business analysts should sit together or with the devel-
opment team if they are working on an agile project. The following factors need to be
taken into consideration.

yy Do the business analysts get help and experience from their practice colleagues?

yy Do all business analysts within the practice work on software development
projects or is the business analyst service spread wider across the business?

yy Is there a chance that the business analyst will become isolated from the
practice if they spend all their time with the solution development team?

yy Is there a risk that the business analyst may not be fully utilised by the solution
development team if they are not part of the development team?

yy If the business analyst is embedded within the solution development team, can
they become disconnected from the business?

There isn’t a definitive right or wrong approach when considering location; it has to
be what is right for the business analyst’s customers and for the business as a whole.
Having early conversations about the business analyst’s project responsibilities and
accountabilities will help to identify a solution that works for everyone.

45

AGILE AND BUSINESS ANALYSIS

SELF-ORGANISING TEAMS

The concept of the self-organising team is a key element of agile software develop-
ment. However, the relevance and potential value from self-organising teams can also
be considered for any team or group that is working towards a common goal. Business
analysts often perceive that they lack authority in situations where they could make a
significant contribution to achieving the project goals. The switch from directive govern-
ance to team empowerment should enable practising business analysts to work with
greater authority.

It is important to distinguish between a group and a team: a group comprises two or
more individuals who interact with one another, bringing their unique perspectives and
experience to achieve a goal or objective.

A team is also a group, but with the additional characteristics of a sense of belonging,
understanding and awareness of each other’s needs and concerns. In The human touch,
Thomas et al. (2012) describe the additional characteristics of a team as including:

yy Communication: ease and flexibility of interaction and communication between
team members, respecting one another’s views and concerns.

yy Cooperation: individuals are comfortable sharing their feelings and being
supported by other team members.

yy Cohesion: team members work together to agree the goal of the team and
appreciate that the goal can only be achieved by working together.

Accepting these definitions, it is clear to see why agile refers to teams rather than
groups. From a business analysis perspective, however, much of what is discussed in
this section could also apply to groups of individuals who come together for a specific
event; for example, an initial workshop to outline a problem or to identify problems with
the current business situation.

Micromanagement

Micromanagement involves managing teams in a detailed manner, such that all
decision-making is removed from team members. Business analysts may experi-
ence project managers instructing them on timing, standards and techniques to be
used in order to complete a task. For example, ‘you have four weeks to complete the
requirements definition for project X by running a workshop and using this template to
document each of the requirements’.

This level of instruction can be frustrating for many reasons, but particularly because it
implies a lack of faith in the analyst’s ability to determine how the work should be done
and how long it will take. The immediate effect of such an approach is for the business
analyst to feel undervalued and undermined. It may be that the approach and timescale
will work, but it is also possible that the analyst could have suggested a more relevant
approach and could complete the work quicker. Given that most business analysts are
highly skilled, failing to consult them on aspects of business analysis work can only
serve to build a sense of frustration. There is also the possibility in this instance that

46

ADOPTING AN AGILE MINDSET

the work takes longer than the allotted timescale, which may add a sense of failure into
the unhappy mix of emotions.

To be truly self-organising, the team needs to be empowered to make its own deci-
sions. If the team members cannot make their own decisions, then they cannot be self-
organising.

Dr Stephen Covey (2004) commented in the 7 habits of highly effective people:

You cannot hold people responsible for results if you supervise their methods. You
then become responsible for results and rules replace human judgement, creativity,
responsibility. … Effective leaders set up the conditions of empowerment and then …
get out of people’s way, clear their path and become a source of help as requested.

Where a team is micromanaged, its members are not empowered and can feel disen-
franchised. This leads to a sense of lack of trust and unhelpful behaviours, causing the
team to seek guidance rather than work in a self-organising way. This causes signifi-
cant difficulty if the team is required to adopt agile and apply the agile principles and
techniques.

The best way to empower a team is to let members take responsibility and ownership
for their own work, tasks and estimates. The Agile philosophy is that the team should
take care of its tasks and the project manager or team manager should take care of
the team. This is the essence of a ‘self-organising’ team. The team decides how long
a task takes and how much work can be done to deliver a desired business outcome
within the allotted time frame. In an agile environment, the team is trusted to deliver
and therefore there is no need for micromanagement. If business analysts are to work
successfully in Agile teams, they have to recognise the importance of working within a
self-organising team.

In non-agile teams it is usually the project manager who decides how long a task takes.

In agile development, the team – which includes the business owner of the project –
takes responsibility for identifying the tasks, and estimating how long they will take.
The project manager leads the team by ensuring that no obstacles get in the way of
delivering the tasks. In other words, the project manager trusts that the team members
know what they are doing and does everything possible to help them achieve success.

Agile teams are also cross-functional, or multi-disciplinary, in so much as the team
must contain all the skills necessary to move from a high-level business need through
to delivering outcomes that demonstrate value to the business. This includes skills such
as business analysis, design, testing and UX (User Experience) design.

The concept behind self-organising teams is empowerment and trust. Without empow-
erment there is a lack of trust, and without trust there cannot be an agile team. Team
members also have to trust and respect each other, recognising the skills they all bring
to the work in hand. Where business analysts work as part of an agile team they have

47

AGILE AND BUSINESS ANALYSIS

to be cognisant of this principle as it applies to the working relationships they have with
the other team members and their stakeholders.

Team development

It’s not realistic to expect a newly formed team to hit the ground running. It takes time
for individuals to get to know each other and to trust one another. A newly formed team
will need to move through a series of stages in order to develop the ability to work as
an effective, performing team. Bruce Tuckman (1965) developed a four-stage model of
group formation that is usually referred to as the ‘Tuckman’ model. The stages in this
model are shown in Figure 4.3.

Figure 4.3  Tuckman’s stages of group development

1

3

4

5

?
!

?

!
!

?

?
! ?

!

2

Team increases in effectiveness over tim
e

Time

Te
am

 e
ffe

ct
iv

en
es

s

Forming

Storming

Norming

Performing

Adjourning

The four stages of group development identified by Tuckman are as follows:

Forming At this stage, the group has just come together and everyone is very
tentative and uncertain about themselves and their relationship to the
other group members. They tend to be careful about what they say as
they try to get to know each other and establish basic ‘ground rules’
for their interactions.

Storming During this stage people start to test the boundaries identified dur-
ing the forming stage. People often have different working styles and
personalities and this can be a source of frustration for other team
members. Authority can also be challenged here as team members
jockey for positions while their roles are clarified. This can be unset-
tling as the team have yet to form strong bonds and so individuals
may feel isolated.

48

ADOPTING AN AGILE MINDSET

Norming This stage occurs once people start to resolve their differences. Team
members start to help each other, confide in each other and may even
start to socialise outside work. Consensus (about purpose, at least)
has been established and the group begins to function reasonably
effectively.

Performing Groups that reach this stage really start to perform effectively (think
of the most successful sports teams here). Group members know and
trust each other and can hand tasks back and forth with confidence.
If someone ‘drops’ something, another team member will step in and
pick it up. This is the stage that most teams aspire to and teams at this
stage should be left to function.

In a later work, Tuckman and Mary Ann Jensen (1977) identified a fifth stage that groups
can encounter:

Adjourning The reasons why the group was formed are no longer valid and it
starts to break up. This stage is characterised by disengagement, anx-
iety about what happens next, positive feelings of past achievement
and sadness at parting.

It is important for anyone involved in managing teams to recognise these stages and
help the team to develop by working through these stages as quickly as possible. This is
why, for example, when faced with a new team and a tight timescale it may be beneficial
to organise an off-site, team-development event as this would help the team to move
through the first two stages in a neutral environment.

It is not possible to circumvent these stages, for example by mixing a performing team
with a norming team in the hope that this will produce two performing teams. In prac-
tice, this will often have the opposite effect, as changes to the constitution of a team at
any stage will result in them reverting back to the forming stage.

Team development can be complicated where organisations have ‘virtual’ teams. In this
situation, team members reside in different locations or even different countries. This is
typically the case with outsourced and off-shored development teams and makes it dif-
ficult for teams to move through the team formation process. Even if most intra-group
communication is by email, telephone and video or audio conferencing, it is worthwhile
having team events where people can get to know each other as this will help the virtual
team to function more effectively.

CONTINUOUS IMPROVEMENT

Continuous improvement concerns the ongoing effort to improve products, services or
processes, with a focus on delivering improvements for the customer. The approach
emerged in the 1950s as Japan began its economic reconstruction following the Second
World War.

49

AGILE AND BUSINESS ANALYSIS

Today, continuous improvement is a fundamental element of frameworks such as Lean
manufacturing and Six Sigma. For many years, continuous improvement was seen
as having relevance to just manufacturing organisations and their delivery products.
However, it became apparent that any business or function that delivered a product
or a service could also benefit from adopting a continuous improvement approach to
enhance its overall efficiency and quality. This includes software development.

It is worth noting that there is a difference between developing software and manufac-
turing products:

yy Software products are generally built once and improved, adapted or replaced.

yy Manufacturing products, once designed and approved, are built many times
over.

Even though the manufactured product is improved, and processes updated, the product
can continue to be produced. In some cases, the product may be built millions of times
over many years (product examples include an Apple iPhone, a digital clock and a car).

Manufacturing organisations strive for uniformity in both the quality of the product and
the processes applied to produce it. However, this is not the case with software as each
project will be different from any other project. Although there are many similarities
between developing software and manufacturing products, applying a strict ‘one-size-
fits-all’ process to software development projects can be the source of many project
failures. If we are to apply continuous improvement to software development processes,
it is important to recognise the particular features of each project and consider the
approach that would be the best fit. While there may be standard methods and tech-
niques that can be used, it is typically the case that some adaptation will be required to
ensure that they work within a specific context. Ensuring that there is a focus on adapta-
tion and improvement is a core principle for agile business analysts. One of the ways in
which this can be achieved is through using the ‘toolkit’ approach to the analysis work,
whereby the technique or standard that is most relevant is selected.

Kaizen

The American engineer W. Edwards Deming wrote in his book Out of the crisis (2000,
p. 23):

Improve constantly and forever the system of production and service: … there must
be continual improvement in test methods and even better understanding of the
customer’s needs and of the way he uses and misuses a product.

Deming made a significant contribution to Japan’s reputation for innovative, high-quality
products and had a huge impact on Japan’s manufacturing from the 1950s onwards.
The developments in Japan resulted in the emergence of Kaizen, which is the practice
of continuous improvement where everyone, across the whole workforce from chief
executive officer (CEO) to cleaner, is involved in making the improvements. Kaizen is

50

ADOPTING AN AGILE MINDSET

Japanese for ‘improvement’ or ‘change for the best’ and was first implemented on the
Toyota Production System. It influenced Lean and Kanban approaches.

Kaizen is based on the PDCA cycle, also known as the Deming cycle (2000) and shown
in Figure 4.4, which stands for:

yy Plan: establish the objectives and processes (input and output) to deliver the
target or goal.

yy Do: implement the process and collect data to analyse it.

yy Check: study the results and compare against those expected in the Plan stage.

yy Act: request corrective actions to put right any differences between the actual
results and those planned.

Figure 4.4  Kaizen PDCA cycle

The idea behind Kaizen is to include the entire workforce in a culture of continuous
improvement. Each person in the company is expected to come up with three to five
suggestions for improvement each month. The combined impact of this concept was
that hundreds of small improvements could be made each month that would continu-
ously drive the business forward.

Kaizen translates into agile software delivery as follows:

Plan Within the software delivery process this is done at the start of the time
frame, where we plan the goal we want to deliver. We then plan the work
required to meet the desired business goal.

Do Once the tasks have been identified and estimated the agile team start to
do the necessary work to complete the iteration goal.

51

AGILE AND BUSINESS ANALYSIS

Check During the iteration, the agile team constantly checks the work they are
doing to see whether any adjustments are required. A daily stand-up meet-
ing may be held to check progress and identify any potential problems that
need to be resolved.

Act At the end of the iteration the agile team gets together and discusses what
went well and what didn’t go so well. Any suggestions are acted upon by
making adjustments and changes to improve these aspects for the next
iteration. These meetings are often called retrospectives or iteration review
meetings and are explored further in Chapter 15.

Business improvement for business analysts

Continuous improvement has its roots in process improvement, which is often the focus
of business analysis work. One of the more common frameworks used by business
analysts for process improvement or change projects is DMAIC from the Six Sigma
process improvement approach. DMAIC contains the following elements.

Define Define the problem. Understand the problem we are working to resolve,
who the customer and stakeholders are, and the benefits that could
accrue. Clarify and define the scope.

Measure Look at the processes to find the potential causes of the problem. Gather
data about the problem.

Analyse Analyse the processes to determine defects and root causes of prob-
lems. Gather and analyse additional data as required.

Improve Improve the process by eliminating defects. Develop potential solutions
and test the solutions against agreed criteria.

Control Control future performance by developing clear standards and proce-
dures for the process.

ITERATIVE DEVELOPMENT AND INCREMENTAL DELIVERY

Agile software development is based on an iterative development and incremental deliv-
ery life cycle approach (explained further in Chapter 5). Iterative development refers to
how the software is built, whereas incremental delivery refers to the delivery of the
software to the business in releases. This can also be used by business analysts and
applied to change projects with a broader focus. A holistic view, coupled with systemic
thinking, enables business analysts to identify elements of the business system where
it is possible to make targeted, incremental changes that have the potential to deliver
benefit at an early stage. This approach helps in the smooth introduction of changes and
increases stakeholder confidence in the project.

Applying the iterative and incremental approach

Chapter 5 explains how iterative development and incremental delivery are applied
during agile software development. Figure 4.5 shows how this iterative development
process can be adapted for the business improvement method DMAIC, taken from Six
Sigma.

52

ADOPTING AN AGILE MINDSET

Figure 4.5  Iterative development adapted for process improvement

It is possible to release the improvements developed within one iteration. It is also pos-
sible to deliver an increment or release that has been developed during multiple itera-
tions. It is possible to have just one major product delivery (which has been developed
during many iterations) followed by smaller changes, although this is less likely within
an agile environment. In essence, the principles of iterative development and incremen-
tal delivery need to be applied in the way that works best for the organisation.

When developing a solution iteratively, the nature of the overall solution evolves as the
work progresses. Both during and at the end of an iteration, all working solutions are
tested against previously delivered solutions to ensure that they work together. When
delivering changes incrementally, it is important to ensure that any additional changes
work seamlessly with the earlier ‘releases’ of change and will deliver the desired out-
comes to the business.

A process improvement project provides a good example of how a business analyst
might apply iterative development and incremental delivery. In this context, ‘develop-
ment’ refers to the design and development of improved processes plus their attendant
artefacts.

yy Model the context: define the scope of the improvement project, possibly using
a high-level process map based on the value chain technique. Decide measures/
goals to be achieved.

yy Prioritise process areas: those that would benefit from improvement. The
MoSCoW technique is useful for this prioritisation (Chapter 9).

yy Model and analyse: focus on the highest priority business process; swim lane
diagrams would be an effective approach.

yy Identify the tasks: particularly those that would benefit from improvement and
prioritise them.

yy Improve the highest priority tasks: deploy these into operation when possible.
It may or may not make sense to implement each individual process change,
as there may be dependent processes that require improvement in order to
generate beneficial changes. It will also be necessary to collaborate with the
customer during the improvement work and to consider the other POPIT™
elements.

53

AGILE AND BUSINESS ANALYSIS

yy Iterate this process: when new processes are implemented, it is often possible
to see where further process improvement possibilities reside. This knowledge
then influences which areas of the process are tackled in the next increment
or release.

This approach requires collaboration with the customer (another key agile value as
discussed earlier), which offers the possibility of discussion and demonstration of ideas
as the development work progresses. An incremental delivery approach is likely to
minimise disruption during the implementation of process changes, reducing the risk
to the continuing performance of the business area.

The first increment

The initial delivery of an IT system or process improvement requires significant analysis
as this is going to be the first set of changes that the business customers will experi-
ence. When considering what should be delivered in the first increment, it is a good idea
to think about the following in order to identify the focus for the project and establish
the content of the first release:

yy the risks that need to be addressed;

yy the assumptions about the project that should be proved or disproved;

yy the goals to be achieved;

yy dependencies between processes and other projects;

yy any timescales that need to be meet;

yy the priority of the work in achieving the project goals.

The Minimal Viable Product (MVP) and the Minimal Marketable Product (MMP) are
two concepts that are particularly relevant when considering the first increment to be
deployed. Prioritisation plays a major part in the discussions about the MVP and MMP.
This topic is discussed further in Chapter 9.

MVP: The MVP is the minimum that needs to be done to test, prove or
disprove an assumption or risk about the project. For business
improvement projects, it may be used to ascertain whether a
process improvement is worthwhile or before embarking upon
a large improvement programme. The MVP may be an experi-
ment and so may not actually be delivered, as it may not make
sense to make the change as it stands. However, it may have
been piloted within an area of the business in order to gain
necessary information.

MMP: In essence, the MMP is the minimal amount of change or
improvement that can be delivered which will produce tangi-
ble outcomes that a customer is willing to accept or pay for.
Dependencies will have been proven during the iterations and/
or MVP, and risks will have been addressed. This work will have
been used to ensure that there is value in making the process
improvement.

54

ADOPTING AN AGILE MINDSET

Iterative development combined with incremental delivery is the approach that under-
pins agile today and it is as valid to business change and improvement projects as it is
to the delivery of software.

PLANNING FOR AND BUILDING IN CHANGE

One thing that is almost always guaranteed on any project is that change is inevitable
and can happen for many reasons. Some sources of change are illustrated in Figure 4.6.

Figure 4.6  External and internal sources of change

Some requirements are persistent and do not change a lot; data requirements often fit
into this category. Other requirements are much more volatile – for example, the details
of a user interface – so specifying these requirements in detail at an early stage will
undoubtedly waste time and effort. To combat this, agile development attempts to avoid

55

AGILE AND BUSINESS ANALYSIS

finalising requirements early. Instead, work is planned using high-level requirements
and goals that are only protected from change during the iteration within which they
are developed. Applying the business analysis technique of establishing a hierarchy of
requirements (Chapter 13) and documenting requirements in line with the agile values
of Just Enough, Just in Time, will reduce the time spent defining the requirements and
avoid unnecessary rework. Ongoing customer collaboration and early delivery of incre-
ments helps to ensure that the project team are delivering what the customer requires
in order to meet the business need.

DOING THE RIGHT THING AND THE THING RIGHT

As agile becomes more widespread within organisations, the void created by a lack
of business analysis is becoming more obvious. Agile development teams run the
risk of losing sight of the big picture – the holistic view – and failing to understanding
the desired outcomes for their organisation. The business outcome or goal is rarely a
new IT system; rather it is a beneficial business outcome such as improved efficiency
or productivity. One of the key questions business analysts ask is, ‘Why?’ in order to
challenge conventional wisdom and uncover root causes of problems. This is how the
actual business needs are uncovered and is in line with Drucker’s (2003) principle of
delivering ‘the right thing’ as well as ‘the thing right’. These terms are not evident within
the 12 agile principles. However, they are important in the business context and for the
agile delivery of holistic solutions.

Deliver the right thing

Introducing technology is not always the right solution to solving business problems and
yet technology is chosen regularly over alternative options such as business process
change or skills development. This is often in the hope that a big investment will bring
about big results. While technology is a huge part of businesses today, so are the people
working within organisations, the processes they use and the skills they possess.

Delivering the right thing involves making sure that the root cause to a problem is
understood and that the solution involves all necessary elements of the POPIT™ model.
Therefore, the ‘right thing’ is likely to be a mix of people, organisation, process, informa-
tion and technology change. Failing to consider the holistic solution is likely to result in
disappointed customers and unrealised benefits.

Deliver the thing right

Agile business analysts can add significant value to their organisations and projects by
being aware of the need to tailor their approach as necessary. Although requirements
typically evolve during the iterative development process, some requirements may need
to be defined in detail at an earlier stage. If it would be beneficial to define a process or
rule at an early stage then we should be prepared to do this. If a particular requirement
is difficult to understand, perhaps because of the presence of tacit knowledge, then
we should consider which techniques would be most relevant to gain the necessary
understanding.

56

ADOPTING AN AGILE MINDSET

It is of paramount importance that the constraints and assets of the business are con-
sidered when deciding the development and delivery of the solution. It is possible that
the iterative development of the solution may be assisted by adopting a modular busi-
ness architecture, based on reusable organisational capabilities, components and arte-
facts.

While incremental delivery enables the early realisation of benefits and the reduction of
risk, this may not always be possible within the business context. For example, where
a legacy system or processes are to be replaced, it is possible that the solution has to
be delivered in one release.

Ultimately, applying any approach – whether agile or not – as a ‘cookbook’ does not help
to ensure the success of a change project. The essence of agility is adaptability and agile
business analysts who do this are well placed to ensure that the ‘thing’ is delivered right.

CONCLUSION

The business analysis toolkit is constantly evolving and business analysts have to
subscribe to ongoing personal development. The six core values (Figure 4.1) capture the
essence of an agile mindset and should be applied by business analysts when working
within an agile environment. Techniques and frameworks such as Kaizen and DMAIC are
worthy additions to the business analysis toolkit and have the potential to offer benefits
to agile business analysts.

REFERENCES

Covey, Dr S. (2004) 7 habits of highly effective people. London: Simon and Schuster
Limited.

Deming, W.E. (2000) Out of the crisis. Cambridge, MA: MIT Press.

Drucker, P.F. (2003) The essential Drucker. New York: HarperPB.

Mehrabian, A. (1971) Silent messages: 1st edition. Belmont, CA: Wadsworth.

Sinek, S. (n.d.) AZ quotes. Available from: www.azquotes.com/quote/714917
[7 December 2016].

Thomas, P., Paul, D. and Cadle, J. (2012) The human touch: personal skills for professional
success. Swindon: BCS.

Tuckman, B.W. (1965) Developmental sequence in small groups. Psychological Bulletin,
63 (6): 384–99.

Tuckman, B.W. and Jensen, M.A. (1977) Stages in small group development revisited.
Group and Organisation Studies, 2: 419–27.

57

AGILE AND BUSINESS ANALYSIS

FURTHER READING

Patton, J. (2014) User story mapping: 1st edition. Sebastopol, CA: O’Reilly.

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

58

5	� UNDERSTANDING AGILE METHODS
AND FRAMEWORKS

This chapter covers the following topics:

yy key elements in agile methods;

yy popular agile methods and approaches;

yy scaled agile approaches.

INTRODUCTION

The majority of business analysts will encounter agile methods while working on
change projects, reading online articles or attending training courses and this is likely
to utilise, or focus on, a specific method or process. Often, it can feel that there is only
one way to ‘do agile’ and that the techniques, practices and ceremonies of that approach
are all there is to know.

Conversely, as explained in Chapter 2, the Agile Manifesto originated as an amalgam of
many methods and approaches, took the best parts of them, and derived a set of core
values and principles. However, the Agile Manifesto does not specify how to apply the
values or principles so, since its creation, there have been several attempts to create
methods, processes and approaches that fill this gap. And although they vary in many
ways, they can all claim to apply agile; it is just that they are agile in different ways.

These methods and approaches may differ in their depth, the scope of the projects
they are aimed at and the team roles they describe. They also focus primarily on soft-
ware development and encourage the elaboration of requirements through discussions
between developers and end users. This can make it difficult for business analysts to
know where they fit, as very few of the popular approaches specifically mention the
need for a business analyst. Despite this, there remains a clear need for business analy-
sis skills in projects today, as this book makes clear. This chapter will briefly describe
some popular agile methods and approaches and help business analysts to understand
the context within which they may need to work.

KEY ELEMENTS IN AGILE METHODS

There are a number of elements common to all agile approaches. They are described
in this book without reference to specific methods. For example, Chapter 11 discusses

59

AGILE AND BUSINESS ANALYSIS

several techniques that may be used to conduct requirements analysis, whatever the
method adopted on a particular project. What makes them agile techniques is the way
in which they embody the values in the Agile Manifesto or demonstrate the agile princi-
ples. Understanding the core aspects of agile helps when learning new methods and
moving from one agile project to another. In practice, very few teams apply a given
method in a prescriptive way. Instead, the approach evolves and is continually improved
as the method is applied to the development work.

Some of the key elements that are common to agile methods and are of particular rel-
evance to business analysis are described in Table 5.1 below.

Table 5.1  Key elements in agile methods

A list of work
to be done

A list of work items must be created for a project and needs to
be ordered or arranged in some way. The priorities of the list
must be established and it must be kept current as the project
progresses. There are several names for this list including
backlog, inbox, feature list, requirements list and work items.

The creation and management of this list, including the elicitation
and analysis of the items, plus alignment with expected business
benefits, requires good business analysis skills.

Iterative
development

Agile methods typically emphasise the need for many regular
periods where software is developed and delivered. These periods
often follow a regular time frame (for example, every two weeks)
and may be known as iterations, sprints or timeboxes. The work of
each iteration may be cumulative, where each delivered increment
builds on the previous one, adding new functionality or qualities.

It is important that each iteration focuses on delivering a valuable
outcome for the customer; this is an area that requires skilled
business analysis.

High levels
of customer
involvement

In contrast to waterfall approaches, agile methods do not receive or
produce comprehensive statements of requirements as a starting
point. Instead, they expect the detailed requirements to evolve and
change during the development process. To do this, the team needs
to have constant and ongoing engagement with the customers.

Sometimes, development teams can become resistant to change,
particularly as the project nears completion. Business analysis
is focused on the needs of the customer; it will ensure that
the analysis is conducted so that changes are understood and
identified quickly.

There is a wide range of customers and stakeholders; these are
discussed in Chapter 7. Balancing the needs of these disparate
customers is a fundamental business analysis skill.

(Continued)

60

UNDERSTANDING AGILE METHODS AND FRAMEWORKS

Transparency
and sharing
progress

Transparency is an important aspect of agile and many teams use
physical boards or tables to record progress. The customer needs
to be involved in planning and review meetings, and is expected
to play a full part in the team. However, this is often difficult in
practice, as customers may not be able to give sufficient time at
the point it is required. In this situation, it is often the business
analyst who can act as a proxy for the customer and provide the
required business knowledge.

Regular
reviews of
progress

At the end of each iteration or phase, meetings are held where
progress is reviewed and the team make any necessary changes
or even stop working on the project. These meetings are often
called retrospectives, but reviewing progress, and reacting to
the review outcomes, can also be part of planning meetings.
This dedication to continuous improvement should be familiar to
business analysts, and many business analysis techniques can
help these meetings run smoothly.

A whole team
mindset

The team works together and collectively feels responsible for
the work. Between them, they have all the skills required to
perform the work. Often this means that each team member
is expected to have cross-functional skills in addition to their
particular specialism. The term ‘generalising specialist’ has
been coined to describe a team member with cross-functional
skills. In this context, it is possible that a business analyst may be
involved in testing software. However, some activities will require
specialist skills, such as those offered by business analysts.

Table 5.1  (Continued)

POPULAR AGILE METHODS AND APPROACHES

There are several popular agile methods and frameworks and they are described in
outline below; additional reading references are provided at the end of the chapter.
Some of the approaches can correctly be described as methods, as they specify the
details required to implement them. Others are defined in less detail, consisting of
guidance and principles rather than complete methods.

Scrum

Scrum is by far the most widely used agile method and, for many people, it is synony-
mous with agile. It is documented on the www.scrum.org website which is updated
frequently and is described in many books.

It was first presented by Jeff Sutherland and Ken Schwaber in 1995 and is based on
empirical process control theory or empiricism. This asserts that since it is impossible
to fully know everything at the start, the team should take an incremental approach,
make decisions based on what is known at the time, and build knowledge and experi-
ence to make better decisions next time.

61

AGILE AND BUSINESS ANALYSIS

Scrum describes three pillars that uphold this approach: Transparency, Inspection and
Adaptation. These are sometimes called the Three Pillars of Scrum, and sometimes the
Three Pillars of Agile.

yy Transparency: those responsible for the outcome must have visibility of all the
aspects of the process that can affect the outcome. This includes elements such
as adopting standard terminology and language, and also means that everyone
should be aware of the acceptance criteria and the priority allocated to the
work.

yy Inspection: the work in progress should be inspected in order that it can be
improved. This inspection should not impede delivery but needs to be frequent
enough to be effective. It should be conducted by skilled inspectors.

yy Adaptation: when inspection uncovers issues that could lead to the goals not
being met, changes must be made to prevent failure. Adjustments should be
done as soon as possible.

Scrum is a relatively simple method. It defines four key events, three roles and three
artefacts. The activities directly support the pillars of Inspection and Adaptation, and
the artefacts support Transparency. There is much that Scrum does not prescribe. For
example, it does not dictate how teams should describe requirements or work items.
Scrum is a framework or container – it mandates the elements considered to be critical
and leaves the rest up to the teams. This is described in the Scrum Guide (Schwaber
and Sutherland, 2014) as follows:

Scrum is free and offered in this Guide. Scrum’s roles, artefacts, events and rules
are immutable and, although implementing only parts of Scrum is possible, the
result is not Scrum. Scrum exists only in its entirety and functions well as a con-
tainer for other techniques, methodologies and practices.

While many teams implement Scrum in a pure form, there are many variations of it
in use. Teams have evolved, adapted and changed Scrum. Many of the other methods
described below borrow some elements from Scrum. Some of the Scrum terminology
(such as backlog, Scrum and retrospective) are now widely used in agile and usually
have the same meaning. Despite being widely used, it is also widely abused and many
teams struggle to apply the core principles; typically, the quality of their work suffers
as a result.

The sprint

The sprint is at the heart of Scrum. It is a timebox of one month or less, during which
the team develop a potentially releasable version of the solution called the increment.
Sprints have some immutable rules:

yy No changes are permitted that can endanger the sprint goal.

yy Quality goals cannot decrease.

yy Scope may be clarified and re-negotiated (between the development team and
the product owner) as more detail emerges about the problem.

62

UNDERSTANDING AGILE METHODS AND FRAMEWORKS

yy If the sprint goal becomes obsolete or impossible to achieve, the product owner
may cancel the sprint.

Sprints can be considered as ‘mini-projects’, each with a discrete outcome to achieve
(the sprint goal), a design and a flexible plan to achieve it. The goals do not have to be IT
related, and Scrum can be successfully used for business change or process improve-
ment projects.

Scrum events

The four key events in Scrum sprints are described in Table 5.2 below.

Table 5.2  Four key Scrum events

Sprint
planning

Before the sprint begins, the whole team plan what work will be done
in the sprint, agree the goal and decide how the work will be done.

This activity must involve the whole team. Business analysis skills
are crucial to ensure that the backlog items being considered
are correctly understood by the team, and that non-functional
requirements and non-IT aspects of the solution are considered.

Daily Scrum Each day, the development team holds a short team meeting (less
than 15 minutes) called a daily Scrum. This allows the team to
inspect the work done since the last daily Scrum and forecast the
work that could be done before the next one. This may mean the
team adapts its approach in order to ensure that it will meet the
agreed goal.

Sprint review The sprint review takes place at the end of the sprint and is an
opportunity to inspect the increment and adapt the product
backlog if required. This includes taking account of changes such
as to the business environment. This meeting is an informal
meeting of the development team and stakeholders, and the result
is a revised product backlog.

Sprint
retrospective

In contrast to the sprint review, the retrospective is strictly limited
to the development team and offers the opportunity to inspect
the work completed by the team and plan what changes the team
members wish to make for the next sprint.

The areas to consider during the retrospective include people,
relationships, processes and tools. This focus on people and other
non-IT elements of the sprint will be familiar to business analysts
and requires business analysis skills. The POPIT™ model and
other holistic approaches to solution development may be useful
techniques during this work.

It is important that the Scrum events take place and that they are facilitated well. Scrum
provides some guidance on the duration of these events during a one-month iteration.
Although these timings are a maximum, rather than a target, they provide an indication
of the level of importance the authors of Scrum place on them:

63

AGILE AND BUSINESS ANALYSIS

yy The sprint planning meeting should be no longer than eight hours.

yy The sprint review should be no longer than four hours.

yy The sprint retrospective should be no longer than three hours.

These events together with the 15-minute daily scrums, amount to 20 hours of elapsed
time. This is 12.5 per cent of a sprint that lasts four weeks, with 40 hours of elapsed
time per week; a considerable proportion of time. Business analysis skills are extremely
helpful in ensuring that teams use this time wisely, both in facilitating the meetings and
in providing contributions from a different perspective to that of other team members.

Scrum roles

There are three roles defined within Scrum; they are described in Table 5.3.

Table 5.3  Three Scrum roles

The product
owner

The product owner is (or represents) the person (or organisation)
that will ultimately benefit from the solution. The holder of this role is
solely responsible for decisions about the product backlog, including
prioritising the items, ensuring the development team understands
what they mean and deciding when they have been completed.

The skills required for this role closely align with the skills of the
business analyst. In some teams, business analysts will help the
product owner with their responsibilities. It is possible that in some
teams a business analyst will be asked to be the product owner but
in doing so, they should assume the responsibilities outlined above.

If the product owner does not have access to business analysts,
then it is important that they, or some of the development team,
have or acquire business analysis skills.

The
development
team

The development team consists of professionals who do the work
required to deliver a potentially releasable solution at the end of
each increment. They are structured and empowered to organise
and manage their own work, which optimises their effectiveness.

Development teams are cross-functional, and between them they
contain all the skills necessary to deliver the work. This requires
the team members to be highly competent with regard to some
skills and, also, to hold other broader skills at a less specialist
level. This aligns with the concept of a T-shaped professional,
which is discussed in Chapter 7.

While business analysis work is required in a Scrum development
team, the business analysts (and anyone in any other role) will be
called ‘developers’ and will be expected to do work outside their
specialism if it is necessary to complete the increment. This can
mean that business analysts joining a Scrum team will be expected
to learn new skills.

(Continued)

64

UNDERSTANDING AGILE METHODS AND FRAMEWORKS

The Scrum
master

The Scrum master is responsible for ensuring that Scrum is
understood and enacted by the team. This role is described as the
‘servant-leader’ for the team, who provides services to both the
development team and the product owner.

The Scrum master helps the product owner to find ways to
manage the backlog, ensuring that the team understand what
the product owner is requesting. The role is also concerned with
facilitating Scrum events, providing coaching for the development
team, helping the team to carry out the work and, most importantly,
removing any impediments to the team’s progress.

Table 5.3  (Continued)

Scrum artefacts

The three artefacts defined within Scrum are described in Table 5.4 below.

Table 5.4  Three Scrum artefacts

Product
backlog

The product backlog provides an ordered list of everything that might
be needed in the solution. It is the single source of requirements for
the project, and the responsibility of the product owner. It exists at the
product level, which means that several Scrum teams can operate
from a single product backlog.

The product backlog is never complete and continuously evolves
through the lifetime of the project, requiring ongoing attention. It is
a living artefact and, as for other requirements artefacts, requires
business analysis skills to create it, maintain it and ensure its quality.
Chapter 12 considers the backlog in the light of a similar business
analysis artefact, the requirements catalogue.

Sprint
backlog

A sprint begins with the identification of a subset of the product
backlog items; these are the items that must be completed during that
sprint in order to achieve the sprint goal. The sprint backlog provides a
plan that describes how the goal will be met.

During the sprint, the sprint backlog will constantly evolve, as more
detail emerges about the work to be conducted by the team. As new
work emerges, it is added to the backlog, so that it becomes a highly
visible, real-time description of the work the team needs to complete.

Increment This is the sum of all the sprint backlog items completed during the
sprint, and the work completed during all of the previous sprints. The
increment must be usable by the customer, and meet the criteria that
the development team have agreed with the product owner to define
that the increment is ‘done’.

65

AGILE AND BUSINESS ANALYSIS

XP

Many of the participants in the 2001 meeting where agile was conceived were from the
XP community, including its founder, Kent Beck. Therefore, it is unsurprising that many
core agile ideas derive from XP and are used within other agile approaches.

XP focuses on software development, and describes five basic activities (or ‘rules’)
bound together by five values. These are all focused on building software that delivers
customer satisfaction. XP does not specify any particular roles or job titles, instead
using the term ‘developer’ to describe all roles. It requires teams to take collective
ownership of the work, focus on the highest value goals first, and adapt how they work
depending on the circumstances. As a result, this approach requires multi-disciplined
team members.

Despite the need for team members to be multi-skilled and the dominance of software
terminology in the method, XP’s focus on the customer and embracing of changing
requirements requires XP teams to have strong business analysis skills.

The five rules are described in Table 5.5 below, and in further detail at
www.extremeprogramming.org. Several of these concepts are covered in further detail
in Chapter 15.

Table 5.5  Five rules of XP

Planning The project is divided into iterations and bound together into a
release plan and schedule. User stories describe the functionality
to be built for the customer, and the team makes frequent small
releases.

Managing The team is given dedicated open workspace to ensure good
communication. There is a focus on a sustainable pace and the team
measures the speed of progress in order to be predictable. XP teams
move people around to avoid bottlenecks and foster cross-functional
training. The day starts with a stand-up meeting.

Designing XP teams aim for simplicity and measure this using the four
subjective qualities: Testable, Understandable, Browsable and
Explainable (TUBE).

Coding The customer must always be available during coding, and there
is a strong focus on early and frequent integration. XP teams use
techniques such as pair programming and TDD, and apply collective
ownership.

Testing All code must have unit tests and must pass them before it can be
released. When bugs are found, new tests are written to catch them
earlier next time. Acceptance tests are run often and the results
published.

66

UNDERSTANDING AGILE METHODS AND FRAMEWORKS

XP has a strong focus on improvement, and describes five essential values that are
used to improve a software project: Communication, Simplicity, Feedback, Respect and
Courage. XP challenges more traditional development approaches by advocating that
teams ‘Manage Goals Instead of Activities’ and use user stories to describe goals that
are ordered in terms of importance. The team focuses on delivering the most important
goal (defined for a user story) first, completing all of the activities necessary to satisfy
the customer’s acceptance criteria. This part of XP is clearly where a business analyst
can add significant value, for example, in identifying user roles and constructing the
goal-based user stories. The identification and decomposition of goals are described
in Chapter 8.

XP works well where the team comprises between 2 and 12 team members. However,
it is hard to scale for larger teams without compromising on the core elements of the
approach.

DSDM

DSDM is a vendor independent framework for agile project management and delivery
that emerged from the RAD community in order to build quality into the prevailing RAD
practices. It is owned by the DSDM Consortium, a non-profit organisation.

The framework has evolved over the years, and the current version (launched in 2014)
is called the DSDM Agile Project Framework. DSDM incorporates project-focused prin-
ciples and offers a rich set of roles and responsibilities that make it well suited to agile
in a corporate environment. DSDM defines a number of products or deliverables, and
teams choose which they require based on the characteristics of each individual project.
Tailoring the approach is an important aspect of DSDM, particularly if the project is to
align with the agile philosophy to do Just Enough, Just in Time.

The DSDM Today (2016) philosophy is that:

best business value emerges when projects are aligned to clear business goals,
deliver frequently and involve the collaboration of motivated and empowered
people.

This philosophy is further supported by a set of eight principles, which describe the
mindset and behaviours necessary for a DSDM team to succeed. The DSDM principles
are:

1.	 focus on the business need;
2.	 deliver on time;
3.	 collaborate;
4.	 never compromise on quality;
5.	 build incrementally from firm foundations;
6.	 develop iteratively;

67

AGILE AND BUSINESS ANALYSIS

7.	 communicate continuously and clearly;
8.	 demonstrate control.

Unlike other methods (such as Scrum), DSDM describes the entire project life cycle from
pre-project through to deployment and post-project. It advocates the use of several core
practices, including facilitated workshops, modelling, iterative development, MoSCoW
prioritisation and timeboxing. These techniques will be familiar to many business ana-
lysts as they are in widespread use, both within traditional and agile environments.
Because DSDM is a framework and covers the whole project life cycle, it integrates well
with other processes and frameworks such as PRINCE2® and the standards offered by
the Project Management Institute (PMI). Teams can also use Scrum, Kanban (see below)
or XP in the development phase.

The life cycle phases in DSDM are described in Table 5.6 below.

Table 5.6  DSDM life cycle phases

Pre-project Ensures that there is a clear business goal for the project.

Feasibility Establishes whether the proposed project is likely to be technically
feasible, and cost effective. This should take just enough effort to
decide whether to stop or continue.

Foundations Establish a fundamental (but not detailed) understanding of the
business rationale and potential solution, and how the solution will
be developed, delivered and supported.

Evolutionary
development

Using iterative development techniques and MoSCoW prioritisation
within timeboxed iterations, the solution team create solution
increments.

Deployment A baseline of the evolving solution is moved into an operational
environment. This can happen many times as new versions
become available.

This stage consists of three main activities, Assemble, Review and
Deploy.

Post-project The project is formally closed and the team conducts a
retrospective on their performance. This phase also checks how
well the intended business benefits have been delivered by the
solution.

Unsurprisingly for an approach aimed at larger, more complex problems, DSDM
describes a much larger set of roles than other agile processes. In total, DSDM describes
13 roles covering project level, solution development and supporting responsibilities;
the core roles are described in Table 5.7.

68

UNDERSTANDING AGILE METHODS AND FRAMEWORKS

Table 5.7  Roles defined within DSDM

Business
sponsor

Responsible for ensuring the delivery of the business case and
representing the interests of the business.

Project
manager

Responsible for overall management of the project, providing
resources, ensuring delivery of the project objectives, and
communicating with senior business representatives and the
solution development team.

Business
visionary

Responsible for providing strategic direction to the project and
ensuring that the vision of the business sponsor is interpreted and
communicated accurately.

Business
analyst

Responsible for supporting the business visionary in fulfilling
the business needs determined for the project. Provides analysis
and modelling expertise as required. Takes a proactive role in
facilitating the communication within the solution development
team. This definition is focused on solution development and
does not include the pre-project activities described earlier in this
chapter.

Technical
coordinator

Responsible for ensuring the overall coherence of the technical
design adopted on the project.

Business
ambassador

Responsible for representing the needs of the business users and
providing the communication channels between the project and the
business. The business ambassador is a credible representative
of the business staff and has knowledge and experience of the
business area addressed by the solution.

Team leader Responsible for facilitating, scheduling and monitoring the work of
the solution development team at an iteration level.

Solution
developer

Responsible for developing the solution to meet the functional and
non-functional requirements.

Solution
tester

Responsible for testing the developed solution, including technical
and acceptance testing.

Technical
advisor

Responsible for providing specialist or specific information about
the technical aspects of the solution.

Business
advisor

Responsible for providing specialist or specific information about
the business needs and working practices.

The roles include a business analyst at both the project level, and in the solution devel-
opment team. This is intentional, and allows the business analyst to work on behalf
of the customer (for example, to develop the business case) or as part of the solution
development team (for example, elaborating requirements, modelling or helping the
developers understand the requirements).

69

AGILE AND BUSINESS ANALYSIS

Unified Process

Although not represented in the group that met in 2001 to conceive agile, the UP was
already established at that time and embodies many of the same characteristics of
incremental and iterative development. Like DSDM, the UP is aimed more at corporate
enterprises, takes a whole life cycle view and describes a large number of roles and
artefacts that should be tailored by the team to fit the problem. The most common
version is the RUP, which was launched by Rational Software in the late 1990s and is
now owned by IBM. Other versions include OpenUP and AgileUP.

The UP defines four phases required to develop the solution, describes workflows
that are required throughout the project (including business modelling) and sets out
principles that should be followed by the project team. As with DSDM, the UP can
easily be misused by teams that forget the first (and only) mandatory step: Tailor
the Process.

The four phases of the UP are described in Table 5.8 below; each phase consists of one
or more iterations.

Table 5.8  Four phases of the UP

Inception Establish the business case for the system and define the system
scope. Identify at a high level how the system interacts with users
and describe all the high-level use cases. Provide more detail for
significant use cases.

Gain agreement with stakeholders on project scope and cost/
schedule estimates.

Elaboration Establish a sound architectural foundation and eliminate the
highest risks to the project. Gain a ‘mile-wide and inch-deep’ view
of the system. This can include developing prototypes.

Construction Develop all remaining features incrementally. Reach ‘Initial
Operating Capability’ with a usable version of the solution
produced in each iteration.

Transition Deploy the solution to the user community.

The RUP is a specific, and popular, implementation of the UP. RUP advocates a set of
overarching principles known as the six best practices:

1.	 develop software iteratively;
2.	 manage requirements;
3.	 use component-based architectures;
4.	 visually model software;
5.	 verify software quality;
6.	 control changes to software.

70

UNDERSTANDING AGILE METHODS AND FRAMEWORKS

The UP methods place high importance on requirements and on business modelling, and
business analysis skills are essential for this work. Since the various artefacts are devel-
oped incrementally – or elaborated – throughout the project, business analysis work is
required at all phases at the level of detail needed to address the risk of each phase.

Kanban

Kanban is not strictly an agile method, as it describes how to optimise the services deliv-
ering the knowledge work, rather than the delivery of the work itself. This distinction is
an important one, and explains why Kanban is often used alongside other methods. It
describes an approach to incremental and evolutionary process and systems change. It
focuses on delivery flow, and on managing and optimising Work in Progress (WIP, also
sometimes called Work in Process) to offer teams more flexible planning options, faster
output and a means of continuously improving performance.

Kanban is derived from the Lean manufacturing approach and has been popularised
for software and business change projects by David J. Anderson. Kanban is based on
six core practices:

1.	 visualise;
2.	 limit WIP;
3.	 manage flow;
4.	 make process policies explicit;
5.	 implement feedback loops;
6.	 improve collaboratively, evolve experimentally (using models and the

scientific method).

The first of these practices – visualise – is often done using a board or table. The steps
required to implement a requirement are set out as columns as shown in Figure 5.1.
Work to be done is written on a card (a Kanban) and begins on the left, in the ‘Inbox’. As
requirements are worked on, the team moves the card to the appropriate column.

Figure 5.1  Example of a Kanban board

71

AGILE AND BUSINESS ANALYSIS

This is just one of six practices, but it is common for teams to carry out just this one prac-
tice and think that they are applying Kanban. However, to get value from this approach,
each column must have a maximum WIP limit that dictates how many requirements can
be in progress. The team then focuses on choosing work that enables flow, and creates
space for more work to be pulled in.

Bottlenecks become obvious when using Kanban and the team is motivated to find ways
to remove them. For example, if only one person is able to do the testing, they could
quickly find that work cannot be moved into the ‘Test’ column because it is already full
and this will prevent the commencement of other work in the pipeline. To unblock this,
the other team members may need to learn how to do the testing work and provide
additional staff resources for the test activity.

Business analysis is not specifically mentioned in Kanban but since the focus for the
team is improving flow, all team members should be able to work across several col-
umns. Some of the most important business analysis work involves ensuring that the
work in the Inbox column is correctly described.

Kanban can be used with other agile approaches, such as Scrum or XP, and some of the
Kanban principles (especially the use of an agile board) are part of other methods. In
contrast with many other agile approaches, Kanban does not use timeboxing; instead,
releases are made when there are sufficient Kanbans (or cards) in the ‘Done’ column.

Lean software development

Lean software development is a method that was derived from the manufacturing princi-
ples in the Toyota Production System. The approach focuses on the elimination of waste
(muda in Japanese) and considers wasteful any effort that does not result directly in
the provision of value for the end customer. The seminal reference text is Lean software
development by Mary and Tom Poppendieck (2003). There are seven key Lean practices
that are translated into software development principles. The Poppendiecks present an
‘agile toolkit’ of 22 tools that are mapped onto the principles shown in Table 5.9.

Table 5.9  Agile toolkit of Lean software development

Lean principle Lean software tool

Eliminate waste 1.	 Seeing waste
2.	 Value stream mapping

Amplify learning 3.	 Feedback
4.	 Iterations
5.	 Synchronisation
6.	 Set-based development

Decide as late as possible 7.	 Options thinking
8.	 The last responsible moment
9.	 Making decisions

(Continued)
72

UNDERSTANDING AGILE METHODS AND FRAMEWORKS

Lean principle Lean software tool

Deliver as fast as possible 10.	 Pull systems
11.	 Queuing theory
12.	 Cost of delay

Empower the team 13.	 Self-determination
14.	 Motivation
15.	 Leadership
16.	 Expertise

Build integrity in 17.	 Perceived integrity
18.	 Conceptual integrity
19.	 Refactoring
20.	 Testing

See the whole 21.	 Measurements
22.	 Contracts

Table 5.9  (Continued)

The approach focuses more on improving the process than developing a solution. Many
of the tools identified within the toolkit benefit from the application of good business
analysis skills. Lean software development can also be combined with other agile
approaches.

Lean Startup

Lean Startup provides an approach to creating and managing startup organisations
using some of the Lean and agile principles. It is not intended to be used exclusively for
new startup companies; it is also used for the development of new products (or new
versions of products) within existing enterprises. As a result, business analysis skills to
engage with customers are essential. Lean Startup also recommends the use of analy-
sis techniques such as the ‘5-Ws’ (Why, What, Who, When and Where) and prototyping,
which form part of the business analysis toolkit.

SCALED AGILE APPROACHES

When agile approaches began in the early 2000s, they were applied, in the main, to
small, relatively simple problems that were resolved by small teams; within this context,
they worked extremely well. As the agile movement has grown and become more
prevalent, organisations are trying to achieve the benefits of agile for larger and more
complex problems, with larger and more diverse teams.

73

AGILE AND BUSINESS ANALYSIS

As the history in Chapter 2 explains, this is not how agile began so it should be no sur-
prise that some common approaches and methods do not work well when faced with
large and complex problems. This has led to numerous attempts to find ways to scale
agile approaches so that they can work across larger and more complex projects and
programmes, whilst still retaining the benefits of small, autonomous teams with highly
collaborative work practices.

Some of these attempts to scale agile have become popular, but there are still many
bespoke, company specific methods that business analysts may come across. This is
because many companies who were relatively early adopters of agile quickly came up
against difficulties, as the problems they were trying to solve were not the kinds of prob-
lems that agile was initially intended for. So, they tried to solve problems themselves,
perhaps with the aid of external agile coaches or experts, and developed proprietary
solutions that suited their problem spaces. This has been happening for years and some
of these bespoke variants have coalesced into generic approaches that are now gaining
popularity.

Organisations deciding to adopt agile practices today are comparatively lucky. Not only
are the classic agile methods well understood but there are also several new frame-
works and methods to select that are designed for more complex or extensive problems.

Disciplined Agile 2.0

Scott Ambler has been helping companies apply agile principles to complex enterprise
problems for many years, and in that time has published several books and methods.
His latest framework is developed with Mark Lines and is called Disciplined Agile 2.0
(DA 2.0); it is an evolution of their disciplined agile delivery approach. It restates the Agile
Manifesto from a strategic perspective, focusing more on solutions and stakeholders
than software and customers; it also adds some principles around enterprise reuse and
the importance of the enterprise ecosystem.

DA 2.0 is a process decision framework that is scalable both at a tactical (team) level
and a strategic level. It is a people-first, learning-oriented hybrid agile approach with a
risk-value life cycle and is highly goal driven. It extends Scrum with proven techniques
from a wide range of other agile approaches and methods, including the UP and agile
modelling. It thinks beyond construction and considers the end-to-end development life
cycle, including roadmaps, enterprise architecture, IT governance and DevOps; all from
a highly agile mindset. It encourages teams to understand their environment properly
and use that knowledge to select the right elements for their approach. In this way it is
highly flexible.

Although it does not specify a business analyst role, DA 2.0 relies heavily on sound busi-
ness analysis skills in the team, particularly for the identification and specification of
stories/work items, and in the agile modelling practices.

SAFe

Den Leffingwell’s Scaled Agile Framework (SAFe) is based on a number of Lean and
agile principles and provides a way to apply them to enterprise software development

74

UNDERSTANDING AGILE METHODS AND FRAMEWORKS

where there may be many teams, perhaps geographically distributed, building highly
complex, integrated systems.

SAFe applies a portfolio approach which ensures alignment with the enterprise strategy.
The portfolio backlog is used to drive out programmes of work, each defined through a
programme backlog. Each programme may then have several teams which operate as
‘normal’ Scrum teams with their own team backlog. Integration and delivery are man-
aged through programme increments and iteration goals. One of the key concepts used
in SAFe, is the agile release train, which is formed of all the development teams and is
focused on a common mission to which all the teams contribute.

There is no business analyst role specified, but there are many elements of SAFe where
business analysis skills are needed. For example, when identifying artefacts such as the
epics described at the SAFe portfolio level or ensuring that goals are defined that align
to business needs. Furthermore, SAFe recommends the Weighted Shortest Job First
(WSJF) prioritisation approach (see Chapter 9), which requires the ability to understand
and analyse business priorities.

Nexus and LeSS

The Nexus Framework is a means of scaling Scrum such that multiple Scrum teams
are able to work together, using a central product backlog and working jointly on the
increments for release.

Large Scale Scrum (LeSS) is a framework for scaling Scrum to large product develop-
ments. While there are several development teams, they focus on the whole product
rather than just the work they produce individually. LeSS uses one instance of the prod-
uct backlog and there is one product owner across all of the teams. The teams work
together in one sprint to deliver a collectively developed product release.

CONCLUSION

Although there are many ways to develop solutions using agile methods, Scrum is the
dominant approach, either as a method in its own right or as part of a larger, scaled
framework. The software heritage of agile is very obvious within the most popular
methods, and, in the main, this has resulted in the lack of recognition of business analy-
sis. DSDM alone identifies the business analyst role as a means of providing a link
between the project level and the solution development team. However, the agile values
of high customer interaction, achieving business goals and delivering business benefit,
are inherent in all of the agile methods and it is important to recognise that the achieve-
ment of these values requires business analysis skills.

Whichever agile method is to be adopted, business analysis will be required prior to
the initiation of a software development project in order to ensure that the business
needs are understood and met. If the project is concerned solely with the development
of software, it is probable that business analysis skills will be needed to explore usage
and work practice needs, including the often-complex business rules. However, it is
likely that a software product alone will not deliver the changes needed by the business

75

AGILE AND BUSINESS ANALYSIS

and a holistic solution will be required if the business needs are to be met. This will
encompass elements such as processes, job roles, organisational structures and people
competencies; these elements are natural territories for the business analyst. However,
business analysis work in these areas would benefit from the adoption of the agile prin-
ciples and some of the practices advocated by the methods and frameworks described
in this chapter and in this book.

REFERENCES

Poppendieck, M. and Poppendieck, P. (2003) Lean software development: a toolkit. Boston,
MA: Addison Wesley.

Schwaber, K. and Sutherland, J. (2014) The Scrum Guide™

The Definitive Guide to Scrum:

The Rules of the Game. Available at: www.scrumguides.org/docs/scrumguide/v1/
scrum-guide-us.pdf (18 January 2016).

FURTHER READING

Ambler, S., Lines, M. and Vizdos, M. J. (2012) Disciplined Agile delivery: a practitioner’s
guide to Agile software in the enterprise. Upper Saddle River, NJ: IBM Press.

Ambler, S., Nalbone, J. and Vizdos, M. J. (2005) The enterprise Unified Process: extending
the Rational Unified Process. Upper Saddle River, NJ: Pearson Education Inc.

Anderson, J. and Carmichael, A. (2016) Essential Kanban: the guide. Washington, DC:
LeanKanban University Press.

Beck, K. (1999) Extreme programming explained: embrace change. Boston, MA: Addison
Wesley.

Cadle, J. (ed.) (2014) Developing information systems. Swindon: BCS.

Cohn, M. (2009) Succeeding with Agile: software development using Scrum. Boston, MA:
Addison Wesley.

DSDM Today. Available from: www.Agilebusiness.org/content/philosophy-and-funda-
mentals [7 December 2016].

DSDM Consortium (2008) DSDM Atern: the handbook. Available from: www.agilebusiness.
org/resources/dsdm-handbooks/dsdm-atern-handbook-2008 (18 January 2017).

Kennaley, M. (2010) SDLC 3.0: beyond a tacit understanding of Agile: towards the next
generation of software engineering. Fourth Medium Press.

Kruchten, P. (2003) The Rational Unified Process: an introduction, 3rd edition. Boston, MA:
Addison Wesley.

76

UNDERSTANDING AGILE METHODS AND FRAMEWORKS

Larman, C. and Vodde, B. (2016) Large-scale Scrum: more with less. Boston, MA: Addison
Wesley.

Martin, J. (1991) Rapid application development introduction. USA: Macmillan.

Measey, P. (ed.) (2015) Agile foundations, principles, practices and frameworks. Swindon:
BCS.

Monden, Y. (1998) Toyota Production System, an integrated approach to just-in-time, 4th
edition. Boca Raton, FL: Productivity Press.

Poppendieck, M. and Poppendieck, P. (2009) Leading Lean software development: results
are not the point. Boston, MA: Pearson Education Inc.

Schwaber, K. (2004) Agile project management with Scrum. Washington, DC: Microsoft
Press.

Schwaber, K. (2007) The enterprise and Scrum. Washington, DC: Microsoft Press.

Sutherland, J. (2014) Scrum: the art of doing twice the work in half the time. New York:
Random House Publishers.

USEFUL WEBSITES

www.ambysoft.com/unifiedprocess/agileUP.html

www.disciplinedagiledelivery.com

www.dsdm.org

www.dsdm.org/resources/dsdm-handbooks/the-dsdm-agile-project-framework-
2014-onwards

http://epf.eclipse.org/wikis/openup/

www.extremeprogramming.org

www.ibm.com/developerworks/rational/library/content/03July/1000/1251/
1251_bestpractices_TP026B.pdf

www.leankanban.com

https://less.works

www.scaledagileframework.com

www.scrum.org/Resources/The-Nexus-Guide

www.scrumguides.org/scrum-guide.html

77

6	 MODELLING THE BUSINESS CONTEXT

This chapter covers the following topics:

yy organisational agility;

yy using modelling techniques;

yy modelling at a business level.

INTRODUCTION

This chapter looks at agile through an organisational lens. As discussed in Chapter 5,
the agile methods and frameworks have a software development basis and tradition,
and this can lead to two misconceptions:

1.	 Agile is solely concerned with software development.
2.	 Agile has no relevance to the delivery of business changes that do not involve

software.

However, if you talk to business analysts about the work that they do, fundamental
principles such as the need to engage and collaborate with customers, the focus on
trying to deliver ‘quick wins’ and the importance of aligning with business goals come
to the fore. Consequently, if we look underneath the roles and activities defined in
the agile approaches, we find a lot that aligns with the business analysis world view.
Change is a good example. We are constantly reacting to, or even predicting, changes
in the business environment – both internal and external. Business analysts know that
we need to be alert to these changes and that it is possible to embed adaptability in
the new processes, structure and capabilities we recommend. We can add to this: our
focus is on understanding the root causes of problems rather than merely addressing
symptoms. As stated in Chapter 1, business analysis should be the most agile of the
IS disciplines because business analysts help to identify the most relevant solutions,
confirm business alignment at every step and make sure that any changes are benefi-
cial for the business.

This chapter explores some of the techniques that contribute to the success of business
change projects, the role of the business analyst in conducting this work and the ways
in which agile can help to ensure successful outcomes for organisations.

78

MODELLING THE BUSINESS CONTEXT

ORGANISATIONAL AGILITY

Organisational agility is evident where a business is able to adapt and respond quickly
to internal or external pressures. However, achieving this can be extremely difficult and
requires effective analysis at strategic, tactical and operational levels. Business analy-
sis contributes to achieving organisational agility by ensuring that requests for change,
or required features, are not accepted at face value; they have to align with the MOST
(described in Table 6.1) of the organisation and the critical success factors (CSFs) and key
performance indicators (KPIs) that are used to provide direction and evaluate performance.

It is important that business analysts understand the organisational viewpoint, includ-
ing the business domain, the strategic vision, the tactical goals and the organisational
work practices. This contextual understanding helps in the analysis of problems, the
recognition of constraints and the identification of relevant options for change. Further,
understanding the business context increases awareness of external factors that might
impact the organisation. These changes can originate from many sources. Technology
changes are often highly visible, but we also need to be aware of more subtle changes
such as increasing customer expectations and demographic variations. Competitive
actions may also require the organisation to change the way it promotes, sells and
packages products and services in order to maintain, or extend, market position.

The tactics required to respond to external factors often need to be considered carefully,
taking into account the prevailing business architecture, in particular the organisational
capabilities that are available to support or enable change. A capability-based approach
can aid agility by providing a basis for reuse and modularisation. For example, if a new
product is identified, existing capability may by applied or adapted for the development
of the product, removing the need for ‘reinventing the wheel’; also, where the business
architecture encompasses self-standing components, such as outsourced payment pro-
cessing, it may be possible to apply this component as part of the new product offering.

Business analysts can support organisational agility by understanding the following:

yy the strategic context within which the organisation operates;

yy the business architecture blueprint for the organisation;

yy the techniques and models that help in the investigation, analysis and definition
of business changes;

yy the systems, Lean and service thinking approaches (discussed in Chapter 3)
that help to ensure a focus on customer needs and efficiency of delivery.

Understanding the business strategy

The business mission and strategy are developed from matching the internal capabilities
with the external environment within which the business is operating. Business analysts
rarely take responsibility for business environment analysis but may provide information
and insights, for example, with regard to opportunities offered by technological changes.
More frequently, business analysts help to define the tactical and operational solutions
that enable the achievement of the desired business mission, strategy and objectives.

The techniques shown in Table 6.1 are used when undertaking a strategic analysis.

79

AGILE AND BUSINESS ANALYSIS

Table 6.1  Strategic analysis techniques

Name of technique Description

PESTLE analysis Investigation and analysis of the Political, Economic, Socio-
technical, Technological, Legal and Environmental factors
within the business environment that is external to an
organisation. These factors may provide opportunities for
business development or may threaten the success, or even
continuation, of an organisation.

Porter’s 5-forces Investigation and analysis of the forces within a designated
business domain that may impact upon an organisation.
The 5-forces are Strength of competitors, Power of
buyers, Power of suppliers, Potential for new entrants and
Availability of substitute products. Again, these factors may
provide opportunities or may threaten the existence of an
organisation.

MOST analysis The defined direction for an organisation based upon four
elements: Mission, Objectives, Strategy and Tactics. The
analysis considers the clarity, coherence and communication
of the MOST in order to identify where an organisation has
strengths and weaknesses.

Resource audit An examination of five key areas of resource and the level of
capability they may provide the organisation when addressing
factors in the external environment. There are three tangible
areas: Physical, Financial and Human Resources. There are
two intangible areas: Reputation/goodwill and Use of internal
knowledge and information.

SWOT analysis A summary of the strengths and weaknesses (internal
factors) and opportunities and threats (external factors) that
have the potential to impact upon the organisation

The internal and external business environments do not remain static and, therefore,
the organisation has to review them on a regular basis to ensure that a significant
opportunity or threat is not missed. This also provides a means of reviewing internal
strengths and weaknesses in order to identify where additional investment is required
to build the required organisational capabilities. Therefore, strategy review is an itera-
tive process, as shown in Figure 6.1 below. The MOST is defined to provide direction for
the organisation, setting out the desired outcomes and the means of achieving them.
However, this only persists as long as it continues to align with the forces evident
within the business environment. Where there are changes, whether internal or exter-
nal, these are summarised in a SWOT analysis and this is used to review and revise
the MOST.

80

MODELLING THE BUSINESS CONTEXT

Figure 6.1  The iterative nature of business environment and strategy analysis

Business analysis is concerned with the definition of the tactics and operational working
practices that are required to execute the strategy. These tactics and working practices
will need to align with, and may be enabled by, the business architecture as discussed
earlier. Business analysts have highlighted the need for early analysis of change initia-
tives for many years. They have been keenly aware of the dangers of pursuing projects
where a considered evaluation of drivers, objectives and options has not been under-
taken. This work can avoid unnecessary investment – and wasted funds – and ensure
that the most relevant solution is selected. Applying business analysis at this early stage
supports strategy execution and organisational agility and helps to ensure that only
work that benefits the organisation is embarked upon.

Understanding the business architecture

An agile business analyst should help to ensure that there is alignment with the
organisation’s strategic context and business architecture. Two of the key artefacts
used in business architecture are particularly relevant to the work of an agile business
analyst. These artefacts represent the value streams and the business capabilities of the
organisation.

Value stream The value stream provides an overarching view of the key activities
required to work together in order for the value proposition to be
delivered to a particular customer group.

Business
capability map

The business capability map sets out the areas of capability that the
organisation needs to possess in order to be able to conduct the work
of the value stream activities.

81

AGILE AND BUSINESS ANALYSIS

Value streams and capabilities provide business analysts with a contextual view for
their work on change projects and may support or drive new initiatives. For example,
where a required capability is identified but is not available within the organisation,
a change project may be initiated to develop the capability. Given that a capability is
a repository of the skills, information, work practices, technology and communication
channels that are required to deliver an aspect of organisational performance, this pro-
ject would need to consider changes to multiple elements of the business system so
will require a holistic view. An agile mindset and approach will help to ensure that the
project goals are prioritised and, where possible, there is early delivery of the changes
required to develop the capability.

Understanding the business system

Business analysts take a holistic view of the organisation and the business systems that
operate within it. This view is essential if an agile software development project is to
deliver business benefits and important factors are not overlooked. The POPIT™ model
(see Chapter 3) is one of the key business analysis techniques used to take a holistic view
of a business system. POPIT™ provides a framework for analysing problems inherent in
a business situation and for identifying the impact of potential solutions. The use of the
POPIT™ model in this context will support organisational agility by helping to identify
where reuse is possible and where there are gaps that will need to be addressed.

USING MODELLING TECHNIQUES

Models provide a diagrammatical representation of a particular view of a situation
and help analysts to understand a complex problem or describe a real-life subject or
system. Modelling is a proven and well-accepted technique that has been used within
business and engineering for many years. Models are simplifications of reality, built
so that we can better understand the problem we are addressing. Different models
provide different perspectives on the problem and can be used at different levels within
a business. For example, one model may provide a strategic view of the business while
another may be a visualisation of a user interface for an IT system.

Benefits of modelling

Modelling offers two main advantages: first, the act of modelling provides an effective
basis for discussion and collaboration; second, the resultant model provides an effec-
tive medium for communication of information. Models may be used at different levels
of abstraction to represent different aspects of the business, which can also aid the
communication process.

Exploring this further, we can identify several benefits of using models:

yy to aid communication amongst stakeholders;

yy to provide a basis for rigorous analysis;

yy to provide a standardised approach to analysis and documentation;

yy to reduce ambiguity;

yy to enable opportunities for reuse;

82

MODELLING THE BUSINESS CONTEXT

yy to provide a means of decomposing different levels in a hierarchy;

yy to understand or reduce risks.

Models are used in many disciplines. For example, business analysts build models to
explore the business problems that need to be addressed; engineers build models to
test design possibilities; and architects use models to provide a physical representation
of an enterprise, technical infrastructure or building.

Many models provide a basis for discussion and collaboration because they remove the
need for pages and pages of text, and offer a clear representation of a particular view
of a business system. For example, a business process model has a limited notation
set that enables business analysts to depict how the work is conducted in an accessible
way. Similarly, a data model may be used to provide a diagrammatic representation of
data requirements and will cause business analysts to question aspects such as infor-
mation needs, business rules and deletion strategies.

Deciding the modelling approach

It is helpful to use models irrespective of the approach to be used on the project. In an
agile environment, models may be created that are hand-drawn rather than produced
using software tools. The informality of this approach helps engender collaboration and
agreement between analysts and other stakeholders. Figure 6.2 shows a hand-drawn,
high-level business model for a training company booking system. This figure demon-
strates the use of a rich picture to represent a business situation.

Figure 6.2  Informal model of a business situation

83

AGILE AND BUSINESS ANALYSIS

The majority of formal modelling techniques show just one aspect of a situation, such as
a process or data view. However, this model provides a holistic view, showing the pro-
cesses, people, documents and IT systems involved in the business system. Ultimately,
it is important to use models advisedly, taking into consideration the following:

yy Who is the model for?

yy What does it need to represent?

yy Who is going to use it, why and when?

yy Does it need to be kept and updated or is it only required for temporary use (a
throwaway model)?

These questions help analysts to decide whether an informal or formal model would be
preferable and the type of model, or models, that would provide the most useful rep-
resentation of the situation. For example, where a model needs to be used throughout
the duration of the project, it is a good idea to ensure that it is created such that it can
be accessed and updated easily. A model requiring only short-term use may be drawn
informally and then discarded. Another factor to consider is that models are likely to
change over time, particularly those concerned with display and processing, and ensur-
ing that models are up to date can be very time consuming. Some key principles for
using models when conducting agile business analysis are as follows:

yy Envisioning: using models during the Inception or pre-project phase, to
collaborate with stakeholders in order to understand the vision and focus for
a project.

yy Engaging stakeholders: using models to encourage collaboration and gain
additional insights and buy-in.

yy Just good enough: ensuring that models are sufficient for the work in hand, no
more and no less.

yy Prioritisation: using models to understand priorities and goals, and as a basis
for decomposition.

yy Iterative modelling: elaborating models only when needed by the project.

yy Just in time modelling: producing or elaborating models when they are required
in order to avoid them becoming out of date and, as a consequence, having to
waste time on unnecessary maintenance and revision.

The Functional Model Map

In the BCS publication Developing information systems – practical guidance for IT profes-
sionals (Cadle 2014), Julian Cox uses a Functional Model Map (FMM) to explore different
levels of abstraction across a change project. The FMM is shown in Figure 6.3 below and
identifies the focus of the modelling tasks, from the summary level business system
requirements through to low-level technical design and realisation.

The FMM shows three perspectives (applied from Cockburn (2000)) to be modelled as
described in Table 6.2 below.

84

MODELLING THE BUSINESS CONTEXT

Figure 6.3  The FMM

Table 6.2  Three perspectives of the FMM

Business/organisation The business or organisational system and the value it is
proposing to its customers. This includes its manual and
IT elements as well as value streams.

IT system/application The software application.

Component An architectural element required as a building block of
the system.

For each perspective, the modelling may adopt a black or white box approach, as
follows:

yy Black box: a view of a system or element where we are concerned with the
exterior view rather than the inner workings. A context diagram is a good
example of a black box view.

yy White box: a view of a system or element where we wish to represent the
internal working. A use case diagram is a good example of a white box view.

The FMM moves across the three perspectives at increasing levels of granularity. Cox
has used Alistair Cockburn’s (2000) icons to represent the different levels and goals. The
goals will be different at an organisational level from a system level and understanding
this will help the analyst to recognise where a particular model is relevant and the level
of definition and detail required.

85

AGILE AND BUSINESS ANALYSIS

Cockburn expresses these goals as shown in Table 6.3 below.

Table 6.3  Cockburn’s levels of goal

High level summary (cloud).

Summary goal (kite level): for example, a goal for an end to end
business process.

User goal (sea level): equivalent to a task performed by a single
person/application.

Sub-goal (fish level): not a goal in its own right – only decomposed if it
is to be reused within several other user goals.

Low (clam level): lines of code – not suitable for modelling.

At each level, and in each area, different models can be applied. Not all boxes need to
have a model, as in some situations it may be decided that models will not serve any
useful purpose. The value of the FMM is that it provides a helpful vehicle for agreeing
on the overall approach; in particular, where and why models need to be produced to
meet a particular business problem or serve as instruments for collaboration with a
particular stakeholder or stakeholder group.

We have simplified this model to make it easier to understand from the business model-
ling perspective. The adapted model is shown in Figure 6.4 and is called the Simplified
FMM.

MODELLING AT A BUSINESS LEVEL

There are many techniques that can be used to model the business situation, each
of which offers particular insights and viewpoints. The following techniques are often
useful when modelling a business system at Cockburn’s three highest levels of abstrac-
tion shown in the FMM above:

yy summary level, cloud: business process map (based on a value stream or value
chain); business activity model;

yy summary level, kite: business process model; business use case diagram;
business epic; context diagram;

yy user level: system use case diagram and description; user story; persona.

86

MODELLING THE BUSINESS CONTEXT

Figure 6.4  The Simplified FMM

These techniques have much to offer business analysts when working within an agile
environment. The summary-level diagrams provide a contextual view for the business
changes proposed and help the identification of options and impact analysis. They can
also support prioritisation and the identification of business goals. Once a project is
underway and there are teams working on the detail of the changes to be delivered
(which is likely to encompass several of the POPIT™ elements), these models help
to provide a cross-programme view, which is essential for an incremental delivery
approach as it highlights links and dependencies.

The summary-level techniques are described below; the user-level techniques are dis-
cussed in Chapters 11 and 12.

Business process map

A business process map provides a high-level view of the process areas that need to work
collectively in order to deliver a particular service to a customer. Porter’s (1985) value chain,
particularly the primary activities, can be helpful in creating this diagram as it provides a
framework for thinking about the different processes. The primary activities of the value
chain for a training service are reflected in Figure 6.5 below.

87

AGILE AND BUSINESS ANALYSIS

Figure 6.5  Value chain for training service

The generic primary activities are mapped to the value chain in Figure 6.5 as follows:

yy inbound logistics: develop courses; take bookings;

yy operations: organise courses;

yy outbound logistics: run courses;

yy marketing and sales: promote courses;

yy service: respond to queries.

This diagram can be very useful during feasibility or pre-project analysis, as it provides
a context for thinking about process and system improvements and helps to determine
where there are inefficient and ineffective areas of process.

An alternative approach is the value stream diagram proposed by Womack and Jones
(2003). This provides a view of the steps required to produce a product or deliver a
service. The value stream may be created at different levels of abstraction, depending
upon the particular situation. It is also possible to model different ‘streams’, such as the
physical product development or the information flow. The focus of the value stream is
on identifying where value is added in the process and highlighting where there is waste
(in line with the ‘8 wastes’ of Lean as defined in Chapter 3).

Business activity models

A business activity model (BAM) provides a conceptual view of a business system as
perceived by a stakeholder or group of stakeholders. It is an informal diagram that
shows the key areas of activity for a business system and helps in the identification
of gaps or inefficiencies. Five types of activity are modelled: planning, enabling, doing,
monitoring and controlling. The BAM shown in Figure 6.6 provides a conceptual overview
of a business system where the perspective focuses on the delivery of training courses.

88

MODELLING THE BUSINESS CONTEXT

Plan
infrastructure
requirements

Monitor course
feedback

Monitor
supplier

performance

Organise
courses

Develop courses

Develop
training team

Decide staffing
requirements

Decide
marke�ng
strategy

Decide training
por�olio

Promote
coursesSet up

infrastructure

Monitor
customer

sa�sfac�on
Take control

ac�on

Run courses

Develop
customer

service team

Monitor staff
performance

Figure 6.6  BAM of a training business system

Underlying this model are also performance measures such as CSFs and KPIs, which
are decided within the planning activities (such as ‘Plan infrastructure requirements’
and ‘Decide marketing strategy’) and reviewed within the monitoring activities (such
as ‘Monitor course feedback'). The enabling activities (such as ‘Promote courses’ and
‘Develop courses’) ensure that the resources required to operate the business system
are in place. The doing activities (‘Organise courses’ and ‘Run courses’) represent the
primary task of the business system.

Business process models

A business process model, often known as a swim lane diagram, shows the response of
an organisation to a business event in terms of the actors and the tasks they conduct.
The triggering event is also shown on the diagram, as is the final output or outcome.
Two key variants are the ‘as is’ model, which represents an existing process and the ‘to
be’ model of the redesigned process. This technique is particularly useful in identifying
clearly where there are bottlenecks and duplication.

A business process model related to the process map above is shown in Figure 6.7.

This business process model provides the response to the business event ‘Training
service request received’, which is part of the Develop courses activity on the business

89

AGILE AND BUSINESS ANALYSIS

Figure 6.7  Business process model for bespoke course development

Develop courses: Request for bespoke training course

Cu
st

om
er

M
ar

ke
�n

g
Tr

ai
ni

ng

co
ns

ul
ta

nt
Q

ua
lit

y
m

an
ag

er
O

pe
ra

�o
ns

m

an
ag

er

Define
training

requirement

Create
course

descrip�on

Agree
course

descrip�on

Develop
course
content

Review
course

content

Finalise
course

content

Set up
course

structure

Training
service
request

process map. Understanding the events encapsulated within the process map, and iden-
tifying which ones are particularly relevant and the associated level of priority, enables
the business analyst to explore where there are inefficiencies or wastes and where
changes are needed. Where process changes are to be made, the ‘to be’ business pro-
cess model also sets out the design of the process and the context for the more detailed
developments necessary for its deployment.

Business use case models

A business use case diagram represents the work of the business system within the
context of its business environment. The elements represented are who interacts with
the business system, such as partners, suppliers and customers, and what should be
done as a result of those interactions. A business use case diagram can be used to
model an entire organisation, but it is more typical to model a business system that
conducts part of the work of the organisation. The business use case diagram does
not distinguish between manual or automated interactions or identify whether they
are carried out by people or by IT systems – or by a combination of both. Its focus is on
representing features that make up the business system, leaving consideration of ‘how’
they are achieved to be discussed and analysed separately. Business use case diagrams
are highly effective when conducting the initial analysis of a business system; they
provide a clear standard for representing the following aspects:

90

MODELLING THE BUSINESS CONTEXT

Boundary The boundary of the system of interest. This could be the organisa-
tion itself, or it could be a business system within the organisation.
This clarifies what is in scope and what is out of scope for a change
project.

Business
actors

The actors that wish to interact with the business system. Actors
require the business features to be offered and the business goals
to be achieved. They may be user roles or other systems.

Business use
case

Each business use case will be of interest to at least one business
actor and will be triggered by a business event. A business use case
represents a business feature with a corresponding goal that is to
be achieved by the business. This will attract a level of priority within
a change project, depending upon the relative importance of the
business goal. Priorities may vary amongst the business use cases
for a particular system under consideration.

A business use case diagram provides an overview of the required features of a business
system. A more specific view is obtained by decomposing elements of the diagram, such
as the actors and business use cases. This will require the decomposition of the business
goals and the corresponding priorities. Goal decomposition is discussed in Chapter 8
and prioritisation is covered in Chapter 9. The goal for each business use case should
support the achievement of the organisation’s CSFs and KPIs. A goal can be achieved in
many ways, such as by introducing new business processes, a revised organisational
structure or enhanced IT systems – or by a combination of these changes.

A business use case diagram may provide the basis for deriving a system use case.
For example, it is possible that an aspect (or sub-goal) within a business use case may
be delivered by an IT system. In this case, a system use case representing the feature
required to achieve the sub-goal may be derived. A business use case diagram is at a
high level of abstraction and reflects general business requirements (see Chapter 10),
therefore it does not represent detailed functional requirements. Techniques for inves-
tigating and analysing these requirements are discussed in Chapters 11 and 12.

When working within an agile environment, a business use case diagram may be used
both during the pre-project analysis phase and when taking a change programme view.
The minimal notation set is easily accessible and helps to provide an effective basis for
collaborating with stakeholders when agreeing the scope and the business features to
be addressed. Therefore, it is the starting point from which further work may be agreed
and prioritised.

Business use case diagrams are drawn using the standard UML notation. An extended
version of this notation, which builds upon the UML standard, is available to support
modelling use cases at a business level. This version distinguishes business from sys-
tem use case diagrams by placing a diagonal line across the business actor and busi-
ness use case icons. This notation is shown in Figure 6.8 below.

The actors who are external to the business system are represented in a business use
case diagram. A business use case may be explored in further detail by analysing the
scenarios leading to the achievement of the decomposed goals. An alternative approach

91

AGILE AND BUSINESS ANALYSIS

Figure 6.8  Business use case model

is to use business process models (swim lane diagrams) to analyse the work required
to achieve the business use case goal.

Business epics

A business epic is based upon the user story technique (see Chapter 12) and provides
a business level of abstraction. Business epics can be used to understand business
goals and features from an actor’s perspective. To this end the business epic, much
like the business use case, sets out a feature the business system needs to offer at an
overview level. A set of business epics for the ‘Course Organisation System’ is shown
in Figure 6.9.

Each business epic is likely to encompass a broad area of functionality, so will require
decomposition in order to ascertain how the overall goal might be achieved and whether
the business epic is feasible. The example shown in Figure 6.10 is of a business epic
and reflects the high level of abstraction and the need to explore the requirement in
further detail. The template used in Figure 6.10 would provide a basis for capturing key
information about a business epic. The business justification, impact and affected areas
help to determine the overall priority of the business epic.

92

MODELLING THE BUSINESS CONTEXT

Figure 6.9  Example of business epics

Figure 6.10  Template for a business epic card

93

AGILE AND BUSINESS ANALYSIS

Combining business use cases and business epics

When developing business epics, it is useful to map them to an overview picture to
provide context and a visualisation of the suite of business epics. Without careful
management, business epics can become disassociated from the wider context. It is
possible to avoid this by recording them on a white board or by creating an organ-
ised set using sticky notes and a board or flip chart. Another approach is to map the
business use case diagram to the business epics, as this marries the holistic view with
the specific actor requirements and business goals.

In practice, business use case diagrams and business epics are both useful techniques
that can easily sit alongside one another. They address different perspectives of the
business system and when used together help to provide a coherent view that is acces-
sible to the business users.

Modelling in an agile context

Why is it important to use different models to demonstrate the various system perspec-
tives and levels when using agile? As mentioned earlier, modelling provides a visual
means of representing ideas and requirements, so it encourages collaboration and
improves communication. Models can also be used in both a formal and informal way:
formal, if they are needed to document an aspect of the change project that needs to be
recorded – a good example of this is ‘to be’ business process models, which typically
provide recorded designs for a process; informal, if they are needed for communication
and exploration purposes – a BAM is a good example of a technique that is typically
used in this way. Whichever models are used, they help the analyst to clarify the desired
outcomes, support prioritisation and better understand the problem to be addressed.

It is important that agile business analysts recognise the need to avoid over-engineering
models. There can be a temptation to analyse aspects that are not relevant to the work
in hand, resulting in models that are extensive and include unnecessary detail. When
applying the tenets of agile business analysis, we need to focus on 'just enough' model-
ling, ensuring that we support the needs of the project at the time and no more. With
this approach in mind, there is the potential for modelling to be highly effective in an
agile project context.

CONCLUSION

Models provide an excellent means of understanding the organisational context, gaining
insights into business needs, facilitating a common understanding and collaborating
with stakeholders. They can be helpful when making decisions about the prioritisation
of the features to be delivered by the business system.

It is possible to create models at several levels of abstraction, including a ‘cloud’ level
and a system interaction level. However, they have to be used when relevant or the
time spent creating them will be wasted. Agile business analysts should have a range
of modelling techniques in their professional toolkit that they are able to deploy when
the situation demands.

94

MODELLING THE BUSINESS CONTEXT

REFERENCES

Cadle, J. (ed.) (2014) Developing information systems – practical guidance for IT profes-
sionals. Swindon: BCS.

Cockburn, A. (2000) Writing effective use cases: the Agile software development series.
Boston, MA: Addison Wesley.

Porter, M.E. (1985) Competitive advantage: creating and sustaining superior performance.
New York: Free Press.

Womack, J.P. and Jones, D.T. (2003) Lean thinking. London: Simon and Schuster.

FURTHER READING

Ambler, S. (2002) Agile modeling: effective practices for eXtreme programming and the
Unified Process. New York: John Wiley & Sons.

Ambler, S. and Lines, M. (2012) Disciplined Agile delivery: a practitioner’s guide to Agile
software in the enterprise. Upper Saddle River, NJ: IBM Press.

Cadle, J., Paul, D. and Turner, P. (2014) Business analysis techniques. Swindon: BCS.

Checkland, P. (1981) Systems thinking, systems practice. Chichester: John Wiley & Sons.

Harmon, P. (2014) Business process change: a manager’s guide to improving, redesigning
and automating processes. Burlington, MA: Morgan Kaufmann.

OMG (n.d.) UML Resource Page. Object Modelling Group. Available from: www.uml.org/
[7 December 2016].

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

95

http://www.uml.org/

7	� WORKING WITH STAKEHOLDERS AND
ROLES

This chapter covers the following topics:

yy the nature of stakeholders;

yy the multi-skilled team: the T-shaped professional; the generalising specialist;

yy customer categories;

yy stakeholder engagement;

yy stakeholder categories, roles and perspectives.

INTRODUCTION

Effective business analysis requires ongoing engagement with stakeholders across a
range of roles and disciplines. This requirement is likely to apply irrespective of the
characteristics of the project and the approach to be taken to the work. However, the
adoption of agile places particular demands upon both analysts and stakeholders
because of the collaborative and iterative approach to the development and delivery
of solutions. In this chapter we discuss the different categories of stakeholders and
explore the engagement between the business analyst, stakeholders and customers. In
addition, we introduce the concept of the T-shaped professional.

THE NATURE OF STAKEHOLDERS

Working with key stakeholders such as customers and understanding the roles they
play is always an important aspect of any change project. These stakeholders are likely
to be directly affected by new ways of working and will often have a detailed under-
standing of existing work practices and inherent problems. There are also stakeholders
who may not be directly affected by any business changes but are involved in develop-
ing the changes or have to be consulted about them. These stakeholders often hold
roles with responsibility for areas such as project governance or enterprise architec-
ture, and may have different perspectives that will impact upon the project. Whichever
the case, any business analyst working in an agile environment needs to be aware of
the different groups of stakeholders and how they should be engaged with. There are
three key groups to consider.

96

WORKING WITH STAKEHOLDERS AND ROLES

yy The customers who will need to work closely with the project team to collaborate
on the development of the solution. These stakeholders will need to understand
the agile philosophy and principles and the agile work practices to be adopted,
providing the required support to customers is likely to fall within the remit of
the business analyst role. There are several categories of customer that are
explored in detail later in this chapter.

yy The stakeholders who are not the direct recipients of the solution but need to
be consulted or informed about various elements. Again, there may be a need
to support these stakeholders, particularly if they have not worked within an
agile environment previously.

yy The stakeholders who will form part of the project team. Business analysts will
work closely and collaboratively with these project colleagues.

Collaborative working

The Oxford English Dictionary defines the term ‘collaborate’ as: ‘work jointly on an activ-
ity or project’. Collaborative working is a fundamental principle of the agile philosophy.
However, in an agile work environment collaboration is not just about working jointly
with stakeholders, it is about working towards a common goal, negotiating the conflicts
that inevitably arise and achieving consensus. Constant, ongoing collaboration is to be
expected as a means of ensuring that business needs are understood and incremental
solutions are delivered early. Business analysts need to recognise that this approach
changes the dynamic of working relationships and places additional responsibilities on
analysts, project team members and other stakeholders. For example, when using a
traditional linear approach it would usually be the case that customers would be invited
to a workshop or an appointment would be made for an interview; when using agile,
customers may need to work within the project team rather than just providing their
input on request.

The business analysis skill set includes a range of interpersonal skills, such as com-
munication facilitation and rapport building, which are invaluable for collaborating with
stakeholders. Further, the holistic nature of the work encourages business analysts
to have a broad skill set that includes an understanding of business and the business
domain, each of which will aid the collaboration process. These skills enable business
analysts to work well with stakeholders and communicate with both the business and
technical representatives. While this is important for the success of any change project,
it is essential on an agile project where documentation is minimised and effective com-
munication is imperative.

Working with stakeholders

Communication and business skills are even more important where stakeholders are
geographically dispersed. Many organisations operate across different countries and
cultures, and, therefore, their business analysts need to be able to communicate within
environments where there are constraints caused by different languages, time zones
and technology. Such constraints require careful consideration and planning if they are
to be managed within an agile context.

97

AGILE AND BUSINESS ANALYSIS

A common error is to consider a stakeholder as someone who can be slotted neatly into
a job title or role and let this determine the engagement and communication approach.
This overlooks the critical point that each stakeholder is an individual with their own
ideas, constraints, priorities and needs. So, when working with stakeholders, business
analysts need to apply an analytical approach and consider the following:

yy Do we need to work with this stakeholder as an individual or as part of a group?

yy How closely do we need to work with this stakeholder?

yy What level of information does this stakeholder need or can this stakeholder
provide?

yy What perspective does this stakeholder have on this project?

Consideration of these points will help to ensure that there will be effective working
relationships with stakeholders of varying levels of seniority and with differing commu-
nication needs. The last point about understanding perspectives is particularly impor-
tant. This often relates to the role and responsibilities of the stakeholder. For example,
if someone is responsible for the regulatory compliance of the solution, this is where
they will focus their efforts and feel the priorities lie. The range of stakeholder roles and
responsibilities is described later in this chapter.

On projects using more traditional approaches, obtaining access to stakeholders is often
an area of difficulty. Agile projects place responsibilities on both the organisation and
the stakeholders, including requiring significant access to those working within the pro-
ject team. It is also the case that the stakeholders will need to have an appreciation of
the agile philosophy and the impact this will have on the working practices undertaken
by projects. Successful application of agile may require business analysts to provide
guidance, or even training, in the adoption of an agile mindset and approach.

Business analysis on agile projects

The types of business problems being solved by agile project teams today are not signif-
icantly different to the types of business problems that have been solved by teams using
more traditional approaches. Since those teams rely heavily on sound business analysis
skills to achieve success, it should be evident that agile teams also need these skills.
This is especially true when agile approaches are being applied to complex, novel or
high-risk change projects or projects with large amounts of user interaction.

One problem facing business analysts (and an important reason for this book) is that
the value of business analysis is not as widely recognised as it should be, and many
agile training courses, books, blogs and methods appear to ignore business analysis.
Dig a little deeper, however, and it becomes clear that this is not always the case. Scrum
is by far the most common agile method, and the Scrum Alliance (2016) guide states:

Scrum recognizes no sub-teams in the development team, regardless of particular
domains that need to be addressed like testing or business analysis.

98

WORKING WITH STAKEHOLDERS AND ROLES

What this means is that business analysis needs to be addressed, but this doesn’t mean
there must be a dedicated business analyst on the team. This is true of many published
methods – just because there isn’t a dedicated role for a business analyst does not
mean that business analysis skills are not needed.

In some circumstances, it may be possible for the development team to assume respon-
sibility for business analysis, as may be the case with other specialist work. So, business
analysts may be able to support areas of testing and testing specialists may be able to
help with some analysis. However, there are risks associated with this approach that
may result in conflicts and a failure to explore the business needs in sufficient detail.
Also, the individuals performing these roles may not have the time or expertise required
to understand the root causes of problems or to explore the rationale for requirements,
resulting in time spent on ill-conceived ideas.

While agile recommends the formation of self-organising, multi-skilled project teams,
this needs to be done with care. Where roles attempt to encompass specialisms such
as business analysis and assume that specialist expertise is never required, they can
become single points of failure and cause difficulties in the longer term. The concept of
the T-shaped professional, discussed in the next section, can help to clarify the need for
IS professionals to have both generic and specialist skills, including the interpersonal
skills required to work effectively with stakeholders.

Given the importance agile attaches to strong and constant customer engagement, and
a Just Enough, Just in Time approach to the project deliverables (including the require-
ments definition and acceptance criteria), the skills of a business analyst are critical for
successful agile projects.

THE MULTI-SKILLED TEAM

The concept of the self-organising team was introduced in Chapter 4. Achieving a team
that can self-organise, however, requires team members to be multi-skilled and we
explore the multi-skilled team further here.

The T-shaped professional

Service Science theory underpins the service thinking approach (discussed in Chapter
3) and has popularised a concept known as the T-shaped professional. This term refers
to professionals who have a suite of generic skills that supplement and enhance the
specific skills required of their particular profession. The definition of a T-shaped profes-
sional from the Handbook of Service Science (Spohrer and Maglio, 2010) is as follows.

Those who are deep problem solvers with expert thinking skills in their home disci-
pline but also have complex communication skills to interact with specialists from
a wide range of disciplines and functional areas.

An example of a T-shaped professional profile for a business analyst is shown in
Figure 7.1 below.

99

AGILE AND BUSINESS ANALYSIS

Figure 7.1  The T-shaped BA professional

Source: Spohrer and Maglio (2010)

The vertical and horizontal components of this model focus on the following aspects:

yy The vertical depth, or specialism, is a combination of skill and experience of
the broad range of business analysis practices and techniques coupled with
the experience of applying them in one or more business contexts or sectors.

yy The horizontal breadth is the understanding of, and ability to contribute
to, specialist tasks in other disciplines coupled with cross-disciplinary
interpersonal skills and generic business knowledge.

The horizontal skills

Business analysts require competence in three key areas – business, personal and
technical skills – if they are to be T-shaped professionals and contribute effectively
across a range of change projects. They require generalist business skills and knowl-
edge in order to be able to communicate effectively with stakeholders from different
external and internal constituencies; this includes a broad commercial awareness. They
also need strong interpersonal skills to ensure that they engage with stakeholders and
members of the project team. Effective collaboration requires this mix of professional
and interpersonal skills.

A good understanding of the business change and solution development processes,
including more technical domains such as data management, application architecture
and software testing, is also necessary, for business analysts to contribute effectively
when working in cross-functional agile teams.

100

WORKING WITH STAKEHOLDERS AND ROLES

The vertical skills

Whereas the generalist skills above are held by many IS professionals, business
analysts also need to possess the specialist skills that enable them to investigate ideas
and problems, and identify and help to evaluate potential solutions.

Business analysis is a specialist discipline, so business analysts need to develop and
maintain an extensive professional toolkit containing many analytical techniques and
frameworks. In addition to the analytical skills, business analysts also need to have an
in-depth understanding of the business domain within which they work. This includes
knowledge of the terminology, concepts and particular concerns of the business domain.
For example, business analysts may require knowledge of relevant governance struc-
tures, or legal and regulatory matters.

Specifically for an agile business analyst, the core skills also need to include the under-
standing of, and the ability to apply, the agile principles and values across business
analysis activities. When working on an agile project, business analysts need to have
generic and specific agile skills as follows:

yy Generic: an understanding of the agile development process and the range
of techniques that may be adopted when developing software using an agile
approach.

yy Specific: expertise in applying agile techniques such as user stories,
prioritisation, prototyping, user roles and personas.

The T-shaped professional concept is highly relevant to today’s business world where
collaborative working helps to break down traditional barriers and apply a cross-func-
tional view of the organisation. This has been assisted by the use of thinking frame-
works such as service thinking (Chapter 3). An agile mindset, coupled with a T-shaped
toolkit, will help business analysts to work successfully on agile change projects and,
ultimately, support organisational agility.

The generalising specialist

The concept of an agile team formed of ‘generalizing specialists’ was developed by Scott
Ambler and Mark Lines (2012); and has many similarities to the T-shaped professional
concept. The definition, below – provided by Ambler and Lines – states that a generalis-
ing specialist is someone who has multiple skills.

1.	 Has one or more technical specialties (e.g. Java programming, Project
Management, Database Administration, etc.).

2.	 Has at least a general knowledge of software development.
3.	 Has at least a general knowledge of the business domain in which they work.
4.	 Actively seeks to gain new skills in both their existing specialties as well as in

other areas, including both technical and domain areas. (http://agilemodeling.
com/essays/generalizingSpecialists.htm#Definition)

101

AGILE AND BUSINESS ANALYSIS

Ambler and Lines (2012) suggest that an agile development team should be formed of
multi-skilled professionals. Team members should possess a cross-functional under-
standing of the entire solution development process, enabling them to work success-
fully with colleagues across the different specialist domains. They should also have at
least one, but possibly more, specialist area of competence. While the detailed investiga-
tion and analysis work will be, in the main, the responsibility of the business analysts,
there may be occasions when other team members are required to conduct business
analysis; for example, when working alongside the business users to develop some
software functionality or define business rules. There may also be business analysts
working within the agile team who can perform other tasks such as supporting testing
activity.

This approach helps to remove the strict role delineations that are often found during
solution development and can diminish the occurrence of hand-offs and delays. Hand-
offs may occur when a requirements expert hands over the completed requirements to
the developer for coding, or the developer hands over the code to the tester for testing
and so forth. This approach can result in a ‘silo’ mentality, whereby individuals focus
on their part of the process and work towards their own personal targets; or work on
low priority tasks in their own specialism despite other, high priority tasks in another
specialism being incomplete. Unfortunately, this can also mean that accountability for
the finished product inevitably gets lost while the team is working towards delivery. The
formation of agile teams from generalising specialists is a means of overcoming this
issue and enabling greater collaboration.

Adopting this approach enables agile development teams to provide the skills and expe-
rience required to develop the solution in a collaborative way. While each team member
will not have a full range of the required skills, and is likely to specialise in a specific
area, it does mean that they will have a sufficient grasp of other disciplines. This will
improve communication, ensure that the team is better able to complete the high pri-
ority work, and enable everyone to make contributions during the development of the
solution.

The business analyst in a multi-skilled team

Business analysts are well placed to work in a generalised environment because of
the breadth of the role and the range of skills and knowledge they are expected to
possess. When working within a relatively small project team, it is often the case that
a business analyst is expected to take on an additional area of responsibility such as
project management or business acceptance testing. Some business analysts may be
required to review code or database structures. Similarly, other types of specialist may
attend business analysis training and undertake some business analysis tasks, perhaps
under the supervision or guidance of a more experienced analyst.

Figure 7.2 shows how the two concepts of the T-shaped professional and the general-
ising specialist may be combined to define the skill requirements of some specialists.
These examples identify the types of skills and experience three different T-shaped
professionals in an agile development team may need to have.

Many business analysts began their careers working in technical disciplines; this
has enabled them to develop into T-shaped BA professionals. Where this is the case,

102

WORKING WITH STAKEHOLDERS AND ROLES

Figure 7.2 � Example of different types of T-shaped professionals in a development
team

Generalising Business Analyst Specialist

Generalising Software Development Specialist

Generalising Test Specialist

Business
Analysis

Software
Development

UX Design

System Design

Software
Coding

Unit Testing

Development
Environment

Business
Analysis

System
Architecture

User
Experience

Testing

Business
Analysis

Software
Development

Requirements
Engineering

Analytical
Techniques

Agile
Requirements

Requirements
Elicitation

Process
Modelling

Data Modelling

Technical
Writing

Technical
Writing

User
Experience

System
Architecture

Testing Testing

Test Strategy

Test Framework
Development

Continuous
Integration

Automated
Testing

Quality
Assurance

individual business analysts may have the ability to support the work of other disci-
plines, thereby contributing to the agility of both the development team and the organi-
sation.

CUSTOMER CATEGORIES

It is often the case that the term ‘customer’ is used to refer to anyone who is the recipi-
ent or beneficiary of a new product or service. However, grouping customers together in
this way risks overlooking different perspectives and priorities. As a result, it is impor-
tant that we do not categorise customers as one group but understand the range of
different customer roles, each of which has the potential to hold different perspectives
and have varying business requirements. Agile techniques such as user stories and
personas (see Chapter 11) help us to consider a situation from the viewpoint of a given
role. Where this is a customer role, understanding the customer categories can provide
insights into the different needs that are likely to exist.

Within an agile development environment, business analysts may work with many dif-
ferent types of customer and need to appreciate where their requirements might differ.

103

AGILE AND BUSINESS ANALYSIS

Although some customers, such as business managers, may be relatively straightfor-
ward to identify, it is possible to overlook others. For example, project stakeholders
such as solution developers or technical architects should be perceived as customers
because they consume some of the artefacts delivered from the business analysis work,
and can have specific needs that the project should meet (for example, training). Also,
the term ‘end user’ may cover a range of different types of business customer, each of
which might have differing needs to be met.

Throughout a project, we need to look at the standard roles and consider where a cus-
tomer/supplier relationship exists and where we need to take into account different
categories of customer, each with the potential to have a different perspective on the
situation or project.

Figure 7.3 sets out six possible types of business customer, all of whom may be per-
ceived as ‘end users’ depending upon the project context.

Figure 7.3  Types of business customer

Categories of customer

Employees Managers Owners Partners Purchasers Consumers

The characteristics of each customer category are described below.

Employees The people who work for the organisation and will use the new pro-
cesses and systems.

Managers The management team who set the business objectives and determine
the strategy and tactics for the organisation; there may be several lev-
els of manager.

Owners The owners of the organisation. In a commercial organisation, the own-
ers will expect to receive dividends from the profits; in a non-profit
organisation, the owners may be trustees; in a government organisa-
tion, the owners may be politicians or senior government executives.

Partners The intermediary customers such as partner or reseller organisations
who sell (and often deliver) the organisation’s services and products
to the consumer.

104

WORKING WITH STAKEHOLDERS AND ROLES

Purchasers The customer who orders the products or services and ensures that
payment is made, but does not ‘consume’ the purchased items. This
may be a stakeholder working in a procurement capacity.

Consumers The ‘end customer’ who receives or consumes the services and
products.

Anyone working as an agile business analyst should recognise the different categories
of customer. This is for two reasons:

1.	 The perspectives will vary widely between each of the categories. For
example, an intermediary may be concerned with the level of commission
or discount payable for a particular product or service; a consumer may be
more concerned with the quality of the delivered product or service.

2.	 These high-level categories help the business analyst to identify different
‘customer’ user roles when analysing the features to be delivered. The
set of user roles can then be used in the development of user stories and
personas. If we do not know that there may be several different categories
of customer, we may just focus on the end-user or consumer role and miss
other important user roles and their business requirements.

Understanding the different types of customer and their varying priorities and perspec-
tives will help us to recognise where there may be issues relating to the realisation of
value for customers. Customer expectations exist whenever an organisation sells a
service or product. While organisations often say that they deliver value, in reality value
cannot be delivered – it can only be offered by an organisation. Hence the term ‘value
proposition’ – the organisation proposes a service or product that is intended to offer
value. Any actual value has to be realised by the customer engaging with the service
or product. For example, an organisation can purchase a software package that offers
extensive functionality but if the employees do not use the package, then no value will
be realised.

Given that it is customers who obtain value from a delivered product or service, they
need to determine whether or not something of value has been delivered. However,
where a project is concerned with several different categories of customer it is impor-
tant to recognise that the nature of ‘value’ may also differ. As discussed in Chapter 3,
an organisation has to identify and deliver a value proposition to their customers but
it is not necessarily the case that organisational and customer perceptions of value
are aligned; there is the potential for value misalignment, as represented in Figure 7.4.
Understanding different customer categories and their different perspectives on what
constitutes 'value', will help to ensure that customer and organisation value expecta-
tions are aligned.

When working on a change project, business analysts should be concerned with inves-
tigating the value expectations of different customers in order to identify where prob-
lems may arise through misalignment. Techniques such as use cases, user stories and
personas, particularly when considered at a business level, can help with analysing
customers and their value expectations. Failure to do this may result in dissatisfied
customers and may risk the success of the change project.

105

AGILE AND BUSINESS ANALYSIS

Value
proposi�on

Customer
expecta�ons

Value
proposi�on

Customer
expecta�ons

Figure 7.4  Organisation versus customer value perceptions

STAKEHOLDER ENGAGEMENT

Stakeholder engagement requires the identification, analysis and management of
anyone involved in the project or affected by the outcomes. It also requires effective
communication and rapport building to establish working relationships and, impor-
tantly, ensure they persist. Stakeholder engagement is a key area of business analysis
work and is essential if there is to be collaboration on an agile project. Therefore, agile
business analysts are often closely involved in engaging with stakeholders and facilitat-
ing collaborative working relationships.

There are four aspects that are necessary to support effective stakeholder engagement.
'Identify, analyse, communicate, review'. These aspects are described below.

Identify

It is important to identify who needs to be involved, their level of involvement and when
they will be involved. Different stakeholders will need to be included at different times
and this needs to be thought through carefully before embarking on attempts to collabo-
rate with the stakeholders. One way of identifying stakeholders is to use a framework
such as the stakeholder wheel shown in Figure 7.5.

Another means of identifying stakeholders is to break down some of these groups into
four categories: external stakeholders, business/governance stakeholders, architec-
tural stakeholders and project team stakeholders. The types of stakeholder roles within
these four categories are described in detail later in this chapter.

106106

WORKING WITH STAKEHOLDERS AND ROLES

Figure 7.5  Stakeholder wheel

Customers Suppliers

Regulators

Owners

Compe
tors

Managers

Employees

ustomers Suppliers

rs Em

Stakeholders

Partners

Analyse

Once stakeholders have been identified, some thought must be given about how the
engagement with the stakeholders needs to work. It is not possible to collaborate with
every individual stakeholder, as there will usually be far too many of them with an
interest in the project. An analysis of the individual stakeholders both at an individual
(typically, for more senior stakeholders) and group level needs to be carried out at this
point. An understanding of the perspectives held by the stakeholders, particularly the
more influential stakeholders within the business and the roles that they are going to
play in the project, is vital for the successful development of the solution. Techniques
such as the power/interest grid, RACI and world view analysis (described below) are
invaluable for thinking about different stakeholders and their perspectives. Analysis
of personas and extreme characters (see Chapter 11) can also provide useful insights,
particularly regarding customer stakeholders.

107

AGILE AND BUSINESS ANALYSIS

Power/
interest grid

This matrix (shown in Figure 7.6) provides a means of considering
the level of power wielded by a stakeholder or stakeholder group and
the level of interest in the project that these stakeholders have. This
helps to determine how communication and engagement with the
stakeholders will be conducted.

RACI/RASCI A RACI chart (which is sometimes extended to RASCI) provides a
summary of the stakeholders and the way in which they will engage
with the project. The choices are:

R: responsible
A: accountable
C: consulted
S: supportive (if included)
I: informed

Again, this provides a means of understanding the stakeholders and
their responsibilities, and helps to decide how we should engage with
them.

World view
analysis

We often talk about ‘perspectives’ that people hold on situations or
systems. World view analysis attempts to view the system under
investigation from the position of an individual or group. It seeks to
understand why people hold certain views or priorities by analysing
their values and beliefs. A frequent – and often highly publicised –
example of world view analysis occurs with regard to politicians,
whereby their comments or statements are analysed and conclusions
drawn about why they are taking up a particular position. However, this
can also be done with stakeholders. Understanding why an individual
or group holds a particular view, or has expressed certain thoughts, can
be invaluable in helping to engage with stakeholders.

108

Po
we

r /
 in

flu
en

ce

Interest

Keep satisfied
Constant,

active
management

No

Ignore

Some High

No
So

m
e

Hi
gh Watch

Keep onside

Keep informed

Figure 7.6  Power/interest grid

WORKING WITH STAKEHOLDERS AND ROLES

Communicate

Once we have some understanding about the stakeholders, it is important to think about
how we will communicate and collaborate with them, and their level and frequency
of involvement within the project. The power/interest grid, RACI chart and world view
analysis help when considering this.

Examples of the different styles and frequency of stakeholder engagement are:

a.	 Engagement with the project sponsor, or the business owner for the change
project. This is highly important given the responsibilities of this role.
Therefore, the communication will need to be regular and specific. Rapport
is likely to be extremely important in this relationship so we should make
efforts to build a good working relationship with the sponsor and to maintain
this over the longer term. We should also make an effort to communicate
in a responsive manner, ensuring that any information required is provided
when it is needed.

b.	 Engagement with the business staff who will be working within the project
team will be ongoing during the project. This will require the development
of highly collaborative working relationships, which will involve in-depth
discussions about the requirements to be incorporated in the solution.

c.	 Engagement with external suppliers will depend upon the nature of the
change project and the timing of the communication. For example, a
software package supplier may be heavily involved in the project and a highly
collaborative communication approach required, if there is to be extensive
customisation of the package. Alternatively, a supplier of consultancy
resource may only be involved at specific points during the project and
communication may be minimal.

Review

Throughout any project, it is important to appreciate that stakeholder engagement is
ongoing. Rapport can be built but also needs to be maintained if working relationships
are to endure. It is all too easy to break rapport, for example, by ceasing communica-
tion with a stakeholder because they are no longer important to the project. Changes
in views also need to be borne in mind throughout a change project. Perspectives can
alter over time and a stakeholder who has perceived a requirement to be of low priority
can suddenly adopt a completely different position and expect delivery of the required
feature to be imminent. As a result, we need to revisit the analysis of the stakeholders
regularly and consider whether positions or perspectives have changed.

When working with stakeholders on an agile project, there will be some who sit within
the project team and others who represent areas external to the project. Everyone
within the team will need to work closely and collaboratively with each other, including
the business analysts. Where these stakeholders are customers, their views are likely
to be at the forefront of the project work, so frequent, focused communication will be
required.

109

AGILE AND BUSINESS ANALYSIS

There will be other stakeholders who are not working within the project team but still
need to be on the communication radar because they have concerns and interests that
the project needs to take into account. It is also the case that these concerns and inter-
ests can change as the project progresses. For example, someone who was not very
engaged with the project at the outset may become more interested as the work pro-
gresses and delivery moves closer; this increasing engagement with the project is likely
to result in a need for more frequent and active communication.

One final thought about stakeholder engagement. We often talk about collaboration and
rapport but can find it difficult to sustain this approach, particularly when there are time
pressures. The best maxim is to treat stakeholders as you would want to be treated
yourself. We often talk about understanding the ‘voice of the customer’ or standing in the
customers’ shoes, and it is extremely helpful to think about how the situation looks from
their perspective. Failing to do this can result in assumptions being made, stakeholders
being overlooked, rapport breaking and general difficulties arising for the project.

STAKEHOLDER CATEGORIES, ROLES AND PERSPECTIVES

Working on business change projects often means that business analysts are involved
with a wide range of stakeholders, both internal and external to the organisation. The
stakeholder wheel in Figure 7.5 identified some of the key stakeholder categories that
we might investigate. However, as we have already seen, within the customer category
there are many different perspectives to uncover. The ‘employee’ and ‘owner’ catego-
ries will contain a range of stakeholders and roles that are relevant to a change project.
Understanding these different categories is important if we are to ensure that we don’t
overlook any perspectives and are clear about the priorities for the change project.

Within an agile project, there may be fewer defined job roles and, as discussed ear-
lier, there may be team members who have a range of skills and the ability to adopt a
number of roles. However, it is still important to be aware of the different stakeholder
roles and their areas of interest. Engaging carefully with stakeholders is highly relevant
to agile business analysis, as it helps clarify what needs to be delivered, the business
constraints to be complied with, and how the project aligns with other projects and the
enterprise architecture. It should also help us to distinguish between ‘wish list’ thinking
and requirements that really can address business issues and opportunities.

Understanding roles

It helps to think about the four different constituencies represented by stakeholders: the
business/project governance, the architectural domains, the external environment and
the development team. Within each of these constituencies there will be numerous roles
that are adopted by the stakeholders. The term ‘role’ is often used on agile (and other
types of) development projects and it is useful to understand what is meant by this and
how the roles can change, depending upon the nature of the project.

A role can be thought of as a hat that a stakeholder takes on – however, they don’t
always wear just one hat. You often hear people saying ‘I am wearing a number of hats
at this meeting’ and by this they mean that they are playing, or representing, a number

110

WORKING WITH STAKEHOLDERS AND ROLES

of different roles, with each role looking at the situation from a particular angle or view-
point. For example, many stakeholders may have an ‘end-user’ role for a new IT system
but some may also be subject-matter experts (SMEs), and one of them may have the
project sponsor role for the project. The term ‘end user’ might also cover a number of
roles, each of which has different characteristics and requires the delivery of different
features. For example, in a payroll system, all of the employed stakeholders will have
the ‘employee’ role, but some will also have the ‘line manager’ role (and authorise salary
increases) and there may also be a payroll manager role, responsible for authorising
all of the payments.

It is important to understand the nature of roles if we are to work successfully with
stakeholders. Roles and individual stakeholders have a many-to-many relationship, as
shown in Figure 7.7 below.

1..*
Stakeholder Role

1..*

Figure 7.7  The relationship between stakeholders and roles

This means that each stakeholder may take on one or more roles and each role may
be covered by one or more stakeholders. However, this doesn’t mean that all of the job
titles will be represented. For example, in a Scrum agile development team, each par-
ticipant – other than the Scrum master – is called a developer and there are no special-
ist job titles. However, the need for different roles still exists because there is specialist
work to be carried out. Recognising these roles, their responsibilities and the skills
required is essential if the work is to be carried out successfully. Similarly, we need to
be aware of the different roles and responsibilities that are external to the project team
but still impact upon the project activities.

The roles typically found within the four stakeholder constituencies are discussed below.

The business/governance perspective

Each change project has business representatives who are responsible for various
aspects of the business involvement. These stakeholders provide the business
viewpoint and governance. The most important roles are shown in Figure 7.8 and
discussed below.

111

AGILE AND BUSINESS ANALYSIS

Figure 7.8  Business/governance roles on change projects

Business/
governance
stakeholders

Project
Sponsor

Business
Managers

Programme
Manager

Project
Manager

Project
sponsor

This is the most senior governance role for the change project. The
project sponsor acts as the business representative who champions
the project within the business and is ultimately accountable for its
success. The project sponsor has to ensure that sufficient funds and
other resources are available to the project and will accept (or reject)
the deliverables. As the person who commissioned the project, the pro-
ject sponsor is the owner of the business case and has responsibility
for the delivery of the business benefits.

There should be one project sponsor who is in post for the duration of
the project, providing a clear escalation route for problems and issues
and setting the strategic direction.

Business
managers

Business managers typically manage the staff who will use a new
system and carry out new processes and procedures. However, they
may be users of the system themselves in some situations. They are
often owners of requirements, even if the sources were more junior
staff. As a result, in addition to providing information regarding the
requirements, they will have to be consulted to find out the underlying
rationale. This is particularly important where there are conflicts or a
lack of clarity around the requirements. For example, where two of the
end users have requested opposing functional requirements or where
there is uncertainty surrounding non-functional requirements.

112

WORKING WITH STAKEHOLDERS AND ROLES

Programme
manager

Programmes comprise a series of inter-dependent change projects
that, together, contribute to the achievement of business objectives.
Each project may focus on a different element of the programme, for
example the software development, the process changes or possibly
a different workflow area. The programme manager is responsible for
managing the programme, in particular the dependencies between the
projects, and ensuring that the work on the projects is aligned so that
the programme is delivered successfully.

Project
manager

Responsible for ensuring that the project is delivered according to the
defined terms of reference. These include the project objectives and
the time, cost and quality constraints. The project manager also man-
ages the agile process adopted for the project.

The architectural domains perspective

Each change project needs to align with the enterprise architecture and the
sub-domains such as business, applications, data and infrastructure architecture.
The stakeholders working in these areas ensure that this alignment is in place.
Business analysts may have to work closely with these stakeholders, in particular
the business, solution and data architects. Most projects, particularly those that have
an IT or technology component, will have a number of architectural stakeholders that
must be considered.

These stakeholders will often have perspectives and responsibilities that extend beyond
the scope of the change project and it is important that their views are properly con-
sidered. This may mean that they provide requirements (functional and non-functional),
acceptance criteria or undertake a formal approval role. It may be that the project
doesn’t need to include their requirements until a later stage which could require some
sensitive stakeholder management.

Architectural stakeholders will often have longer term interests and be concerned with
trying to ensure that projects are future proof and can enable future developments. This
can cause some conflict with agile project teams where early delivery of business ben-
efit is important and longer term constraints can seem unnecessary. In such situations,
the business analyst may be required to negotiate a path through some difficult issues
by applying their stakeholder management skills. The approach to stakeholder engage-
ment described earlier, whereby stakeholder views and responsibilities are analysed,
can be very helpful when conducting this work (Figure 7.9).

113

AGILE AND BUSINESS ANALYSIS

Figure 7.9  Architectural domain roles on change projects

Architectural
domain

stakeholders

Business
architect

Solu�on
architect/
designer

So	ware/
applica�on

architect

Data
architect/
manager

Business
architect

The Object Management Group’s Business Architecture Specialist
Interest Group (BAsig)1 defines business architecture as follows:

The business architect role is focused on ensuring a solution aligns
with the business architecture blueprints for the organisation, so that
the strategic objectives and tactical demands are met. The blueprint
provides a representation of the structure and behaviour of a business
system and covers the business capabilities, value-adding processes
and the actors who conduct the work. The capabilities and processes
are aligned with the business goals and business services they sup-
port, and the applications and data needed to realise them.

Solution
architect/
designer

The solution architect or designer is responsible for creating the
design artefacts that set out the blueprint for the whole solution
including business and infrastructure layers. These artefacts need
to align the services provided by the solution components to the
business architecture in line with the standards governed by the
enterprise architecture.

Software/
application
architect

Where the solution involves considerable reuse and integration with
existing software components and sub-systems, a software or appli-
cation architect may be involved to ensure that existing services and
standards are maintained.

114

A blueprint of the enterprise that provides a common understand-
ing of the organization and is used to align strategic objectives and
tactical demands.

WORKING WITH STAKEHOLDERS AND ROLES

Data
architect/
manager

The data architect or manager is responsible for the governance and
coordination of the definition, structure, storage and movement of
data that supports the information requirements of a business, espe-
cially data maintained by the software applications. Their focus should
be on aspects like data quality, consistency and security.

The external perspective

Some stakeholders are not only external to the project team but to the entire organi-
sation. Consequently, it is difficult to collaborate with some of these stakeholders and
the information they offer may need to be obtained through various communication
channels. For example:

yy In some industries it is not possible to communicate directly with end consumers
as this has to be done through intermediaries.

yy Governmental and regulatory organisations may provide information primarily
through written communications.

yy Competitor information may need to be obtained through market or business
research.

It is important not to overlook these stakeholders as they can be extremely important
to the success of the project and business analysts are often responsible for analysing
the information these stakeholders provide. Some of the key external stakeholder roles
are shown in Figure 7.10 and discussed below.

External
stakeholders

Customer

Supplier

Compe�tor

Government/
legal/

regulatory
body

Figure 7.10  External stakeholder roles on change projects

115

AGILE AND BUSINESS ANALYSIS

Customer This is the end customer role, typically the person paying, or rep-
resenting an organisation that is paying for the product or service
delivered. Customers are a complex set of stakeholders, as discussed
earlier.

Supplier The supplier provides products or services to the project or organisa-
tion. These stakeholders may be significant particularly if they are
providing outsourced services or off-the-shelf software products.
Where the supplier is providing bespoke products, they may them-
selves be operating agile delivery models, so the business analyst
may be a stakeholder of the supplier team.

Competitor Competitor organisations may not seem to be obvious stakeholders.
However, a change project may need to take into account competi-
tor strategies and actions, or may need to consider how the project
may affect competitors. In some cases it is essential to think about
potential responses from competitors and, in some situations, it may
be desirable to collaborate with a competitor. New information about
a competitor’s product could affect the project goal or change key
drivers in the business case. This could require the project team to
change course or, in extreme cases, to shut down.

Government/
legal/
regulatory
bodies

These organisations are the sources for rules and regulations with
which the organisation needs to comply; new or changed regulations
are often the reasons for initiating change projects. No matter how
embedded the agile philosophy is within an organisation, compliance
with such regulations is usually mandatory and this may impact upon
the approach to be adopted on projects.

The project team perspective

The project team is responsible for ensuring the requirements are elaborated and
developed into product increments. Business analysts typically work within the project
team, facilitating communication, analysing requirements and clarifying the business
rules. They also ensure that there is alignment with business objectives and needs.
While some agile approaches, such as Scrum, do not define individual job roles, it
is important to recognise the skill areas of certain stakeholder roles that need to
be represented within the project team. These roles are shown in Figure 7.11 and
discussed below.

Domain expert The domain expert (also known as the SME) is a business person
who has significant knowledge and understanding of the busi-
ness domain. This knowledge is necessarily more extensive than
that of the end user and often derives from having taken a senior
role within the organisation or having experience across the par-
ticular industry. An example may be an individual with extensive
experience and knowledge of retail business operations or taxa-
tion law. The domain expert is able to provide information about

116

WORKING WITH STAKEHOLDERS AND ROLES

Figure 7.11  Stakeholder roles within the development team

Development
team

stakeholders

Domain
Expert

Customer

Team
Leader

Solu�on
Developer

Solu�on
Tester

the area of business that the solution will be deployed within and
is able to clarify business requirements.

This role provides input to an agile project by providing informa-
tion about the broader business domain, the particular business
situation and any issues that can arise.

The domain expert may be an employee of the company or may
be an external consultant. The advantages of having an external
consultant fill this role are that the consultant will be able to:

yy provide an objective view;

yy identify where local practice is not necessarily best
practice;

yy bring ideas from other organisations operating within the
business domain;

yy distinguish between requirements based on business
need rather than tradition or assumption.

Where an external consultant is performing the domain expert
role issues may arise due to a lack of understanding of the
organisation and the politics, power bases and culture that
exist.

117

AGILE AND BUSINESS ANALYSIS

Customer/
end user

The end-user role represents the business staff who will use a
new system or work with a new product. Within an agile pro-
ject, there should be representatives of the customer community
working within the project team. This may be one person or could
be a team of people, depending upon the size of the customer
community to be represented and the complexity of the work. The
end users within the project team must be empowered to make
decisions on behalf of the user community.

Team leader The team leader is responsible for ensuring that the project team
is operating in a collective and collaborative manner, and is meet-
ing its objectives successfully. This role reports progress and
issues to the project manager.

Solution
developer

The solution developer interprets business requirements and
translates them into a deployable solution that meets the func-
tional and non-functional requirements. The work of the developer
usually entails building software components and unit (program/
component) testing their work. Where the focus is on the develop-
ment of the entire solution, covering processes and organisational
aspects, the role may have a broader remit, possibly encompass-
ing aspects of business analysis. In some organisations there may
be a product developer role that is responsible for developing the
products to be offered by the organisation. Whichever is the case,
developers need to work closely with the business analyst in
order to ensure that the business requirements are understood
and the desired product or service is delivered.

In agile systems development, the solution developer role may
also encompass the role of the solution architect/designer.

Solution tester The solution tester role is responsible for defining test cases and
test scenarios that will be used to identify whether or not the
solution meets the requirements. There may be different levels
or types of tests such as integration testing and system testing
(where an IT system has been developed as part of the solution).
Business acceptance testing may also be required to ensure that
the solution meets the business needs.

It is worth reiterating that agile teams may not designate specific roles. However, that
does not mean that the work for which those roles are responsible is not carried out. It
is part of the agile philosophy that project teams are multi-skilled and have the respon-
sibility for the different areas of work required to develop the solution. Therefore, indi-
viduals may be called upon to support or conduct work across a range of areas. For
example, if there are testing tasks to complete, a team member with a ‘developer’ job
title may perform a ‘tester’ role for the duration of the testing tasks. In some cases, the
whole agile team may be responsible for defining test cases and test scenarios.

118

WORKING WITH STAKEHOLDERS AND ROLES

CONCLUSION

Stakeholder engagement and management is vital within any project. However, this
is particularly the case when using agile, given the emphasis on effective collabora-
tion. Business change projects tend to require the involvement of a wide range of
stakeholders from different constituencies; some may be internal to the project team,
others may be from within the organisation but external to the project, while others
may be external to the entire organisation. While business analysts should have the
ability to facilitate communication and collaboration through effective stakeholder
engagement, the nature of this engagement will differ depending upon the role and the
level of collaboration required. To work effectively in an agile environment, business
analysts need to adopt the ‘mindset’ encapsulated in the agile philosophy and princi-
ples. They also need to support stakeholders to adapt their working practices to the
needs of agile projects.

Business analysts are concerned primarily with ensuring that business needs are met
and value is realised for the customer. Although many agile approaches identify the
need to focus on end-user customers, in reality the business customer landscape is
much more complex and encompasses many different customer roles.

While some agile methods do not require the involvement of a business analyst, change
projects will always need business analysis. This is indisputably the case for projects
using agile, where stakeholder collaboration is key to project success.

NOTE

1 � When originally established by the OMG in December 2007 it was known as the
Business Architecture Working Group (BAWG).

REFERENCES

Ambler, S.W. and Lines, M. (2012) Disciplined Agile delivery. Upper Saddle River, NJ IBM
Press.

Scrum Alliance (2016) Scrum alliance home page. Scrum Alliance. Available from: www.
scrumalliance.org/ [20 December 2016].

FURTHER READING

Ambler, S. (2003) Agile database techniques. New York: John Wiley & Sons.

Maglio, P.P., Kieliszewski, C.A. and Spohrer, J.C. (2010) Handbook of Service Science.
Service Science: research and innovations in the service economy. New York: Springer.

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

119

http://www.scrumalliance.org/
http://www.scrumalliance.org/

AGILE AND BUSINESS ANALYSIS

�Spohrer J.C. and Maglio P.P. (2010) Toward a science of service systems: value and sym-
bols. In Maglio, Paul P., Kieliszewski, Cheryl A. and Spohrer, James C. (eds). Handbook of
Service Science. Service Science: research and innovations in the service economy, Part 2.
New York: Springer.

120

8	 DECOMPOSING GOALS

This chapter covers the following topics:

yy the relevance of goal-based analysis;

yy goal and functional decomposition;

yy understanding goal levels;

yy using goals to achieve business agility;

yy using goals to define iterations and releases.

INTRODUCTION

Agile business analysts need to apply goal decomposition to ensure that the focus of
an agile change project is on the delivery of business goals. The ability to understand
business goals and then separate them into things that can be logically achieved by
the business is necessary for any business to thrive. Achieving this, however, can be
problematic as large goals often get divided into functional areas of the business and
the original goal can become confused or lost. In this chapter, we discuss how to break
down goals so that smaller goals can be achieved earlier, without losing sight of the
bigger goal. Decomposing goals in this way is critical to the success of agile change
projects because the success of change can only be determined by the value received by
the customer. The only way of achieving earlier success is therefore by understanding
and delivering smaller goals.

THE RELEVANCE OF GOAL-BASED ANALYSIS

Goal-based analysis is a logical mechanism for breaking down and orgnising business
goals. All organisations have goals but we tend to call them business objectives or
strategic outcomes. In simple terms, a goal is something that the organisation or
business wants to achieve, such as ‘increase sales by 5 per cent within the next 12
months’. We analyse goals because it helps us to keep the focus on what the business
is trying to achieve strategically. Goal-based analysis has been discussed in the context
of requirements for some time. The easiest way to understand a goal-based structure
is to look at a high-level business process for an organisation.

121

AGILE AND BUSINESS ANALYSIS

Figure 8.1  Organisational chart showing a high-level business process

It is clear to see that the organisation is split into functional areas represented by the
vertical boxes shown in Figure 8.1. While all of the functional areas are valuable, they
need to operate and work together to achieve any outcomes for the business. If each
functional area were given the individual goal to ‘increase the size of their function by 5
per cent within the next 12 months’, this may not result in the organisation achieving the
overall goal of ‘increasing sales by 5 per cent within the next 12 months’. Each function
cannot deliver an overall business outcome on its own.

The business process, which runs horizontally, shows how an end-to-end business pro-
cess utilises all of the functional areas of the business required to deliver a defined out-
come. So, if the goal of this business is to increase sales by 5 per cent, it is the functional
areas conducting their parts of the business process that will achieve this goal. In this
example, the business process represents the work to achieve this high-level goal. At an
enterprise level, these processes are often called value streams and represent the value
that the business offers through delivering its products or services. This is discussed in
more detail in Chapter 6.

Decomposition is the process of breaking down complex entities into smaller parts.
Breaking things down in this way helps us to analyse the individual components, as they
become easier to understand. Business analysts are well versed in decomposition and
things that are commonly decomposed include:

yy requirements: overview to detailed requirements;

yy processes: organisation to business process to task and to step level;

yy work breakdown structures: elicit, analyse, document, validate requirements;

yy goals: strategic goals, business goals, project goals.

It is important to maintain a view of the higher-level goal when we are decomposing this
into lower levels. This helps to ensure that we have actually achieved the overall goal.

122

DECOMPOSING GOALS

GOAL AND FUNCTIONAL DECOMPOSITION

It is human nature to want to break a problem down into its constituent areas, such
as process steps or functionality, to make it easier to conceive and understand. Each
process step or functional area is only an element of a decomposed goal and the goal
cannot be achieved until all steps or functionality have been delivered. This makes it
harder to deliver value earlier, as the smaller goals are divided amongst the process
steps or functional areas of a business. When decomposing goals we need to maintain
the focus on the following:

yy breaking down the goal into smaller goals;

yy keeping sight of the value expectation of the customer;

yy ensuring that a process is not decomposed.

When we decompose a process or function it is called functional decomposition.
Functional decomposition is useful if you want to understand how to do something
and it assumes that ‘what is being done’ and ‘why it is done’ are understood. Given this,
it is also assumed that there is a high-level context that is unlikely to change. Each
decomposed element of a function will be performed according to defined steps and
business rules, which functional decomposition allows us to focus on investigating and
understanding. When a function is decomposed, the sub-function does not focus on the
achievement of a business goal but on completing a piece of work that contributes to
the overall work of the function.

Goal decomposition

Let’s consider an example scenario.

Ben and Jasmine have aspirations to run their own profitable business. The business
they have chosen is a café. Opening and running a profitable café is their ultimate goal.

If we assume that the ultimate goal is correct, and won’t change, and that opening a café
is the only goal they are focusing on, we could decompose the goal into the functions
shown in Figure 8.2.

Figure 8.2  Functional decomposition of the goal, ‘Open a café’

123

AGILE AND BUSINESS ANALYSIS

Figure 8.2 shows the results of functional decomposition. While this is not an exhaus-
tive list of functions it provides some key functions that Ben and Jasmine will need to
carry out.

Although Ben and Jasmine have aspirations to open and run a profitable café, they have
neither run their own business before nor worked in a café. Therefore, there are things
they need to learn. They are concerned about the location of the café and are not sure
it has enough passing trade. Also, they know what drinks and food they like to eat in a
café, and how much they are willing to pay, but they are not sure who their customers
will be and whether their customers will want to eat and drink the same things that they
do. As a result, they are unsure whether their ultimate goal is achievable. To address
this issue, they have decided to try out some ideas before committing too much money,
time and resources to a business that might not be successful.

The functions identified in Figure 8.2 are focused on achieving the original goal, which
would require them to give up their day jobs and invest all their time and money into
setting up a café that may never be profitable.

This seems too risky to Ben and Jasmine, so they have sought advice. They have been
advised to start smaller, to test the market and to incrementally grow their business.
This way, if it doesn’t work they haven’t invested all their time and money and, if things
don’t work out first time, they can learn lessons from the experience and adapt their
approach. To do this they have decided to identify smaller goals that can help to lead
them to their ultimate goal.

Their goal of ‘Opening a profitable café’ has been decomposed into smaller goals as
shown in Figure 8.3.

Figure 8.3  Goal decomposition of the goal, ‘Open a café’

Now they can focus on achieving just one goal, such as ‘serve hot drinks’. This can be
further decomposed as shown in Figure 8.4.

124

DECOMPOSING GOALS

Figure 8.4  Decomposed goals for the ‘Serve hot drinks’ goal

Decomposing goals in this way allows choices to be made about which goal, or goals,
to do first. Each goal contributes to achieving the higher-level goal. For example, ‘serve
tea with a tea bag’ or ‘serve filter coffee’ are both ways of serving hot drinks. This dem-
onstrates how a high-level goal can be decomposed into smaller or mini goals, each of
which will offer potential value to the customer. In each of these cases, customers will
be served a hot drink.

Using a goal decomposition approach, it is straightforward to prioritise the decomposed
goals and provide a means of delivering the product in one initial increment and subse-
quent increments. In this scenario, we may want to serve three types of hot drink from
the outset or alternatively we may want to focus solely on serving good quality coffee,
leaving the other options to be added later. The initial investment and effort to be made
is dependent on the goal(s) agreed and how well they are achieved initially. It could be
that a stand serving tea with tea bags and instant coffee, using hot water from flasks, is
all that is required in the first increment. This will provide essential management infor-
mation such as whether there will be enough passing trade, if customers are requesting
‘good’ coffee, the variety of drinks customers request and whether it is worth investing
further in the business. Prioritising the decomposed goals is an effective means of set-
ting up an enterprise that is adaptable to customer needs and can develop as the busi-
ness grows. Techniques to prioritise goals are described in Chapter 9.

When decomposing goals, the following considerations should be borne in mind:

125

AGILE AND BUSINESS ANALYSIS

yy What value will the actor, or customer, get from this goal?

yy Is this goal delivering a partial service or product to the customer?

yy Why do we, or the customer, want to achieve the goal? For what purpose?

yy Each goal must offer value in its own right.

Functional decomposition

Functional decomposition is a way of breaking down the function or process into small
pieces, or chunks, to make it easier to conceive. However, the whole process can only
work if all the steps or parts are completed. This means that each task or step does not
achieve any goals, and this is only done by combining the functions across the entire
process. For example, in Figure 8.2, ‘obtain equipment to make drinks’ is an essential
part of making a hot drink, but on its own does not offer any value to the end customer.
Only when it is combined with the other functions/tasks will the value of serving a hot
drink, such as serving instant coffee, emerge. Also, once there is a clear decomposed
goal, the entire sub-function may not be necessary; in this example, a goal of serving tea
and instant coffee would require far less equipment than providing a range of specialist
filter coffees. Applying a functional decomposition approach can result in increments
being developed that do not offer the possibility of deployment, as they do not achieve
anything tangible for customers. Therefore, it can preclude agile teams from working
effectively, as there is limited focus on achieving relevant goals.

Within organisations there are always limitations on the funds and time available. This
inevitably results in there being more work to be done than is possible within these
limitations. This is why projects and businesses need to focus on delivering the highest
priority aspects first. It may turn out that once we have achieved the initial goals, priori-
ties change and we decide to not try to achieve any more. Alternatively, it could be that
achieving the initial goals has been so successful that additional funding is made avail-
able for further work. If we had decomposed the ultimate goal of opening and running
a profitable café on a functional basis at the outset, we may have a lot of equipment but
still be trying to set up and open a café. Decomposing goals provides a route to begin
work and to move forward and therefore helps in the achievement of both the ultimate
and intermediate goals.

UNDERSTANDING GOAL LEVELS

Understanding the range of goal levels is important. In his book, Writing effective use
cases, Alistair Cockburn (2001) introduced ‘goal levels’ as a way of reflecting the differ-
ent levels at which functional requirements may be expressed. These elements were
discussed in Chapter 6. Figure 8.5 describes Cockburn’s levels within the context of
understanding goal levels. For simplification, the clam level has been omitted.

When decomposing goals, ensure that the goals stay above the surface and remain
visible (i.e. sea level or above). Fish-level goals add no value to the customer. They are
essentially sub-tasks that need to be done in order to achieve the goal. Figure 8.6 shows
how the, ‘Open a café’ scenario can be broken down through the different Cockburn goal
levels.

126

DECOMPOSING GOALS

Figure 8.5  Cockburn’s levels of goals

Figure 8.6  Examples of different goal levels

127

AGILE AND BUSINESS ANALYSIS

USING GOALS TO ACHIEVE BUSINESS AGILITY

Goal decomposition is extremely helpful when an enterprise is deciding what to do in
order to offer value to customers. As discussed earlier, it helps to identify where an
organisation should focus its efforts and at what point. However, it is also important to
ensure that the decomposed goals are achieved in a way that aligns with the business
architecture for the organisation. The business architecture provides a blueprint which
defines aspects such as the value streams and capabilities of the organisation, and how
these capabilities may be achieved. The POPIT™ model is a useful way of viewing the
elements required to build the capabilities within the business architecture.

One approach that may be applied is called ‘modular business architecture’, whereby
the business goals are realised through individual ‘components’ or ‘modules’. These
components should be self-standing so that they are tightly cohesive (the component
has all the functionality to provide the service) and loosely coupled (the component
interacts with other self-standing components in order to form desired configurations).
These may be software components that communicate via standard interfaces that
send and receive messages and data. Alternatively, they may be business components
that interact with the rest of the business through interfaces. A typical example of a
modular component used by many businesses is the payment management capability
offered by organisations such as Worldpay and PayPal. These components offer the
delivery of a business goal – enabling customers to make payments securely – and are
self-standing. They may also be used as part of several value streams within an organi-
sation, providing a basis for standardisation and reuse.

Organisations can outsource the achievement of goals – such as customer payment
– or can build internal business modules that deliver specific goals. These modules
can be deployed where necessary across the entire organisation. This is particularly
useful when embarking upon business change or business improvement projects.
Goal decomposition enables organisations to consider which capabilities are needed to
achieve a sub-goal and identify where a modular business architecture can provide a
basis for organisational agility.

USING GOALS TO DEFINE ITERATIONS AND RELEASES

Goals are not only useful to break down strategic business objectives or build a modular
business architecture, they also help to define the iterations and releases for business
change projects. If we understand the goals and sub-goals, we can prioritise them such
that the goals to be achieved first are developed and released at an early stage. This
may involve working on a particular business use case or epic as described in Chapter
6; these may require the decomposition of business goals (possibly at cloud or kite
level), each of which may be delivered by various combinations of the POPIT™ elements.
Within software development projects, ‘user stories’ (Chapter 12) define the goals to
be achieved and form the basis for deciding the content of an iteration or release. For
most software development projects, the sea-level goal is the goal that is agreed at the
start of iteration. Each user story defines a goal that should deliver an outcome for the
customer or business and should be small enough that it can be completed within an
iteration. Iterations are discussed in more detail in Chapter 15.

128

DECOMPOSING GOALS

CONCLUSION

Goal decomposition is a valuable technique that aids the adoption of agile and offers
business agility to organisations. It helps projects to deliver working solutions in incre-
ments and offer beneficial business outcomes at an early stage. The goal decomposi-
tion approach is highly relevant to business analysts, as it ensures a focus on business
outcomes. The contrast with functional decomposition highlights how completing a
functional task, such as providing part of an IT system, does not necessarily contrib-
ute to the achievement of business goals. When decomposing goals, it is important to
remember two things:

1.	 Decompose the goal itself, not the steps needed to achieve the goal
2.	 Stay at goal level, above the sea where it is visible and not at a sub-goal level.

Agile business analysts need to apply goal decomposition to ensure that the focus of an
agile change project is on the delivery of business goals. They should also support the
customers in identifying the required business outcomes and the decomposed goals
that will contribute to their achievement. Ultimately, business analysts should be con-
cerned that the changes made improve the working lives of their customers and the
work conducted within each iteration. The changes deployed in each release and the
overall results from the change project should be focused on achieving this.

Goal decomposition is important to the success of delivering small incremental busi-
ness outcomes that enable business agility. If we fail to decompose the business goals
we may run the risk of trying to deliver something too big, or too risky, which can con-
sume more time and money than we have. Breaking down goals and only achieving
small goals allows learning to take place and provides time to adapt on the basis of
this learning.

It is important that agile business analysts focus on delivering outcomes that are of
value to the business. After all, if the goal is to drink a cup of tea and all we have is a cup
and a tea bag with no milk or hot water, it would be impossible to claim that the goal has
been achieved and something valuable has been accomplished.

REFERENCE

Cockburn, A. (2001) Writing effective use cases. Boston, MA: Addison Wesley.

FURTHER READING

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

Cadle, J. (ed.) (2014) Developing information systems. Swindon: BCS

129

9	 PRIORITISING THE WORK

This chapter covers the following topics:

yy the importance of prioritisation;

yy prioritising requirements;

yy applying prioritisation;

yy prioritisation decomposition;

yy prioritisation issues.

INTRODUCTION

All businesses introduce changes. Small changes happen frequently as part of day-to-
day business as usual. Major changes are more likely to be the subject of a change
project. A change might be made to the way in which a task is conducted or might
involve the development of a new product. However, whether small or major, process
or product, organisations need to prioritise their changes. This may be an obvious state-
ment, but too often prioritisation gets overlooked, particularly when we are in pursuit
of higher-level goals. To be truly agile in business and on projects, we have to prioritise
– otherwise we risk delivering late, if at all.

Business analysts need to understand and facilitate prioritisation to ensure that busi-
nesses are focusing on achieving the most important goals first. After all, there is always
more work to be done than there is time and money for. Prioritisation is key to getting
this balance right. This chapter discusses the importance of prioritisation to business
analysts and agile change projects, and the different techniques that can be applied.
Additionally, the significance of particular prioritisation levels are discussed, together
with the issues that can ensue if prioritisation is not carried out effectively.

THE IMPORTANCE OF PRIORITISATION

All businesses recognise the need for prioritisation. What is less obvious is how we
go about prioritising, and how understanding prioritisation is more than just identify-
ing that one change is more important than another change. Prioritisation can tell us
which changes we need urgently, which ones could be delayed and which we might
think about never introducing. Prioritisation can also tell us which changes should not

130

PRIORITISING THE WORK

be considered, but can be ‘parked’ for consideration at a later date. Sometimes, prior-
itisation can indicate which changes are really just vague ideas that we probably don’t
need at all.

Given these different categories, prioritisation can tell us where to invest money and
when to work on a new initiative. It can also be very helpful in preventing ‘headless
chicken’ syndrome, where people rush around trying to do every task that has arrived
in their in-tray. If we understand prioritisation we can be really focused, recognising the
key goals we need to achieve and the elements that can be paused, delayed or dropped.

Business today often seems like a frantic rush to get too much done in too little time.
In the software development world, prioritisation has become second nature. As soon
as we start defining requirements or developing the backlog of user stories, we know
that entries have to be prioritised. We also know that business customers will request
changes or new features that may not actually be required, or not by everyone anyway,
or might not even be feasible. So, we use prioritisation techniques to make sense of the
battery of ideas, features, goals and enhancements that regularly head in our direction.

However, in the business world prioritisation is less formalised and techniques not as
well developed. So, as business analysts, we need to ensure that the importance of
prioritisation, and the relevant techniques for prioritising, are used beyond the software
development arena. Using an effective prioritisation technique is essential if an organi-
sation is to adopt the agile philosophy and principles and gain any benefit from them.
This will enable the organisation to focus the effort where the most benefit will accrue.
It will ensure that skills are directed where they are most needed. And, perhaps most
importantly, it will deliver the business goals that are really critical to the organisation’s
success. The agile business analyst should be able to support and, where necessary,
direct, the prioritisation effort, in order to help organisations spend investment funds
wisely and deploy other resources effectively.

PRIORITISING REQUIREMENTS

Prioritisation is the responsibility of the business stakeholders. However, whichever
technique is used, prioritisation involves a degree of subjective decision-making so
the stakeholders usually need some guidance and support when prioritising. Business
analysts are typically the most appropriate people to offer this support because they
have an understanding of the business domain and, therefore, are well positioned
to challenge and question the allocated priority levels. They also understand how to
analyse the impact of implementing, or not implementing, different proposals and
requirements. For this reason, business analysts should be knowledgeable about the
prioritisation techniques that may be applied and the contexts within which they work
best. This section looks at the techniques that are used during change projects; they
apply to software or product development and can also be used to prioritise business
or process changes.

Prioritisation techniques

A standard for prioritising can be as simple as levels 1, 2 or 3, with level 1 being the
highest priority and level 3 being the lowest. A prioritisation technique using this
approach might define the levels as follows:

131

AGILE AND BUSINESS ANALYSIS

yy level 1: most important; must be delivered;

yy level 2: highly desirable; must be a good reason for non-delivery;

yy level 3: a nice extra but can be left out of the final change or product delivered.

Variants of this approach can also be used, for example:

yy level A, level B, level C (with A being highest priority);

yy essential, desirable, nice to have (categories);

yy high, medium, low.

All of these prioritisation approaches are straightforward to understand and can be
easy to use as long as the differences between each of the levels can be clarified. They
help us to identify where to focus our efforts first and with greatest volume. The Kano
approach is another technique that uses a similar basis for categorisation, applying
three categories:

yy Dissatisfiers: a requirement that must be included in the delivered product if it
is to be considered successful.

yy Satisfiers: a requirement specified as needed by customers; the delivery of
satisfiers will increase customer satisfaction with the delivered product.

yy Delighters: a requirement that hasn’t been specifically requested or is
not expected by the stakeholders but will increase customer satisfaction
significantly if it is included in the delivered product.

Use of the Kano approach causes analysts to ask questions such as:

yy Would you consider this product to be successful if this requirement was not
delivered?

yy Would you expect this requirement to be included in the product?

Other techniques are more analytical and can be complex to implement. For example:

yy $100 Allocation: when using this technique, stakeholders distribute a fictional
amount (in this example $100) among the requirements in order to determine
which are the most important. They can agree the amount allocated as a group
or do this individually and then divide the total allocated to each requirement by
the number of stakeholders to give a priority amount. This is used to determine
the priority ranking of the requirement.

yy Analytical Hierarchy Prioritisation (AHP): this approach considers pairs of
requirements and, for each pair, asks which is the most important and to what
degree (such as ‘A and B are of equal importance’ or ‘A is extremely important
when compared to B’). Allocating a value to each paired comparison and
applying a mathematical formula to all of the defined values results in a priority,
which provides a numerical rank for each requirement.

132

PRIORITISING THE WORK

yy WSJF: this approach is recommended in the SAFe, but can be used in any
situation that calls for an ordered list of work. It uses the principles of Relative
Mass Estimation (see Chapter 14) and uses the cost of delay to allocate a
weighting to a job or item of work. WSJF splits the cost of delay into three
separate elements, and measures them independently to get a more accurate
result. It also requires the jobs to be sized, perhaps by using a unit of time such
as story points, in order to know which jobs will deliver their value quickest. The
premise here is that the smallest, highest-value jobs should be completed first
and is referred to as the overall cost of delay.

The overall cost of delay is calculated by considering three separate factors for each
job in the list. The jobs are compared with each other so that each one has a score
relative to the other jobs for that factor. Each factor is considered independently
so that they do not affect one another. The example below uses the three factors
recommended in the SAFe approach:

	 ß	� User business value: this is a measure of the value that the business will realise
once this requirement is delivered.

	 ß	� Time criticality: How time critical is this job? Is there a deadline for delivery or does
the value reduce over time?

	 ß	� Risk reduction/opportunity enablement: Does this job allow other jobs to start
or finish or does completing this job reduce the risk to other jobs or to the overall
project?

Each of the factors is considered independently, using an agreed scoring mecha-
nism. Typically, several people are involved in applying the following process:

	 ß	� Identify which requirement the team thinks has the lowest value for the factor
being considered. Place this against the number 1. Each job is then compared to
the lowest-value job and placed against one of the scores depending on its relative
position. For instance, if it is about the same ‘cost’ then place it against 1. If it is five
times as much, place it against 5. This is repeated for all of the jobs and the scores
for this factor are recorded.

	 ß	�This process is repeated for the other two factors and the three scores for each
job are added up to create the Total Cost of Delay. This is divided by the job size to
create the final score, as shown in Figure 9.1.

Figure 9.1  Calculation for WSJF

133

AGILE AND BUSINESS ANALYSIS

The scores for all jobs are then used to create an ordered list. The low scores rep-
resent the smallest jobs that deliver the highest value and should be done first.

Prioritisation and timing

While it is essential to know the level of importance of a requirement if we are using
an agile approach, there is a problem with many techniques in that they offer a level of
priority but this is not linked to time criticality – for example, do we need this feature
yesterday, straightaway, can we wait a few months or do we think about it next year.
Some techniques also offer categories that are not sufficiently granular and are open
to interpretation.

A technique that is popular amongst agile practitioners is the MSCW framework or
MoSCoW, as it is typically known. This technique, coupled with the iterative development
and incremental delivery of features, is extremely powerful and has much to offer the
agile organisation and business analysts.

The agile ethos of on-time, on-budget delivery often means that some of the features
originally envisaged for inclusion in a product may have to be left out initially. This is
a fundamental principle of the agile philosophy and one that is highly relevant to all
types of new initiative, whether involving an IT system, process redesign or product
development. It is extremely unusual to be able to incorporate everything that has been
requested, as sufficient time and budget are rarely available; to manage this we need
to ensure two things:

1.	 the most important and business critical requirements are delivered first;
2.	 it is only non-critical requirements that are omitted.

What an agile approach ensures is that we consider the first ‘release’ to be just that –
the first release. We know that there will be refinements and additions coming along
afterwards. This is highly liberating, as it means that we don’t have to nail down every
last item before providing something to the stakeholders who need it. However, effective
prioritisation ensures that what is delivered is sufficient and doesn’t mean a product
that is unusable – who would want a car without wheels? No one! However, a car only
available in a basic model might suit many people.

The other advantage of an agile approach is that it enables us to develop solutions
iteratively. This means that we can develop some elements of the IT system or busi-
ness product during a focused time period (known as an iteration) and then enhance
or extend these via further iterations until we achieve something that we are ready to
release to the stakeholder community. An initial version of a system or product might be
released as a result of just one iteration; alternatively, several iterations may be needed
to develop the first release of the product or system.

MoSCoW

The key to ensuring that the most important features and goals are delivered first is
to clearly prioritise them, and the MoSCoW framework provides an excellent basis for
doing this.

134

PRIORITISING THE WORK

The MoSCoW approach has become a de facto standard prioritisation system for
requirements, especially on projects that are developed and delivered in an iterative
and incremental way. MoSCoW helps to clarify different priorities by using the following
prioritisation categories:

yy Must have: these are the requirements, features or goals that are fundamental
to the success of the product to be delivered, whether a new business system
(solution), working software or any other item offered by an organisation. This
could be a new insurance product or training course. Whatever the product to
be delivered, the ‘must have’ features form the minimum set of requirements.
Without them, the delivered product – whether system or business – would fail
to meet the business objectives. In short, these are the top priority and without
them, we may as well deliver nothing at all.

yy Should have: these are important requirements that need to be included but
may be deferred, in the short term, to a subsequent product increment or
release. However, it is important to recognise that the delay in implementing
these requirements must be short, as the system will not be complete without
them and therefore the project will be deemed as a failure if these are not met.
They are mandatory requirements, but may be deferred temporarily where the
project has time constraints.

yy Could have: these are the requirements that can be quite easily left out of
the current increment to be delivered. In fact, if there are budget and/or time
constraints these requirements may eventually be dropped altogether.

yy Want to have, but won’t have this time: these are the optional requirements
that should wait for a later phase/increment of the development. These
requirements are specifically excluded from the plans for the current feature
set to be delivered. It may be the case that these requirements are implemented
in a later release of the system or product, but it is also possible that they
are never implemented. It might be that the requirements become absolutely
mandatory at a later point in time. Whatever the category, these requirements
are recorded but deferred for the time being and must not be considered for
inclusion in the current release. The reasons for deferring requirements are
various:

	 ß	� they relate to an overall business strategy but are recognised as being part of a
second or later phase for the strategy implementation;

	 ß	� they are not needed at this point, for example, they relate to a forthcoming legal or
policy change;

	 ß	� they are possible enhancements to the product or system that would increase the
complexity if implemented at this stage.

Figure 9.2 shows a representation of a list of requirements, work items or features that
have been prioritised using the MoSCoW technique.

The MoSCoW rules provide the basis on which decisions are made about which features
a product or solution development team will concentrate on at various points:

135

AGILE AND BUSINESS ANALYSIS

Figure 9.2  Prioritised list of requirements or work items using MoSCoW

Priori�sed list
using MoSCoW

Must have

Should have

Could have

Want to have but won’t have this �me

yy during a timebox or iteration (for an increment of the product);

yy within an increment that is to be released to the stakeholders;

yy across the lifetime of the entire project.

The four MoSCoW categories are relevant where several increments are to be delivered
and this is the case whether an agile development approach is used or not. However,
where a project is using a linear approach, such as a standard ‘waterfall’ life cycle,
which will involve one delivery of the solution, MoSCoW is not as appropriate as other
techniques. In this situation it is preferable to use a framework with levels of priority
that do not imply timing.

While MoSCoW has been used extensively in software development, it is an excellent
prioritisation technique for any set of required features or changes. For example, the
development of a new insurance product might involve a set of prioritised features that
are introduced as follows:

yy an initial set of features are introduced, possibly to appeal to a particular
customer demographic, when the product is launched;

yy other features are introduced to appeal to a different group of customers a
short while afterwards;

yy some features are included with one of the first two releases if it is not too time
consuming to do so and they offer additional value;

yy some features are deferred until the product has been in operation for a while
and there is sufficient time to evaluate the level of importance of each feature.

Table 9.1 provides a list of the more popular prioritisation techniques available and
provides advantages and disadvantages for each.

136

PRIORITISING THE WORK

Table 9.1  Prioritisation techniques

Technique Advantages Disadvantages

Priority levels, e.g. 1, 2,
3; mandatory, desirable,
nice-to-have

Easy to understand Highly subjective
Categories can be unclear
No timing element

Kano technique:
disatisfiers, satisfiers,
delighters

Easy to understand
Clear categories
Outcome focus

Subjective
No timing element

$100 allocation Easy to understand
Compares requirements

Highly subjective
No timing element

AHP Complex to understand
Systematic comparison of
requirements

Limited subjectivity
Time consuming
No timing element

WSJF Complex to understand
Systematic evaluation of
requirements
Timing addressed

Limited subjectivity
Time consuming

MoSCoW Straightforward to
understand
Timing addressed

Limited subjectivity
Less rigorous than AHP
and WSJF

APPLYING PRIORITISATION

A well-formed prioritisation approach such as MoSCoW is invaluable when planning a
release, and the development iterations required to achieve this, as it provides a means
of both identifying the essential features to include and building in contingency. Using
software development as an example, we might identify a batch of requirements or
backlog entries that are to be worked upon during an iteration, and these might have
the following priorities:

yy The ‘must have’ items: it is essential that these are delivered within the
designated iteration (which means within the pre-defined time frame constraint).

yy The ‘should have’ items: these need to be delivered as part of the system but
can be deferred if necessary, although only in the short term.

yy The ‘could have’ items: these can be included if time allows but they are not
essential features.

So, how does using a prioritisation technique such as MoSCoW help during the applica-
tion of agile business analysis to support the project? First, it enables the team to be
aware of the immediate needs where non-delivery is not an option. Second, it allows the
allocation of features that are essential and will be advantageous to the project if they
are delivered during this iteration but, if delays or problems occur, could be deferred.

137

AGILE AND BUSINESS ANALYSIS

Third, it provides a means of considering the additional, ‘wish list’ features so that they
could be included if there is time and effort available. Where these are small additions to
higher priority features, including them can require little additional work (although they
can succeed in gaining additional appreciation from the stakeholders). Sometimes, the
work to include the higher priority items takes less time than anticipated so the ‘could
have’ items ensure that there is no wasted effort during the iterations; other times, pro-
gress is slower than predicted and these items can be dropped without need to discuss
with stakeholders or worry about the impact on the overall product. Provided there is
agreement amongst the business and technical members, the team has the authority to
reduce the scope and remove ‘should have’ or ‘could have’ requirements from the work
of the iteration. This does not apply where a change of priority is proposed with regard
to a ‘must have’ requirement; this has to be referred to the business sponsor, and pos-
sibly a wider group of business stakeholders.

Figure 9.3 shows a release schedule with the potential priorities included.

Release 1 Release 4Release 3Release 2

Priori�es:
Must have

Should have (if �me)
Could have (if �me)

Priori�es:
Must have (were ‘S’)
Could have (if �me)

Priori�es:
Must have (were ‘W’)

Should have (were
‘W’; if �me)

Could have (if �me)

Priori�es:
Must have (were ‘W’)

Should have (were
‘W’; if �me)

Could have (if �me)

Figure 9.3  Release schedule showing MoSCoW priorities

When deciding which ‘should have’ or ‘could have’ requirements are to be dropped from
the work of an iteration, it is useful to review against the following criteria:

yy Do the requirements relate closely to the ‘must have’ requirements? It makes
sense to include requirements that extend the ‘must have’ requirements and
remove those that have little connection to them.

yy What is the potential business benefit that would accrue from delivering the
requirements? If selecting which ‘should have’ or ‘could have’ requirements to
include or remove, it is important to consider where the greatest benefit to the
organisation would be derived.

Effective prioritisation helps to ensure that time and effort is not wasted during an
iteration and provides a means of embedding contingency. As a result, the agile busi-
ness analyst needs to be aware of the potential impact and application of prioritisation
during iterations and the benefits this can deliver when managing the requirements
document or backlog.

PRIORITISATION DECOMPOSITION

Requirements are identified at various levels of detail from a high-level strate-
gic viewpoint through to a more detailed, deployable level. Therefore, it follows that

138

PRIORITISING THE WORK

high-level requirements can often be decomposed into lower-level requirements. For
example, a general business requirement might state the need to reflect the corporate
marketing policy in every aspect of a business change. This might be decomposed into
lower level, non-functional requirements that are concerned with usability and naviga-
tion, and functional requirements concerning information provision and format.

It is also the case that the overall goal to be achieved by a requirement may be decom-
posed and there may be different priorities assigned to each decomposed requirement
or goal. Goal decomposition is discussed in Chapter 8. An example decomposition with
differing priorities is shown in Figure 9.4.

System

Business Priority Key

M Must

Should

Could

Want

S

C

W

M

SMM

System System

Component/
Scenario

Component/
Scenario

Component/
Scenario

Component/
Scenario

Component/
Scenario

Component/
Scenario

M S M C S W

Figure 9.4  Decomposed requirements/goals with priority levels

An example might be as follows:

yy A general business requirement regarding information security is prioritised
as a ‘must have’.

yy A non-functional requirement setting out the need for access permissions to be
allocated to a defined user role is prioritised as a ‘should have’.

yy Another non-functional requirement setting out the need for encrypted data
to be transferred to another system is prioritised as a ‘want to have but won’t
have this time’.

PRIORITISATION ISSUES

Prioritisation is not a straightforward process. It requires a great deal of thought and
needs to be firmly embedded within the business context, with a focus on understanding
what the business needs are and where the most business value might be derived. As
a result, there are some issues that are regularly encountered during the prioritisation
process.

139

AGILE AND BUSINESS ANALYSIS

Everything is a must

The major problem encountered with prioritisation is that while we know what to do
once the requirements have been allocated a level of priority, the process to do this can
be difficult and require a great deal of thought. The customer has to have an under-
standing of the prioritisation approach and the relevance of each of the priority levels.
The business analyst is well placed to support and facilitate the prioritisation process,
helping the customer to understand the value or impact of a requirement and the
dependencies between them, and therefore helping to decide on the relative priority
of each.

The starting point is to consider the business value that will accrue from the delivery
of a requirement or achievement of a defined goal and, correspondingly, the degree of
importance it would be allocated by the customer. However, this often results in the
majority of requirements being in the ‘high’, ‘mandatory’ or ‘must have’ category; this
is typically the initial position taken by the business managers and staff when they are
asked for the level of prioritisation to be allocated to requirements. Unfortunately, it
is extremely unlikely that there is sufficient budget or time to meet all of the require-
ments in one fell swoop; this is rarely achievable. However, it is also the case that if
this were true, the flexibility derived from a prioritisation technique such as MoSCoW
is completely lost. Without lower priority requirements, there is no opportunity to focus
on early delivery of a more limited solution that includes only the key requirements.
Equally, the possibility of reducing the scope of the solution, possibly in order to bring
the project back onto time and budget, is removed.

Therefore, it is important to prioritise requirements and understand which ones fall
within the minimum set for the initial product delivered, and which can be deferred or
left out altogether. Given that human nature tends to favour the highest level of priority,
the following steps can be useful in sorting the absolutely vital requirements from those
of lesser importance:

yy Discussing the factors that might prevent or delay delivery of the requirement
is vital. These include the costs likely to be incurred, the complexity and the
corresponding level of effort required to define or develop, and the risk of non-
delivery (which may relate to the technical risk associated with the requirement).
It is often the case that once the level of difficulty likely to be involved with
the delivery of a requirement is considered, the decision regarding the priority
becomes more focused.

yy Prioritise requirements from the lowest priority to the highest. The natural
tendency is to work through the priority levels in the order set out by the
framework, so:

	 ß	 level 1, followed by level 2, followed by level 3, and so on;

	 ß	� ‘must haves’, followed by ‘should haves’, followed by ‘could haves’, followed by
‘want to have but not yet’ requirements.

However, a more rigorous approach is to set the priority for each requirement as
‘nice to have’ or ‘want to have but won’t have this time’ and then require a good
justification to move the requirement into a higher level of priority.

140

PRIORITISING THE WORK

yy An alternative approach that can be very helpful is to begin by asking which
features could be deferred or which goals may not be met for a given period.
An extension of this is to assume that they can all be deferred unless a clear
argument can be made for this not to be the case. This then leaves a set of
requirements that need to be included, or at least considered for inclusion,
straightaway. The next step is to discuss which features could be left out if
necessary, as they are not essential. One way of determining how essential a
feature is involves asking who will be responsible for providing the detailed
information (particularly if this is a relatively complex feature), as this helps to
focus the mind of the source or owner of the requirement on whether or not
it is actually as important as first thought. The final step is to ask which of the
remaining essential requirements can be left out until a second release of the
product.

yy The ranking approaches – $100, AHP and WSJF – can provide a more rigorous
approach when prioritising and as they use comparison between items, can
help to clarify which requirements really are ‘essential’ for inclusion in the
current iteration.

These step-by-step approaches are very helpful when conducting agile business analy-
sis. They enable us to focus the discussion by asking questions that consider prioriti-
sation from a different angle. Rather than asking, ‘What level of priority or importance
should be allocated?’, we begin by asking ‘Which of these requirements can be deferred
for a while?’; or ‘Which of these requirements might be left out altogether?’; or even,
‘Which of these items is more important than the others?’ and then progress through the
lower priority levels towards the essential features. Suggested questions to ask during
the prioritisation process are shown in Figure 9.5 below.

Figure 9.5  Questions used during prioritisation

141

AGILE AND BUSINESS ANALYSIS

Too early or too late prioritisation

Prioritisation is often conducted at an unnecessarily late stage. Sometimes, we wait
until we have fully understood the business requirements, and obtained significant
detail on them, but in this situation we may have wasted time investigating and defining
requirements that will later be removed or deferred. To combat this, it is beneficial to
prioritise early and concentrate on the aspects of highest importance first. If a high-level
business requirement is not of top priority, there is little to be gained from investigating
the detail at an early stage; this can be deferred until the specific area is being consid-
ered for delivery.

Therefore, it is a more effective use of time, and is more in line with the agile phi-
losophy, to prioritise the high-level business requirements or business use cases at
an early stage, and then use these priorities as a basis for identifying where the early
work needs to be done. This will help to identify the key business goals that need to be
tackled first and the less urgent goals that can wait until a later stage. All of this is the
pre-project work that is essential to defining a solution backlog and yet is often omitted
from agile methods.

Working in this way will help the agile business analyst to adopt a levelled approach to
the initial analysis and help the project team focus on where early value can be obtained.
Prioritising at a business level and decomposing only those items of high priority,
ensures that time is not wasted detailing requirements that are not to be a high prior-
ity, which would delay the delivery of the working solution. After all, it is the delivery of
the working solution that is the measure of success and builds trust with the customer.

There is often an assumption made that all of the requirements identified initially should
be defined to the same level of detail, but this is the antithesis of the agile philosophy.
It is more efficient, and focuses effort on the more important areas, if the following
approach is adopted:

yy The high-level business requirements are investigated and defined. A business
use case diagram is extremely beneficial in performing this work.

yy The high-level business goals to be achieved by the business use cases are
defined.

yy The business requirements/use cases are prioritised.

yy The ‘must have’ business requirements are investigated in further detail. The
goals are decomposed and the priorities allocated at the decomposed level.

yy The ‘should have’ business requirements may be investigated in further detail
and the priorities decomposed if this is felt to be beneficial. For example, they
are ‘should have’ requirements that may be delivered as part of the first release.

yy The other requirements are left at an overview level of definition until it would
be beneficial to investigate them in more detail.

This approach would result in higher priority requirements being defined in greater
detail than others, and this focuses the effort where it is likely to derive the greatest
benefit for the organisation. An additional benefit to this is that trust in the relationship

142

PRIORITISING THE WORK

with stakeholders is developed as they see that the work is progressing and that they
are likely to receive some of their requirements early through the delivery of the work-
ing solution. This principle applies whether we are working on business improvement,
product development or software development projects.

New requirements often emerge as existing requirements are defined in more detail
and as the project progresses. These requirements need to be prioritised, typically using
the MoSCoW framework, as they arise in order to establish when they need to be con-
sidered in detail.

Changes to priorities

As solutions develop, it is inevitable that there will be changes to requirements and
goals. This is to be expected on an agile project and, as a result, it is also expected
that the work will be prioritised and re-prioritised on an ongoing basis as the project
progresses. This is highly productive and helps to ensure that:

yy There is a focus on what is most important at any point in time.

yy A sense of trust is developed between the project team and the customers.

yy The most important features are delivered first.

yy The need to manage change to the requirements, particularly those of a lower
priority, is reduced.

Re-prioritisation should be limited to the period between iterations rather than occur-
ring during an iteration, and if possible should be concerned with planning for the
next release or increment. If we are using MoSCoW, once the initial set of ‘must have’
requirements (plus possibly some ‘should have’ and ‘could have’ requirements) has
been delivered, the planning for the next increment should begin with a re-prioritisation
of the requirements catalogue or backlog. At this point, it is likely that any ‘should have’
requirements will be allocated a ‘must have’ priority level. However, it is also important
to review the requirements in the other priority categories:

yy The ‘could have’ requirements may have increased in importance due to
changes to the organisation, or external forces within the business environment
or a new goal being set.

yy The ‘want to have but not yet’ requirements may now need to be considered for
early delivery. This could result in them being re-prioritised such that they are
now categorised as ‘must have’ or ‘should have’. It is also possible that once
they are investigated in detail, they are recognised as ‘could have’ priorities
or that they lead to decomposed requirements that are at different levels of
priority.

All in all, it is possible for the priorities to change significantly as a result of re-prioriti-
sation, bringing new requirements to the fore in order that they may be included in the
next release of the product or system.

143

AGILE AND BUSINESS ANALYSIS

CONCLUSION

Prioritisation is a fundamental activity for scheduling the work of agile projects. It is
also an important area for business analysts, as it enables clarity of understanding
about where to focus immediate efforts and provides an excellent basis to support
the customers in achieving their business goals. Without prioritisation, there may be a
temptation to do too much at once and make hasty decisions. Resources may be spread
too thinly and not used effectively. Ultimately, this can lead to a diminished clarity of
purpose that may result in a failure to deliver anything of value.

Business analysts who have adopted the agile philosophy and mindset recognise the
importance of facilitating the focused, early prioritisation of requirements and goals,
and understanding the need for decomposition and prioritisation at different levels of
definition. This enables them to work on delivering the features that achieve the most
important goals as soon as possible. Using this approach, agile business analysis can
ensure that there is improved support for organisations through the early delivery
of solutions, which will help customers realise the business benefits as quickly as
possible.

FURTHER READING

Agile Business Consortium (2016) The DSDM Agile Project Framework (2014 onwards).
Agile Business Consortium. Available from: www.dsdm.org/resources/dsdm-
handbooks/the-dsdm-Agile-project-framework-2014-onwards [20 December 2016].

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

Pohl, K. and Rupp, C. (2011) Requirements engineering fundamentals. San Rafael, CA:
Rocky Nook.

Saaty, T. (1994) The analytic hierarchy process. Interfaces, 24 (6): 19–43.

Scaled Agile Inc. (2010–2016) WSJF (Weighted Shortest Job First) Abstract. Available
from: http://scaledAgileframework.com/wsjf/ [20 December 2016].

Scaled Agile Inc. (2014–2016) SAFe 4.0 for Lean Software and System Engineering.
Available from: www.scaledAgileframework.com/ [20 December 2016].

144

http://www.dsdm.org/resources/dsdm-handbooks/the-dsdm-agile-project-framework-2014-onwards
http://www.dsdm.org/resources/dsdm-handbooks/the-dsdm-agile-project-framework-2014-onwards
http://scaledagileframework.com/wsjf/

10	� DECIDING THE REQUIREMENTS
APPROACH

This chapter covers the following topics:

yy the requirements engineering framework;

yy planning the requirements approach;

yy issues with requirements engineering;

yy agile requirements elicitation;

yy requirements elicitation techniques;

yy the role of business analysis in elicitation.

INTRODUCTION

Understanding the customers’ requirements is a major area of business analysis activ-
ity, which requires careful consideration at the outset of a change project. This involves
determining how the requirements are to be elicited, and the extent to which they will
be defined. While detailed requirements are expected to evolve during agile software
development, this is also the case for the other areas of the solution, for example, the
requirements that are to be met by business process changes. However, there remains
a need for a clear definition of the high-level requirements that provide the context for
the change project.

This chapter considers a means of determining the requirements approach and how
the requirements engineering framework may be adapted and applied within an agile
project.

THE REQUIREMENTS ENGINEERING FRAMEWORK

Requirements engineering is a framework for obtaining, defining and managing good
quality requirements. There are some fundamental stages of requirements engineer-
ing that need to be understood and utilised within any project and these stages are
defined in the requirements engineering framework shown in Figure 10.1. Deciding the
approach to requirements engineering will vary, depending on several factors that may
include the project scope, complexity of the project, budget and resources available
and expected business outcomes. A framework, such as that provided in Figure 10.1, is
only a starting point as all projects are different and it should not be assumed that one
requirements engineering approach will be suitable for all.

145

AGILE AND BUSINESS ANALYSIS

Figure 10.1  Requirements engineering framework

Looking at each stage within the requirements engineering framework allows us to
explore their use and validity within an agile approach as follows:

Elicitation The requirement is identified through collaboration with stake-
holders. In the early stages of a change project, the elicitation
activity may have a wide scope, typically by focusing on higher-
level business requirements, and limited detail. As the project
progresses, the requirements elicitation work may take a more
detailed approach, concentrating on a narrower scope. Elicitation
is an iterative and enduring activity that takes place throughout a
project.

Analysis Requirements are analysed to determine whether they are rel-
evant, realistic, ambiguous in any way, can be tested, contribute
to business goals, or overlap or conflict with other requirements.
The priority level for each requirement is agreed with the appro-
priate stakeholders. Modelling requirements can assist the analy-
sis activity. For example, a system use case diagram provides a
means of understanding the outline scope of the required system
and the actors who are interested in the system features. This
helps put the requirements in context, ensuring that a fragmented
picture is avoided and supporting both iterative development and
incremental delivery. It also provides a summary visualisation

146

DECIDING THE REQUIREMENTS APPROACH

of the functional requirements and avoids the need for lengthy
textual descriptions. Other models may also be used to help in
the analysis of areas such as data, interface and processing
requirements.

Validation Requirements are validated by review, typically using visual tech-
niques such as prototypes and models; these may take the form of
physical or automated prototypes or diagrams. In the early stages
of a project, requirements validation may focus on agreeing an
outline scope and a set of initial, business requirements that pro-
vide a basis for further elaboration. When using agile, a require-
ment is not validated until it is ‘in use’ and may be demonstrated
within a working solution provided by new or improved processes
or software.

Documentation Requirements need to be documented to clarify what it is that the
business wants the solution to provide. However, the amount of
detail in the documentation depends on factors such as the levels
of complexity and priority. Further, the detail of the requirement
description is likely to increase as the time for implementing the
requirement draws near. The level of requirements documentation
needs to be decided by the project team and should be minimised
such that it is ‘just enough’ to enable the project team to plan,
design and develop working solutions.

It is important to distinguish between requirements documenta-
tion and system design documentation. Accurate system design
documentation is concerned with the way in which the require-
ments are delivered, so should reflect the working software rather
than the requirements.

Management Once documented, requirements must be managed. A ‘just
enough’ approach to documenting requirements minimises the
amount of management. Managing requirements includes agree-
ing such things as where agreed requirements will be stored,
how the link between solution requirements and the business
objectives and project goals is ensured, and how they should be
organised.

Traceability of requirements is an important area that needs par-
ticular consideration when working on an agile project. The extent
to which traceability is required should be considered before put-
ting in place any mechanisms to enable traceability. It is also the
case that the potential for ensuring traceability will be affected
by the documentation approach selected. For example, if it is
decided to document the general requirements in a list and to
use a model such as a use case diagram to document the scope
of the system requirements, it may be sufficient to adopt the fol-
lowing approach (also see Figure 13.1):

147

AGILE AND BUSINESS ANALYSIS

yy Vertical traceability: for each use case, define which
general requirement is supported.

yy Horizontal traceability: for each general requirement and
use case, document who raised each requirement and the
status (such as when it will be delivered).

Consideration should also be given to the extent to which changes
to the requirements should be recorded. It is the nature of general
requirements, which are focused on stating policy constraints and
identifying business objectives, that they remain relatively static.
However, at a solution level, where the requirement descriptions
comprise detailed definitions, this is rarely the case. Where it is felt
that a requirement needs to be documented in specific detail, it
will be necessary to ensure that the documentation is maintained
in line with any changes made. However, in an agile environment
it is typically the case that solution requirements are described
as outline features and the detail is elaborated during the devel-
opment of the solution. In this case, the changes that need to be
recorded and linked to the documentation are those that affect
the outline descriptions. Otherwise, the view may be taken that
the exploration of detail involves exploring various options and
that the requirement does not change but has evolved as greater
understanding is achieved.

Requirements slices

The application of the requirements engineering framework is determined by the
solution development approach adopted. A linear approach would require each stage
to be undertaken in depth to ensure that a comprehensive requirements document is
produced. An agile approach necessitates iterative development and incremental deliv-
ery and may result in revisiting each stage many times as the requirements evolve
and are further understood, decomposed and prioritised. It is still important that each
of the stages is undertaken when using agile, but the extent to which this is done, the
techniques applied and the required outcomes, will differ.

One way of considering this is to think of applying the requirements engineering frame-
work in ‘horizontal slices’ as shown in Figure 10.2. At an initial stage, such as a fea-
sibility or pre-project analysis, the focus may be on eliciting and defining the general
requirements, with less emphasis on the solution requirements. This reflects that there
is little point in elaborating all the solution requirements in considerable depth at an
early stage, as it is likely that the details will be subject to change. The next ‘slice’ may
then be concerned with a subset of the initial requirements so that the relevant solu-
tion requirements are elaborated to the level required for further development. This
can continue through several slices in line with the number of increments required to
deliver the entire solution.

It is likely to be the case that more effort is expended initially on elicitation, with less
spent on the other stages. Similarly, more analysis may be carried out in a later iteration

148

DECIDING THE REQUIREMENTS APPROACH

once the scope and context is understood. Initial collaborations with stakeholders typi-
cally result in the elicitation of requirements, which are then recorded in outline only.
During the next iteration, a subset of the elicited requirements will need to be analysed
and this may require a detailed analysis of the selected set, depending upon the char-
acteristics of each requirement. For example, where a set of requirements is concerned
with delivering features that contain complex calculations, an analysis of the business
rules at an early stage will be beneficial to the project.

Figure 10.2  Slices of requirements engineering applied iteratively

Elicitation

Elicitation

Analysis

Documentation

Documentation

Management

Management

Slice of requirement engineering

Slice of requirement engineering

Analysis

Validation

Validation

During each of the ‘slices’ the approach to documenting requirements may differ, with
some requiring more detail than others. Similarly, the extent to which validation and
management of the requirements is needed will need to be determined. This is dis-
cussed below.

In contrast, a project following a more linear approach may spend more time in each
stage sequentially and therefore the slices will be much deeper and there will be fewer
of them, with maybe only two or three slices per project whereas an agile project may
have far more horizontal slices.

PLANNING THE REQUIREMENTS APPROACH

It is prudent to plan the requirements engineering work so that all participants are agreed
on an approach that will meet their needs. There are three aspects to consider: the level
of detail of the requirements documentation, the types of documentation to be created
and the timing of its production. To do this, the purpose of the requirements artefacts
needs to be considered; there is little benefit to be gained from producing models or
other documents that no one is likely to use or understand. When documentation should

149

AGILE AND BUSINESS ANALYSIS

be produced will relate directly to the selection of the requirements for development.
Until this point, there is little benefit to be gained from documenting the requirements
in any detail.

When planning requirements, it is useful to consider the following questions:

yy Are the scope of the solution and business goals well understood?

yy Are there business or technical constraints that need to be considered?

yy Are the different POPIT™ elements for the proposed solution understood?

yy Who will use the requirements and/or models?

yy What format should be used for the requirements or models to meet the project
needs?

yy Do the requirements or models need to be kept up to date?

yy How long do the requirements or models need to be retained?

A useful tool to help with the planning of requirements is the simplified FMM intro-
duced in Chapter 6. Figure 10.3 sets out a planned approach to the requirements
artefacts and shows how the simplified FMM can be used to develop the requirements
approach.

Figure 10.3  A suggested FMM plan for the requirements approach

Business/
organisation

Summary Business use
case model

User stories
(epics)

Use case
scenarios Task

analysis

Sequence
diagrams

Data reqts
(Class
diagrams)

BDD
scenarios

Detailed

business

rules

System use

case model
BusinessEpics

(user stories)

Business reqts

(catalogue)

Tech reqts(catalogue)G
oal D

ecom
position

User

Sub-goal

Low

< IDEALISATION < … > REALISATION >

IT systems and
processes

Component
or task

150

DECIDING THE REQUIREMENTS APPROACH

The simplified FMM is an excellent tool to plan how the requirements will be captured and
recorded at each level. This will vary from project to project and will depend on factors
such as the size and complexity of the project as well as the nature of the organisation. It
is important to note that this planning must be done in conjunction with the development
team, who will utilise the defined requirements, and the customer, who will need to col-
laborate to ensure that the delivered solution offers value to the business.

ISSUES WITH REQUIREMENTS ENGINEERING

Requirements engineering encompasses the core business analysis skills of require-
ments elicitation, analysis and definition. The term ‘elicitation’ is used advisedly in this
framework, as it puts the onus on the analyst to work collaboratively with customers
to uncover requirements rather than expect that they will be readily available. Most
stakeholders will not know what they require without assistance, so requirements are
elicited, rather than gathered, and this task needs considerable expertise. Requirements
elicitation is the first stage in the requirements engineering framework in Figure 10.1.

It is very hard to express up front and in full detail something that you have never had
or experienced. Sometimes stakeholders think they have a clear idea about what they
want but often the focus is on a solution rather than the underlying requirements. It
is part of the business analysis skill set to be able to challenge and analyse stated
requirements, and assess the impact of proposed changes, to ensure that accurate
and relevant requirements are defined. While it is possible to provide ideas initially,
requirements tend to change as the project progresses and understanding evolves and
deepens. For this reason, the requirements for an agile change project are not defined
in their entirety at the outset; they are elaborated when required, typically in subsets
that are allocated to an iteration for development.

The traditional approach to requirements engineering, shown here in Figure 10.4, can
be ineffective for projects today.

Figure 10.4  Traditional approach to requirements engineering

151

AGILE AND BUSINESS ANALYSIS

Figure 10.4 shows how requirements engineering may be concentrated at the beginning
of a project and the results captured and signed-off in the requirements document. Not
only is arriving at a complete, consistent and agreed specification difficult, but there
is a high risk that much time will be spent changing and updating the requirements
during the rest of the project. As requirements change, as many of the detailed solu-
tion requirements inevitably will, change control processes must be implemented to
manage the changes and this can be very time consuming. If we analyse this approach
to requirements definition and change control using three of the Lean ‘wastes’, we can
identify the following issues:

yy Overproduction: requirements are elicited, analysed and recorded too early and
in too much detail.

yy Inventory: there has to be an investment in time for recording and managing
the requirements in order to keep them up to date.

yy Overprocessing: applying tighter tolerances in the approval and sign-off
procedures than is necessary. Getting formal approvals carried out, all of which
may be in vain if/when the requirements change.

To combat some of these problems we need to consider a different approach to require-
ments engineering.

AGILE REQUIREMENTS ENGINEERING

For some agile projects, requirements definition can be straightforward, involving
discussion and collaboration with one customer representative who is the ‘voice of the
customer’. Unfortunately, most projects are more complicated. As discussed in Chapter
7, there are typically many different customers and stakeholders to consider, all of
whom have different views on what the solution needs to achieve. Understanding those
individual views and forming them into something that customers and stakeholders can
agree on requires extensive analytical and interpersonal skills. There is also a need for
ongoing engagement to gain buy-in from the wider stakeholder group.

There may be problems with requirements engineering within agile development pro-
jects, as often the skills needed to do this work are lacking within the development
team. One reason for these problems relates to the over-simplistic role titles, such as
‘development team’ or ‘product owner’, that are used in some methods. These titles do
not help to clarify the skill set needed from those working on the project and can imply
that the primary focus is on the software development. However, software features or
software products should not be the focus of the development; as discussed in Chapter
6, the focus should be on the required business outcomes. If skilled business analysts
are not available or involved, requirements engineering can end up being carried out
by individuals who have the responsibility for this work but little practical experience. If
the product owner has little or no business analysis experience or training and is left to
conduct the requirements work, it is unlikely that the results will be satisfactory. Some
typical issues that arise when agile teams conduct requirements engineering are:

152

DECIDING THE REQUIREMENTS APPROACH

yy failing to undertake stakeholder analysis and missing key stakeholders;

yy putting complete trust in one person to represent the ‘voice of the customer’;

yy failing to engage with the wider stakeholder group and understand the different
requirement viewpoints;

yy focusing too much on eliciting functionality and features and ignoring the non-
functional requirements;

yy failing to analyse how the new solution will change current working practices,
job roles, management structures and business processes.

Defining requirements for agile projects requires a different approach which is shown
in Figure 10.5.

Figure 10.5  An agile approach to eliciting requirements

Figure 10.5 shows how the requirements elicitation and analysis needs to be ongoing,
aligned to the iterations of the project and the requirements engineering horizontal
slices described earlier. Sign-off happens at the end of each iteration and increment
and it is the working solution, in the form of MVPs or the MMP, that are signed off, not
the requirements document. This means that the requirements don’t have to be fully
specified in advance, but can be ideas that evolve and change over time. In this way,
the requirements are emergent during the development process. The development
team are responsible for building the solution that delivers the requirements, so will
bring their skills and ideas to the development process. Within an agile project, they
can engage and collaborate with the stakeholders and thus explore the potential and
viability of these ideas. For example, do they offer positive outcomes for the customer?

Figure 10.5 does not show a specific business analyst role but there is an abundance of
business analysis taking place; not all projects have designated business analysts, but
they all need business analysis to be done. In this example, requirements engineering
doesn’t just happen at the start of the project, it is ongoing throughout because as the
first ideas are formed, understood and prioritised, they give rise to new ideas that again

153

AGILE AND BUSINESS ANALYSIS

need to be elicited and analysed. In this sense, requirements engineering is an iterative
process that ebbs and flows along with the iterative and incremental heartbeat of the
project.

REQUIREMENTS ELICITATION TECHNIQUES

It is important to employ elicitation techniques that will combat some of the problems
that can arise during requirements elicitation on agile projects. Requirements elici-
tation helps business analysts to understand who to engage with, the problem to be
solved, and which goals to prioritise and meet first. If this is not done, we could end up
delivering a poor or limited solution. The use of facilitated workshops, involving a small
group of business users with the aim of developing user stories, is an extremely popular
approach for agile projects. However, this approach may not overcome the issues identi-
fied earlier and needs to be supported by other techniques.

Agile requirements evolve throughout the project and so it makes sense that we have a
set of techniques for eliciting them that can be applied continuously. This is an iterative
approach, where the high-level requirements are explored to uncover the detail needed
to develop the solution. Table 10.1 explains the most useful techniques for evolving
requirements iteratively.

Table 10.1  Techniques for evolving requirements iteratively

User interview User interviews are still the most widely used technique
in requirements engineering work; they provide a means
of eliciting a great deal of useful information. While agile
approaches focus on collaborative working, there is still merit in
conducting one-to-one interviews to:

yy build rapport and trust with stakeholders;

yy identify individual stakeholder perspectives or even
personal agendas;

yy highlight organisational politics;

yy understand how things work currently and where the
issues lie;

yy understand the landscape for the change;

yy clarify the business goals to be achieved.

Survey/
questionnaire

Surveys can be useful to obtain specific information from a large
group of stakeholders where interviewing individuals, or possibly
running a series of workshops, would not be practical or cost
effective. For example, where there is a user story that has a
large user population, it can be helpful to use a questionnaire to
research answers to a specific question or to gain user input on
the level of priority.

(Continued)

154

DECIDING THE REQUIREMENTS APPROACH

Observation Observing the work in operation is an excellent way of clarifying
or eliciting new requirements as follows:

yy understanding the order in which the work is done;

yy identifying where there are potential improvements in a
process or software product;

yy highlighting where tacit knowledge exists.

Story-writing
workshop

A story-writing workshop is probably the primary method of
obtaining user stories and should include developers, users
and the product customer. Business analysts may contribute to
the story writing or facilitate the workshop. The story-writing
workshop is the most effective way to quickly identify stories
and is discussed further in Chapter 12.

Scenario Scenarios draw out detailed requirements that include:

yy sequencing and order;

yy ‘what if’ analysis;

yy hidden business rules;

yy data constraints;

yy exceptional conditions.

Scenarios are covered in more detail in Chapter 12.

Prototyping Prototyping is one of the core techniques used within agile devel-
opment to elicit new requirements. This is because prototyping is
a way of visualising the requirements, whether using a low fidel-
ity storyboard or working software. Prototypes help in the elicita-
tion of requirements to improve or change the behaviour, look and
feel or functionality of the solution. These are valuable require-
ments that would be hard to elicit in the early stages of a project.
Prototyping is discussed further below.

Table 10.1  (Continued)

Prototyping

Prototyping plays a large role in agile software development and can also be used to
visualise other elements of the holistic solution. It is an elicitation technique because it
unearths new requirements that are often identified through the use of the prototype.
There are a range of prototyping approaches that can be used for different projects and
deciding which one to use relates to the nature of the project and the solution under
development. Where part of the solution involves a process, there may be a need to
prototype forms or reports; where the prototype relates to a software solution, there
may be prototypes of the user interface or of the internal functionality. It can be instruc-
tive to consider where the greatest risks lie and use prototyping to confirm or correct
the proposed solution approach. There are two categories of prototype: throwaway and
evolutionary.

155

AGILE AND BUSINESS ANALYSIS

Throwaway The prototype is developed for the sole purpose of eliciting or analys-
ing requirements where there is a lack of clarity, for example, where
the project is in its early scoping phase. Throwaway prototypes can
be low fidelity, perhaps a flip chart with sticky notes or a PowerPoint
mock-up of a wireframe, or may be high fidelity using more sophisti-
cated software packages. Whether high or low fidelity, the throwaway
prototype is discarded after it has served its purpose.

Evolutionary The prototype evolves as the project progresses. Early working
prototypes are used to gain more concrete understanding and are
then further developed, tested, implemented and adapted as greater
understanding develops.

Scenarios and prototyping are often used in tandem when eliciting and analysing inter-
face requirements for software systems. Each step within a scenario represents an
interaction between the user and the system. The interface displays instructions, cap-
tures data and presents information. The prototype helps in the elicitation of the pres-
entational layout and the data requirements. A low fidelity throwaway prototype for a
scenario where a customer registers an account is shown in Figure 10.6.

Figure 10.6  A low fidelity throwaway prototype

This type of prototype helps business analysts to present a visualisation of the scenario
to the business user and work collaboratively to define the data, information and usabil-
ity requirements. The additional benefits of a prototype such as this is that it is quick to
create and change.

THE ROLE OF BUSINESS ANALYSIS IN ELICITATION

Not all organisations have dedicated and experienced business analysts. However, in
every organisation and on every project, whether it is an IT or business change project,
business analysis is needed to elicit requirements effectively. The business analyst role
was originally developed to bridge the gap between business users and developers.
However, where a collaborative team is working on an agile project, it is important that

156

DECIDING THE REQUIREMENTS APPROACH

the business analyst does not act as a ‘translator’, speaking on behalf of the customers or
the developers, as this has the potential to introduce bottlenecks or errors to the process.
Figure 10.7 represents this situation.

Figure 10.7  Business analyst standing between customer and development team

Historically, there has been a separation between the technical staff and the user com-
munity on IT projects due to an assumption that communication between these two
groups is problematic. While there may have been some situations where this assump-
tion has been proven to be correct, agile development teams seek to engage T-shaped
professionals (see Chapter 7) who work collaboratively towards a common business
outcome. This approach helps everyone to develop a range of skills that will improve
communication between the specialist disciplines. There is a role for the business ana-
lyst in this process, which involves facilitating discussions and clarifying any points of
confusion. This role is represented in Figure 10.8.

Figure 10.8  The business analyst role in facilitating collaboration

157

AGILE AND BUSINESS ANALYSIS

Where there are no dedicated business analysts on a project, this facilitation role will
still be required. It may be performed by members of the development team (where they
have the requisite skills) or it could be done by a business representative, such as the
product owner or even the project sponsor.

CONCLUSION

It is imperative that the agile business analyst understands that a ‘one-size-fits-all’
approach to requirements engineering is not effective. Deciding the correct approach
requires business analysts to understand the business requirements so that horizontal
requirement ‘slices’ can be selected and elaborated in order to deliver increments of the
working solution at an early stage. This will help to prove or disprove any assumptions
and achieve the desired outcomes for the business.

Elicitation techniques help business analysts ensure that the right solution is developed
and delivered. Without sound elicitation, the project could miss tacit knowledge, make
assumptions and deliver solutions that meet what the customer wants, but not what
the customer needs.

As individuals employed within agile teams accept that they need to become T-shaped
professionals, there is a concern that business analysis skills may be overlooked. This
would be to the detriment of delivered business solutions, as it is clear that customers
need help to uncover and elaborate their requirements. This requires the support of
professionals with business analysis skills but if there are no business analysts work-
ing on a project, the responsibility for this work will need to pass to other members of
the development team. Whichever is the case, business analysis is needed to define the
requirements to the extent needed by the project to ensure that working solutions that
offer benefits to the business are delivered.

FURTHER READING

Cadle, J. (ed.) (2014) Developing information systems. Swindon: BCS.

Cadle, J., Paul, D. and Turner, P. (2014) Business analysis techniques. Swindon: BCS.

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

158

11	 MODELLING USERS AND PERSONAS

This chapter covers the following topics:

yy benefits of a modelling approach to requirements;

yy modelling users and functionality;

yy analysing users and roles;

yy analysing personas and misuse characters;

yy analysing the system context and scope;

yy visualising user journeys.

INTRODUCTION

Change projects are usually instigated by managers but their impacts fall, in the main,
upon the staff who carry out the operational work. The group of people in this category
are usually known as the ‘users’ and this chapter examines the techniques that are
used on agile projects to understand their needs and priorities. These techniques, which
include persona analysis, use case modelling and user journeys, help to ensure that
there is sufficient understanding of the user community before engaging in detailed
analysis of the requirements. Whereas Chapter 6 focused on the business system
models at the summary ‘cloud’ and summary ‘kite’ levels, this chapter is concerned
with modelling the IT system and processes from summary level to user level.

BENEFITS OF A MODELLING APPROACH TO REQUIREMENTS

Chapter 6 explored the rationale for building models during business change projects.
While that chapter focused on how we might model business systems, this chapter
discusses modelling to understand the people who will need to use a new IT system.
Techniques that model the user community offer a diagrammatical means of under-
standing the characteristics of the system users. This helps us to understand where
there is the potential for problems or there are particular constraints that need to be
taken into account when designing the solution.

Different models provide different perspectives on the problem being addressed.
The simplified FMM shown in Figure 11.1 identifies three levels where models are
relevant during agile business analysis. The levels show a direction of travel that

159

AGILE AND BUSINESS ANALYSIS

includes three modelling perspectives: the business system, the solution and the
system components.

Figure 11.1  IT systems and processes in ‘the simplified FMM’

Some of the key benefits from building models on agile projects are as follows:

yy they provide a canvas for exploring and discussing the scope of the system;

yy they enrich the process of communicating information;

yy they enable the analyst to conduct ‘what if?’ analysis and experiment with
alternatives;

yy they represent a clear statement of the information gained and help with the
validation of understanding;

yy they provide a means of investigating the existing situation, exploring options
and conducting gap analysis;

yy they offer opportunities for stakeholder collaboration.

Workshops can benefit hugely from the use of models. For example, a use case diagram
provides a means of capturing collective understanding, providing a visual representa-
tion that provokes discussion and generates ideas. As a result, the process of discuss-
ing a particular aspect of the system, and developing the corresponding models, within
a workshop environment, aids stakeholder engagement. While models offer benefits
during the system development process, the collaboration activity required to develop
a model is as beneficial. Where stakeholders have collaborated in the development of
models, they are more likely to be committed to them.

160

MODELLING USERS AND PERSONAS

The agile value of Just Enough, Just in Time also needs to be borne in mind as perfect-
ing a model can result in diminishing returns from the effort deployed in doing this. If
too much time is spent perfecting the model, then the value of the model is reduced.
Similarly, the use of models needs to be considered, as this will help to determine
whether or not they need to be kept up to date. If a model has been used for a particu-
lar purpose, there is little point in continually revising it once that purpose has been
achieved. Scott Ambler has represented the ‘point of maximal value’ from models in
the graph shown in Figure 11.2.

Figure 11.2  The value of modelling

(reproduced with permission from www.agilemodeling.com)

The time axis represents effort rather than elapsed time. Therefore, a team may spend
between 4 and 10 days of effort building models during the initial requirements envi-
sioning work, but the effort may be spread over several elapsed weeks.

The Agile Manifesto is clear that documentation takes second place to the working soft-
ware. It is important that agile business analysts bear this maxim in mind and ensure
that models are only created when useful and updated when necessary.

MODELLING USERS AND FUNCTIONALITY

System use case diagrams show the scope of a proposed system and the actors (or job
roles) who wish to interact with the system to achieve their business goals. Modelling
the user interactions and the system functionality in further detail will often uncover
that a system use case is very large or complex, so cannot be achieved in full in early
releases. Modelling this level of detail can, therefore, be vital when adopting agile. Figure
11.3 shows a way to use modelling to move from the business context to the system
delivery and iteration contexts, where working software will be delivered. While this
example shows an IT project below the dotted line, the same approach can be used for
business improvement or business change projects that don’t have any IT components.

161

AGILE AND BUSINESS ANALYSIS

Figure 11.3  Using models to provide context from business to iteration

Usage and functionality are different. While it is great to know that an actor or role wants
to undertake a particular function, there is also value in understanding who that actor
is, and why that functionality is important to them. These two types of requirement are
defined as:

1.	 Usage: the roles, actors and interfaces that interact with a system in order
to achieve a goal.

2.	 Functionality: the functionality that the system performs in response to the
usage request.

Functional requirements encompass usage and functionality but are not the only types
of requirement. They must be balanced with non-functional requirements (NFRs) that
define the quality characteristics of the solution and the constraints that limit functional
feasibility. Requirement categories, including non-functional requirements, are covered
in Chapter 13.

Available techniques

The development of online systems has meant that the user community is often large
and encompasses many different perspectives and personalities. This makes the
analysis of the users difficult and time consuming. User experience (UX) analysis is a
technique that encompasses many aspects relating to the practical usage of a product,
system or service including the functionality provided and qualities such as usability,
look and feel, and accessibility. UX also considers the emotions and behaviours of users
during the system usage. This requires the business analyst to understand the user
community, the context within which the system is used, their interactions and their
typical usage paths.

162

MODELLING USERS AND PERSONAS

In this book we are going to consider two aspects relating to modelling the system and
its users:

1.	 The user community: who are the users and what roles do they perform?
2.	 The functionality: which features and goals do the users want the system

to deliver?

There are many techniques that may be used to model users and functionality. These
are described in overview in Table 11.1 below and are explored in further detail later in
this chapter.

Table 11.1  Techniques to analyse users and usage

User analysis
matrix

A matrix showing the use cases required by each user role.

User roles A list identifying and describing the user roles that will
interact with the system.

Personas A stereotyped user role that describes a particular set of
characteristics. Personas are useful in gaining understanding
about a category of user within a specific role, including
their preferences and motivations. Personas are often used
to understand user interface requirements. They also have
a broader application to the entire solution as they are
useful when analysing usage of business and IT systems.
Understanding the users who fall into this category can help
define usability and accessibility requirements.

Misuse characters A particular category of persona focusing on users who
might misuse the system either in error or on purpose.
Understanding the users who fall in this category can help to
define security requirements.

Context diagram An overview diagram that shows the system boundary and
the actors (user role or system) with which there will be an
interface. Details of the system within the boundary are not
shown. In effect, this diagram represents the system as a
‘black box’.

Use case diagram A diagram that represents both the external actors and the
services they require the system to offer. Each service is
shown as a use case, which is initiated by an actor external
to the system. This diagram provides an overview of the
functional requirements for the system.

User journeys A model of the journey through the system when navigated
by the user. Understanding the user journey can help to
identify missing elements and identify usability requirements.

163

AGILE AND BUSINESS ANALYSIS

ANALYSING USERS AND ROLES

It is often helpful to undertake some sort of user analysis when developing a system.
While the job titles will identify the range of actors, more sophisticated user analysis
can extend understanding by defining sets of user characteristics, the events that cause
them to use the system and the reasons for preferences and priorities. This information
is highly relevant when collaborating with users in the development of a new system.

The size and complexity of both the change project and the user community will dictate
how much emphasis should be placed on user analysis. For example, the introduction
of a new expense claims system within the headquarters of a small organisation may
require just a limited amount of effort to be spent on user analysis, whereas the intro-
duction of a new human resources system across a multi-national organisation will
require significant effort to be spent on user analysis if the delivered system is to be
successful. Some change projects therefore are largely influenced by the users of the
system and the job and tasks they perform. This is often referred to as the user role and
is discussed further later in this chapter.

User analysis matrix

There are various aspects that may be analysed with regard to the user community,
including the following:

yy Motivation and attitude of user: What motivates users to make use of the
system will inform not only requirements for the look, feel and usability of the
product, but also how it is introduced and supported.

yy Skills of user and the skill requirements: Does the task require the user to have
specific numeracy, literacy or IT skills, or require in-depth knowledge of domain
or terminology? What levels of skills are available within the community?

yy Frequency of tasks: Are the tasks performed on a regular basis such as daily,
weekly, monthly; or are they performed infrequently or by exception only and
do they vary from one occasion to another?

yy Whether the task is performed alone or in a group: Can the task be performed
by a single user or are a number of users required?

yy Time criticality of tasks: Does the task have to be performed at a set point in
time, or does it take a set length of time to complete?

yy Safety criticality of tasks: Are there any safety or security aspects associated
with performing the task?

yy Is the user dedicated to the task or likely to be multi-tasking: Is the user
focused on performing this task, or will they be switching between a number
of tasks?

One way of analysing usage is to consider the tasks and the issues listed above. Once
understood, this information can be analysed using a graph such as a matrix. A user
analysis matrix is the simplest and most popular way to represent usage. A usage
matrix provides a means of representing the various users and aspects of their work.

164

MODELLING USERS AND PERSONAS

For example, a matrix may represent a list of tasks, with the job titles of those involved
in the work. This helps in the identification of user roles, as discussed later in this chap-
ter. An alternative possibility is to use a matrix to cover aspects such as the frequency
and optionality of use: how often the users are expected to use the system or the pro-
cess; whether it is mandatory that they use the system or whether it is optional. Figure
11.4 shows an example of a usage matrix to see how often particular users may use or
interact with the training provider booking system (described in Chapter 6).

Figure 11.4 User analysis matrix

This example matrix does not distinguish between a manual or automated booking
system. It may even be the case that the extent of automation is yet to be decided or that
this analysis is to be used to determine whether an automated system is cost beneficial
or not.

Other graphs could also be used to represent this data, such as bar charts, histograms
or scatter graphs.

User roles

User roles are discussed in Chapter 7 and are particularly relevant when looking at
system usage. Various techniques apply the user role concept: user stories begin from
the perspective of a user role, and a user role is synonymous with an actor on a use
case diagram. Therefore, understanding user roles is vital when eliciting and analysing
the user requirements.

165

AGILE AND BUSINESS ANALYSIS

Essentially, a user role is a view of a system from a collective user perspective. User
roles can be defined as a grouping or aggregation of users who require access to a
particular set of system features. As discussed in Chapter 7, a user role may be viewed
as a defined ‘hat’ that a user wears, which encompasses a set of tasks with defined
access rights. A user role will have a designated set of responsibilities, which will relate
to functional and non-functional requirements.

Understanding user roles is extremely important and identifying them usually begins
with considering different job titles or groups of users. The jobs and users are then
consolidated into ‘views’ required of the system by considering the different tasks to be
performed or accessed. A matrix setting out the job titles and the potential tasks is a
good starting point for a user role discussion.

Within an agile team, user roles are typically identified in collaboration with the cus-
tomer and development team within a workshop setting. Techniques such as the job
title/task matrix can be used during the workshop to initiate the user role discussion. An
overview process for planning and organising a role development workshop is provided
in Figure 11.5.

Figure 11.5  Approach for user role development workshop

166

MODELLING USERS AND PERSONAS

There are several techniques that may be used within the workshop to elicit informa-
tion and ideas. Brainstorming is often used but has some disadvantages, as those less
comfortable with the ‘shout out’ approach may contribute little, if anything, to the discus-
sion. Brainwriting is an alternative technique that can be used to overcome this issue
during a user role development workshop. Brainwriting requires workshop attendees
to write down ideas which are shared with the rest of the group. This approach helps
to generate further ideas during the timebox allowed for the brainwriting exercise.
Guidelines for using this technique are shown in Table 11.2.

Table 11.2  Guidelines for brainwriting

Area Guideline

Timeboxing The time allocated to each brainwriting activity should be timeboxed.
Using this techniques lots of ideas can be generated quickly; 10–15
minutes is usually enough time.

Sharing
ideas

During the timebox, ideas must be shared as they are identified.
This may be done in two ways, either by participants writing on
individual sheets of paper or by creating a central list on a flip chart
or whiteboard. When using sheets of paper, each participant should
take a sheet, write an idea on it, put the sheet into the centre of
the table, take another sheet and so on. This results in everyone
reusing each other’s sheets of paper and having the opportunity to
build on each other’s ideas. A central list requires each participant
to add their ideas as they arise and also results in people sharing
and developing thoughts. Discussions regarding the ideas should be
deferred until after the timebox has ended.

Discussing
ideas

Once ideas have been generated and the timebox has ended, time
should be allocated to discuss the results. This is the opportunity to
talk about the ideas and to organise them.

The brainwriting technique, if used according to the guidelines above, can bring the fol-
lowing benefits:

yy The silence can help people to think. Especially those who prefer to reflect on
the question at hand and do not appreciate the pressure of a required instant
response. They may also feel distracted by the noise generated when lots of
people share ideas.

yy Everyone gets a chance to participate. Some will produce several ideas and
some only one idea but everyone gets an opportunity to share their thoughts.

yy The ideas generation process is not dominated by the ‘loudest voice’. During
brainstorming it is possible that one or two participants will dominate and this
can prevent others from participating.

167

AGILE AND BUSINESS ANALYSIS

yy Less confident participants who don’t like speaking out in large groups are
more likely to participate, as they don’t need their voice to be heard over others
or worry about their idea being criticised.

yy The idea generation process is not distracted by lengthy discussions that waste
time.

Once the initial roles have been identified, another timebox should be set to organise the
roles. A central record should be compiled of the roles identified in the earlier timebox
and there should be a discussion about how they might be organised and described.
Aspects to consider when organising user roles include the following:

Look for
overlaps

It is useful to analyse the roles identified and suggest or group roles
that are similar or overlap with each other. They should be recorded
(possibly on sticky notes) and placed near or overlapping each other.
The more similar they are, the more they should overlap. This kind of
analysis is referred to as affinity analysis and it’s a data analysis and
mining technique used to discover relationships among activities or
tasks performed by individuals or groups.

Consolidate
roles

Overlapping roles should be consolidated through discussion and clari-
fication. Where user stories for one role are likely to be the same as
those for another role, then the roles can be consolidated or one can be
removed. This often results in a new role name being identified.

Add a role
description

Once an organised set of user roles has been created, a short descrip-
tion that captures information about the role and the tasks it performs
should be produced. This may include information that distinguishes
one role from another.

A role card, such as that shown in Figure 11.6, is useful to record the user role descrip-
tions so that they can be used later during the software development work.

ANALYSING PERSONAS AND MISUSE CHARACTERS

Personas are a way to form a view of users based on their perceived patterns of use of
the system. They include the values held by users and the behaviours they display. They
are captured in short descriptions that define characteristic behaviours, goals, skills,
attitudes and environments. Fictional personal details are used to present the persona
as a realistic character. A persona may be allocated a name in order to increase the
sense that it is describing a real individual. This can help the project team to empathise
with the users represented by the persona and gain a deeper appreciation of their needs
and priorities.

User roles provide useful input when developing personas; they also enable the identifi-
cation of individuals who may fulfil a user role and act in a way that is detrimental to the
system and the business. These roles are called misuse characters and are important
to understand if there are potential implications for performance or security.

168

MODELLING USERS AND PERSONAS

Figure 11.6  Role card description

Personas

Some of the user roles will be highly important within the context of the system, possi-
bly because they work on critical tasks or because there are large numbers of people in
the role. It can be extremely helpful to generate one or two personas to help character-
ise and understand the different aspects of the user roles. Personas were developed by
Alan Cooper in his book, The inmates are running the asylum (1999) as a practical inter-
action design tool. They are created through researching the types of user that might
assume a user role. A great deal of information and statistics, available on the internet
and within organisations, provide insights when developing personas and help to ensure
that they are representative of the user roles we are analysing.

Personas are widely used in marketing and user interface design, and are used exten-
sively in retail. Within a retail environment, products are promoted to certain categories
of customer and personas are used to help explore the behaviours and expectations of
these customers. For example, a company selling package holidays may have personas
as shown in Figure 11.7 below.

Personas are very useful in helping us to understand the features required by custom-
ers and prioritising the work required to deliver the business goals. For example, there
is a project goal to provide new features on the holiday company website that will help
to achieve a business goal of increasing sales. Research has shown that 60 per cent of
the customer base is composed of retired couples, so the persona for ‘Steve’ is useful
to direct and prioritise work. Personas can also help the company to develop multiple
features that will appeal to particular user groups and to identify impacts from environ-
mental changes. In this situation, there may be demographic changes and ‘Steve’ may
become more, or less, strategically important to the business.

The persona shown in Figure 11.8 below is for ‘Bill’, who attends courses provided by the
training provider company that has been discussed throughout this book.

169

AGILE AND BUSINESS ANALYSIS

Figure 11.7  Personas for customers of a holiday company

Figure 11.8  Persona for a customer of a training provider

170

MODELLING USERS AND PERSONAS

It is often the case that more than one persona will be required to describe a user role, as
there may be a range of characteristics to be represented. Some teams add pictures to
their personas to provide an enhanced visualisation of the target audience for the system.

Misuse characters

Misuse characters are becoming increasingly important in today’s cyber world, where
everything and everyone seems to be connected. One of the issues that the intercon-
nected world brings is the possibility for people to misuse systems for unlawful gain or
mischief. Misuse characters provide a way of considering people who are not archetypal
users and who might seek to sabotage the system or use it in a way that it was not
intended for. They are sometimes referred to as the ‘abuser’ role.

Like personas, misuse characters are not real people. However, unlike most personas,
they are exaggerated characters. Analysing misuse characters can help to elicit non-
functional requirements, such as security requirements, or can help with the informa-
tion assurance of systems. Examples of misuse characters with criminal intent might
be people who:

yy install card readers onto an ATM in order to obtain card details illegally;

yy trawl social media to discover when people are on holiday so they have an
opportunity to burgle their house;

yy use a contactless machine to scan radio-frequency identification (RFID) bank
cards through handbags or pockets.

Like personas, misuse characters should be captured on role cards. An example misuse
character for the training provider company is provided in Figure 11.9. It can also be
helpful to indicate the level of risk associated with a misuse character.

Figure 11.9  Misuse character card

171

AGILE AND BUSINESS ANALYSIS

ANALYSING THE SYSTEM CONTEXT AND SCOPE

Roles, personas and misuse characters are essential to understanding the system.
However, it is how they interact with the system, and why, that really helps to clarify
the context in which the system is being used or is required. Without understanding the
context, it is easy to lose sight of what the change project is trying to achieve and how
this relates to the broader business goals and objectives. Change projects that don’t
invest effort in understanding scope and context can run into problems later when
making priority decisions, only to find the context of the project was not agreed or
understood. Investing time in analysing the system context doesn’t mean that the scope
and context will remain fixed for the duration of the project. Rather, it provides a context
by which the goals set for the project can be tested and are achievable. Using context
diagrams is a way to achieve this understanding.

Context diagram

The context diagram provides a backdrop from which further modelling can evolve.
Understanding the actors needing to interact with the system under development is
necessary and helps in the elicitation of the features to be provided by the system; a
context diagram illustrates this. It provides clarity when considering the actors and
their interactions because the analysis is not clouded by the detail of functionality. The
clarity of the contextual view enables further exploration of the required functionality. An
example of a context diagram for the course booking system is shown in Figure 11.10.

In line with most agile techniques, the context diagram should be developed during a
workshop with relevant stakeholders involved. Ideally this should not take more than
an hour. If after an hour there is no agreement, then it is possible that participants are
attempting to develop a model that is too prescriptive rather than considering it as a
starting point from which to develop deeper understanding. The business analyst can
play a valuable role in facilitating this work and managing the expectations of those
involved.

When developing context diagrams, it can be useful to indicate the key interactions
required by some user roles; an example is shown in Figure 11.11 below. However, it is
important not to represent too much information on the context diagram as this could
provide a muddled view, resulting in confusion and delay.

Context diagrams are typically used as a basis for developing use case diagrams. The
use case diagram provides an elaboration of the context diagram by expanding upon
the interactions and features required of the system.

Use case diagrams

Use cases, originally developed by Ivar Jacobson, have been used since the 1960s, but
did not become widely known until the 1980s. Use case diagrams show the actors
wishing to access the system, the use cases they require in order to achieve their goals,
and the boundary of the system. A use case is a description of a particular feature that
is created at varying levels, depending upon aspects such as complexity and priority.
Use case descriptions can be a rich source of detail, containing information about the
alternative paths required to deliver the goal of the use case.

172

MODELLING USERS AND PERSONAS

Figure 11.10  Context diagram for course booking system

Figure 11.11 Showing ‘use’ on a context diagram

173

AGILE AND BUSINESS ANALYSIS

Agile teams often avoid use cases because there is a misconception that they need to
be described in extensive detail before the development work can commence. This is
not the case. Use cases are intended to evolve iteratively and there are several levels
of documented use cases. For example, a use case can begin as a defined goal, which
then becomes more and more detailed as and when the detail needs to be understood.
It is also possible to document a use case using a user story; at an outline level of
description, a use case and a user story have much in common. Use cases illustrate the
multiple flows required to achieve the overall goal and each flow may be recorded using
either a use case description or as a user story.

In 2011, Ivar Jacobson, Ian Spence and Kurt Bittner, wrote Use-case 2.0: the guide to
succeeding with use cases. In this publication, they demonstrated how use cases work
with agile development projects and they introduced the concept of use case slices. This
concept is concerned with the identification, prioritisation, development and delivery of
parts of use cases (the ‘slices’).

Use case models can be invaluable in understanding and capturing scope and context;
they can help to avoid the fragmented view that can result from relying solely on user
stories. The development of ‘use case slices’ and the application of different levels of
use case elaboration can be extremely useful when eliciting and analysing the required
features and goals of a system. Bittner and Spence (2003) in their book, Use case mod-
elling, define six levels of detail for a use case. These levels are represented in Figure
11.12 below.

Figure 11.12  Use case levels

174

MODELLING USERS AND PERSONAS

It is important to reiterate that use cases do not have to be elaborated through all these
levels. Some use cases may offer just enough detail at the briefly described level, for
example, if creating use cases to provide scope and context for the solution being devel-
oped and then using user stories to support the work of the development team. In other
situations, it may be better to describe the use case in full. For example, where there are
many alternative pathways to be handled by the use case, it is necessary to understand
these in depth to inform decisions regarding which will be automated and which will be
handled manually.

Use case templates vary from organisation to organisation. UML publications offer
standard templates but the format is adaptable and may be changed to meet the needs
of a project. The customary use case levels are ‘discovered’, ‘briefly described’ and ‘fully
described’, and these are discussed below.

Discovered

A use case that has been identified on a use case model can be considered as ‘discov-
ered,’ as shown in Figure 11.13.

Figure 11.13  Discovered use case

Briefly described

This should be created soon after the use case is ‘discovered’ and provides an initial,
outline description (see Figure 11.14).

Actor Registered customer
Use case name Book course
Brief description: This use case will allow registered customers to book course places
through the website.

Figure 11.14  Briefly described use case

The use case can then evolve through the ‘bulleted outline’, ‘essential outline’ and
‘detailed description’ incarnations, gradually increasing in detail.

Fully described

A fully described use case contains extensive detail as shown in the example below
(Figure 11.15). This includes the trigger for the use case, the main and alternative flows
through the use case and characteristics such as concurrency of use, performance and
security.

175

AGILE AND BUSINESS ANALYSIS

Actor Registered customer
Name Book course
Brief
description

This use case will allow customers to book course places through the
website.

Goal/name Book a course
ID R/018
Scope Course booking system
Level System
Trigger/event Registered customer has logged onto the training provider website and

decides to book an available course.
Preconditions Registered customer is registered and has checked that the course is

available to book.
Success
guarantees

Registered customer is booked onto the course, customer details are
accepted and confirmation of the course booking is shown.

Basic flow 1. Registered customer selects course to book
2. System shows available dates
3. Registered customer selects date they wish to attend that course
4. System confirms booking details and requests payment
5. Registered customer enters payment details
6. System confirms payment and provides booking confirmation

Alternate
flows
(or extensions)

2a. Course requested has no available dates
3a. Course dates not suitable for customer
4a. No availability for that course now
5a. Registered customer decides to book via telephone
6a. Registered customer enters invalid payment details
6a1. Registered customer payment not authorised

Performance Confirmation must take no more than 1 minute from submitting payment
details.

Security Only registered customer and training provider admin staff can amend or
change the booking once confirmed.
Only a registered customer can make a booking.

Volumes 100 concurrent users

Figure 11.15  Fully described use case

The basic flow embedded within the use case shows the detailed interaction between
the customer and the system and the sequence in which this interaction needs to occur.

The basic flow shows the primary and successful path through the use case. Often
referred to as the ‘happy path’ or ‘main success scenario’, the basic flow should describe
the series of interactions that should take place, and in what sequence, between the
actor and the system in order to achieve the goal for the actor. The use case in Figure
11.16 represents the interaction between the registered customer and the course book-
ing system that is required to achieve the goal of booking and paying for a course place.

If the basic flow details the successful path, then the alternate flows capture error
handling or secondary paths required to achieve the goal of the use case or to exit from
the interaction. To identify the alternate flows, it is a good idea to apply ‘what if analysis’

176

MODELLING USERS AND PERSONAS

to the steps of the basic flow. For example, what would happen if the registered cus-
tomer selects a course to book and there are no available dates; how should the system
respond? The steps associated with this situation would be captured in the alternate
flow 2a in the use case description.

For many, the textual description can be hard to digest and so modelling the path-
ways may be preferable. This can be done using a UML activity diagram as shown in
Figure 11.16.

Figure 11.16  Activity diagram for use case

Select course

Select
date

Course dates
available

Provide
payment
details

Receive
confirma�on

[Payment
authorised]

Course dates
suitable

Course booking
required

[Course dates
not available]

[Course dates
not suitable]

[Payment
rejected]

Fully described use cases help to capture valuable details concerning business rules,
sequencing and the detailed requirements needed to build the system. The format
provides an excellent basis for discussion and collaboration and they are an important
tool in the business analyst toolkit. Additionally, ‘what if’ analysis can elicit information
on flow and user expectations, and help in the development of prototypes and achieve-
ment of good UX design.

177

AGILE AND BUSINESS ANALYSIS

VISUALISING USER JOURNEYS

A useful way to analyse users is to look at their user journey. A user journey is a set of
steps that a user might take to access a system. The journey could represent the way
the users currently work (‘as is’), or how they could work in the future (‘to be’). Either
way, the steps and sequence that a particular end user takes can be valuable in under-
standing the scope of the work, user behaviour and system functionality.

A user journey should start with a user role or a persona and should include:

yy the goal that the user is aiming to achieve (could be a user story or a process
task);

yy the steps that they undertake to achieve the goal;

yy mechanisms or processes utilised (i.e. manual process, system or interface);

yy emotions or pain points experienced through the journey.

The purpose of the ‘as is’ user journey, as shown in Figure 11.17 below, is to understand
the current process, which helps to identify any disconnects or ‘pain points’ that a future
solution will need to address. In contrast, the purpose of the ‘to be’ user journey is to
show how the journey might look in the future and what benefits that might bring to the
user or the organisation.

Figure 11.17  ‘As is’ user journey

The format of a user journey can vary depending on the intended audience. Many user
journeys are represented visually, as shown in Figure 11.17, but this can depend upon
the ability and confidence of the analyst in building a free-format, hand-drawn repre-
sentation. If preferable, a series of boxes and lines drawn using a drawing package may

178

MODELLING USERS AND PERSONAS

also be used. The important point is to represent what the user wishes to do and achieve
during this journey.

CONCLUSION

Collaborating with the user community is an essential part of an agile project. However,
discussions are greatly enhanced by applying frameworks and techniques, such as
those set out in this chapter, to elicit and analyse information that may otherwise be
overlooked. For this reason, the models explored in this chapter are extremely useful
additions to the agile business analyst’s toolkit.

REFERENCES

Bittner, K. and Spence, I. (2003) Use case modelling. Boston, MA: Addison Wesley.

Cooper, A. (1999) The inmates are running the asylum. US: Sams Publishing.

Jacobson, I., Spence, I. and Bittner, K. (2011) Use-case 2.2: the guide to succeeding with
use cases. Ivar Jacobson International. Available from: www.ivarjacobson.com/publica-
tions/white-papers/use-case-ebook [20 December 2016].

FURTHER READING

Cooper, A. (2008) The origin of personas. Alan Cooper website. Available from:
www.cooper.com/journal/2003/08/the_origin_of_personas [20 December 2016].

Mears, C. (2013) User journeys – the beginners guide. The UX Review. Available from:
theuxreview.co.uk/user-journeys-beginners-guide/ [20 December 2016].

179

http://www.ivarjacobson.com/publications/white-papers/use-case-ebook
http://www.ivarjacobson.com/publications/white-papers/use-case-ebook
http://www.cooper.com/journal/2003/08/the_origin_of_personas

12	 MODELLING STORIES AND SCENARIOS

This chapter covers the following topics:

yy modelling system usage;

yy user stories;

yy scenarios;

yy Behaviour driven development;

yy story mapping.

INTRODUCTION

Over the last decade the adoption of user stories as an approach to capturing require-
ments has increased considerably. So much so, that in some projects user stories have
been used as the sole format for requirements. Using user stories alone carries risks,
and different requirement formats should be considered for different types of require-
ments. In other words, projects should avoid a one-size-fits-all approach to eliciting,
recording and analysing requirements.

While user stories are effective in capturing the essence of functional requirements,
further techniques need to be employed to draw out the detail of the functionality or to
provide a coherent view of the, often numerous, user stories.

This chapter discusses user stories and considers the alternative techniques that can
be used alongside them.

MODELLING SYSTEM USAGE

Understanding the actors and roles, described in Chapter 11, for the solution under
development is vital. Systems need to provide functionality that can enable users to
perform the work required by the business. Making sure the right functionality is built
is an essential aspect of agile software development, but needs business analysis input.

Outline functional requirements can be captured in many ways, but the best way to
define the detail of the required functionality is to work iteratively so that the detail
emerges over time. Where functionality is defined in detail early in the project life cycle,

180

MODELLING STORIES AND SCENARIOS

it often becomes out of date as the project progresses. This can lead to more time being
spent changing and managing the requirements definitions rather than ensuring that
the required functionality is delivered. Agile is clear that priority should be given to the
delivery of working software rather than the maintenance of documentation, as it is the
software that offers potential value to the organisation. An agile business analyst needs
to ensure that ‘just enough’ detail is captured in the requirements documentation so that
priorities can be allocated and decisions made about where analysis efforts should be
deployed. Business analysts also need to work collaboratively with their customers to
decompose requirements and goals such that priorities can be allocated at both goal
and sub-goal levels. This helps the analysis and development work to move from an
idea or concept, into something that can be realised in working software.

We have referenced the simplified Functional Model Map (FMM) throughout this book as
it represents the required direction of travel from concept to solution. Figure 12.1 below
shows the FMM as the analysis work begins to move from the solution to the internal
components.

Figure 12.1  The simplified Functional Model Map

No two projects are the same and so it makes sense that the approach to capturing
functionality may change from project to project. Having different formats available is
an essential part of the business analyst toolkit and many have already been discussed

181

AGILE AND BUSINESS ANALYSIS

in earlier chapters. Table 12.1 sets out different approaches and techniques for describ-
ing and capturing user stories that will be discussed in this chapter.

Table 12.1  Techniques for modelling stories and scenarios

User story A short story describing a user role (who), what the user
role wants to do and why they want to do it.

Scenario A sequence of steps initiated by an event that will deliver an
outcome.

BDD A set of event-driven scenarios to be tested on the delivered
system from the perspective of a user role.

Story map A visualisation of the ideas and concepts for a solution
(usually using user stories) to define what the solution
needs to do, and the order in which it should be delivered.

USER STORIES

User stories were first developed with XP and were described as being ‘like use cases’.
As time has gone on, the difference between user stories and use cases has become
more apparent; however, both techniques are still relevant and useful, and can be used
together on a project. User stories are small fragments of business value that can be
delivered within a project iteration; this is usually a period of between two and four
weeks. In contrast, use cases are project-wide goals that the solution needs to deliver
and so will inevitably take longer than two to four weeks to deliver. The advantage of
use cases is that they provide the wider context. The advantage of user stories is that
the focus is on smaller goals, thus enabling small amounts of software functionality to
be delivered within an iteration.

User stories, popularised by Mike Cohn in User stories applied (2004), seem to have
become the de facto standard for requirements on agile projects. Each user story rep-
resents a slice of functionality that concerns the achievement of a business goal and
can be divided up across iterations. Although a user story sets out a requirement, it
does not represent a formal requirements document in the sense that a user story is
not signed off and does not represent a formal contract between the customer and the
development team. Rather, a user story is a placeholder for a further conversation that
will help to elicit understanding and further details of the requirement.

User stories are often considered to have a hierarchy. This is not the same as the
requirements hierarchy that has been traditionally assigned to requirements developed
using a linear approach, whereby the high-level requirements break down into lower-
level requirements and so forth, while traceability between them all is maintained and
controlled. The terminology used to define user stories is considered more as a way
of describing and managing the decomposition of user stories and is explored here in
overview to help in understanding the level at which user stories should be defined.

182

(continued)

MODELLING STORIES AND SCENARIOS

Further information on how stories can be managed and organised using this terminol-
ogy is provided in Chapter 13.

During the initial development work user stories, which have been derived from use
case models, will often be too large to deliver within a project iteration. Due to this they
will need to be decomposed as described in Chapter 8. Managing user stories through
decomposition has been the subject of much talk amongst business analysts and pro-
ject teams. This has led to the development of a hierarchical structure for user stories
that helps in their decomposition and allocation to iterations. The terminology used in
agile to discuss the size and level of user stories consists of three main categories:
themes, epics and user stories. These are described in Table 12.2 below.

Table 12.2  Levels in a user story hierarchy

Theme The best way to think about a theme is as a logical heading
given to a group of user stories. When user stories were
captured on cards it made sense to put a rubber band around
a collection of cards that were logically related. That way, if the
functionality could wait until a later release, the cards could be
kept together. Also, if the cards were dropped on the floor they
would still remain in logical groupings. So, a theme is a heading
given to a set of user stories that helps to organise them. The
logical grouping could be based upon user roles (e.g. priority
customer) or could be around features (e.g. online payments).
Themes tend to be at an overview level and, in some situations,
can represent high-level goals. Once a theme is decomposed,
only the logical heading remains. Themes, therefore, should
not be written as user stories; they are simply a heading under
which user stories reside.

Epic Epics are the name given to large user stories and are usually
easy to identify as they are hard to estimate because of their
size or they do not have a defined outcome or end point. An
example epic from the training provider case study used
throughout the book is ‘Manage course booking’. Epics need
to be decomposed into smaller user stories as the time
approaches when they will be used to develop software. In
this sense, epics are transitory in that they only exist to be
broken down. Jeff Patton (2014), in his book User story mapping,
describes epics as resembling big rocks. Once a big rock has
been broken down into smaller rocks, the big rock no longer
exists. Instead, it is represented by lots of smaller rocks that if
pieced back together make up the bigger rock. Similarly, once
an epic has been decomposed into smaller stories, it no longer
needs to exist. If there is an overwhelming urge to maintain the
detail contained in the epic, then a theme should be used as a
logical heading.

183

AGILE AND BUSINESS ANALYSIS

Table 12.2  (Continued)

It should be noted that the term ‘epic’ is sometimes used
more widely to identify large pieces of work. For example, in
Chapter 6 we refer to the ‘business epic’ as a container for work
concepts that will require significant funding and consider all of
the elements needed to deliver the business outcome using the
POPITTM model. Epics are also referred to in SAFe (Scaled agile
framework n.d.) for the enterprise, where they are described
as ‘a significant initiative that helps guide the value stream
towards the larger aim of the portfolio … they drive much of the
economic value for the enterprise’. When discussing epics, it is
helpful to clarify whether you are talking at a portfolio level or
referring to a large user story in a development project.

User story A user story is a description of desired functionality told
from the perspective of a user or customer and which, once
delivered, should provide value to the user or customer. User
stories need to be small enough to be delivered within an
iteration. User stories are the only category in this hierarchy
that is realised by working software.

When writing user stories, there are six main attributes to consider in order to ensure
that they are good stories. The suggested acronym is INVEST, which was devised by Bill
Wake (2001) in his book Extreme programming explored. These attributes are:

Independent Each story should be independent in that it should not be
dependent on other stories. If it is not independent, problems
can occur later when planning and estimating. Each user
story should therefore represent a goal and offer value to
the user.

Negotiable The user stories should not be contracts or requirements
that software must implement. They are short descriptions
of functionality to be explored and negotiated in a conversa-
tion between the customer and development team.

Valuable The user story should be valuable to an end user or customer.
It must represent a goal or outcome of value that an end
user or customer can understand. User stories that are only
valued by the developers are not user stories. User stories
should be written so that the user understands the conse-
quences of not including them.

Estimatable All stories must be given an estimate. If they cannot be esti-
mated, they are either too big or the team lacks the technical
or business knowledge to calculate the estimate.

184

MODELLING STORIES AND SCENARIOS

Small Each user story should be small enough such that an esti-
mate to deliver the functionality can be calculated and the
work may be planned. In the early days of a project, stories
may be large and represent high-level goals for the solution.
As the project progresses, stories should be decomposed
so they are small enough to be delivered within an iteration
(typically two to four weeks in duration).

Testable Each story must be testable. It is this step that verifies that
the working software is complete. The tests should be written
from the user story confirmations and additional tests writ-
ten that arise as the detail of the story is uncovered during
the iteration. Within agile, as much testing as possible should
be automated so that tests can be run again and again as
the software develops through the iterations. BDD is used to
identify the tests that can be automated.

Splitting and decomposing stories

Splitting stories can appear to be a simple process. In reality, it is a very difficult thing
to get right as the stories need to be split and decomposed on the basis of achieving
smaller goals and not sections of functionality. Goal decomposition was discussed in
detail in Chapter 8.

The term ‘splitting stories’ is common, but in fact we should actually refer to this as
splitting epics. A user story is the correct term for a story that is small enough to be
estimated and delivered within an iteration. If this is true, then it does not make sense
for a story to be split further as there is no requirement to do so. With this in mind.

The term ‘story’ is used in this book as a way of referring to the format (e.g. ‘As a … I want
to … so that’), which is common for both a user story and an epic and is discussed further in
this chapter. Where the author requires this to be specific, it will be made clear.

When splitting and decomposing stories there is a tendency to do this along technical
lines. While this may make sense for the development team, it makes no sense to the
customer as the story now describes technical functionality. Each piece of functional-
ity could be developed across different iterations and therefore nothing of value can
be demonstrated to the customer in an individual iteration. The value to the customer
derives from the delivery of the whole story not the individual technical aspects of how
it is built.

When splitting stories, Mike Cohn (2004) describes how big stories (i.e. epics) fall into
one of two categories:

1.	 the compound story;
2.	 the complex story.

185

AGILE AND BUSINESS ANALYSIS

A compound story is an epic that has not yet been decomposed into user stories. For
example, a web booking system may include the story, ‘As a customer I would like to book
a flight.’ While this is fine during initial planning, when deciding what needs to be built,
first further discussions with the customers may uncover that this story actually means:

yy each customer can book themselves one seat on one flight;

yy each customer can book multiple seats on one flight for multiple people;

yy each customer can book multiple seats on multiple flights;

yy each customer can reserve an ‘extra leg room’ seat;

yy each customer can order a meal during the flight.

Each of the above will become an independent story that can be prioritised differently.

Another way to split a compound story is to use the create, edit, delete framework
such as:

yy create a customer booking;

yy edit a customer booking;

yy delete a customer booking.

The complex story is a large story that is harbouring uncertainty. In this situation, the
team may need to spend some initial time understanding the problem in order to reduce
the uncertainty. Once they are clearer about what needs to be done, further stories
can be generated. An example of this may be the story ‘As a sales person I want the
customer to receive discounts on their course price so that they can be rewarded for
customer loyalty’ but the developers are unsure of how to implement this on the website
as they do not know the rules associated with applying discounts. They may choose to
split the story so that initially they include a story such as:

yy As a developer I want to investigate the business rules and technical solution
for applying discounts so that we can estimate the work required for future
iterations.

This story is a ‘spike’, which is a story that cannot be estimated without timeboxed
research. This story, often referred to as a technical story, will be allocated to one or
more of the development team to research during a timebox. If the uncertainty cannot
be resolved within the timebox, the project will need to consider whether it is worthwhile
continuing with this story. After completing this investigation, the original story can be
further split into the following:

yy As a sales person I want to know which registered customers have signed up to
bulk course booking schemes so that I can know they are entitled to a discount code.

yy As a sales person I want to apply a discount code to a registered customer who
has signed up to bulk course booking schemes so that their discount can be
automatically applied.

186

MODELLING STORIES AND SCENARIOS

yy As a registered customer I want my bulk course discount to be automatically
applied when I book a course through the website so that my loyalty is
recognised and obtaining the discount is simple for me.

The patterns set out in Table 12.3 below provide useful approaches when splitting com-
pound user stories. The examples given relate to the training company case study used
throughout this book.

Table 12.3  Patterns for splitting compound user stories

Task steps

As a web maintainer, I want to post a
new course description to the company
website

yy as a formatted pdf

yy as a reviewed Word document

Business rules

As a purchaser, I want to book course
places

yy on one course

yy across several courses

yy for multiple delegates

Simple or complex

As a reseller, I want to pay for a course
place

yy by credit card

yy by purchase order, invoice and
remittance

Data sets

As a course delegate, I want to receive
joining instructions

yy in English

yy in Welsh

yy in French

Data/content entry

As a web controller, I want create news
and events

yy through links to other sites

yy by uploading formatted pdfs

yy by creating HTML pages

CRUD

As a purchaser, I want to yy create a course booking

yy change a course booking

yy cancel a course booking

yy check the course booking details

187

AGILE AND BUSINESS ANALYSIS

The 3Cs

When defining user stories, Ron Jefferies (2001) came up with the 3Cs to describe the
three critical aspects of user stories: card, conversation, confirmation.

Card User stories are written on cards or sticky notes. The card does
not contain all the information that makes up the requirement.
Instead, the card has just enough text to identify the require-
ment, and to remind everyone what the story is. The card is
a token representing the requirement. It is used in planning.
Notes are written on it, reflecting priority and cost. It is often
handed to the developers when the story is scheduled to be
delivered, and given back to the customer in the form of work-
ing software, when the story is complete.

Conversation The requirement itself is communicated from customer to
developers through conversation: an exchange of thoughts,
opinions and feelings. This conversation takes place over time,
particularly when the story is estimated (while planning for the
release) and again at the iteration planning meeting when the
story is scheduled for delivery. The conversation is largely ver-
bal, but can be supplemented with documents. The best sup-
plements are examples and are executable. These examples
are called confirmations.

Confirmation No matter how much discussion or how much documentation
we produce, we cannot be as certain as we need to be about
what is to be done. The third C in the user story’s key aspects
adds the confirmation. This component is the acceptance test.

These 3Cs are discussed in detail below.

The user story card

The user story card is either a small card or sticky note used to capture the story itself.
The card or sticky note is purposefully small in order to encourage the capture of the
minimum detail. The user stories should be written by, or for, the project customers and
should drive the development of the software. User stories should describe functionality
that will be useful to a customer.

A typical user story format is as follows:

As a … (role or actor) (Who)
I want … (what capability or feature do they need) (What)
so that … (why is it of business value or benefit) (Why).

The ‘Who’ and ‘What’ are essential to the story, but the ‘Why’ only helps with clarity
and determining the acceptance test. The ‘What’ is the actual goal of the user story. It
is the thing of value that the role or actor wants to achieve. When splitting stories it is
the ‘what’ that should be the focus of the goal decompostion. Stories help developers
to ask relevant questions about the context and reason for the request, examining it

188

MODELLING STORIES AND SCENARIOS

from the perspective of the stated user role. Figure 12.2 contains an example of a user
story for the course booking system.

The conversation

The simple format of the story card aids communication between the various parties
involved in the agile development work. Throughout the project, a series of conversa-
tions takes place between the customer and the development team and these conver-
sations may be captured as additional documentation that will be attached to the card
along with any discovered acceptance test criteria.

Although the card is a visible representation of a user story, the greatest value is derived
from the conversations needed to develop the user stories from their inception to the
delivery in working software.

A workshop is the primary method of obtaining user stories for agile teams and should
be attended by the development team, a business or product owner, customers (includ-
ing end users) and any other parties who can contribute to the story writing.

These workshops bring together all the stakeholders concerned with a particular sys-
tem and should aim to achieve consensus and ownership with regard to the decisions
that are made. Techniques, in particular brainwriting, described in Chapter 11, should be
used to encourage the identification of innovative ideas during the workshop.

Figure 12.2  Example user story

189

AGILE AND BUSINESS ANALYSIS

Cohn suggests the following format for story writing workshops as follows:

yy Select two to three high priority user roles.

yy Identify high-level goals for each role.

yy Decompose the high-level goals into smaller stories using the user story
format: ‘As a … I want to … so that …’

There are some important aspects to be considered when developing user stories, as
discussed in Table 12.4 below.

Table 12.4  Guidelines for writing user stories

Write for one user role Write stories from the perspective of one
user, for example, as a registered customer
(not all registered customers). Also, stand
in the shoes of the user role and look at
the system from the role’s viewpoint. For
example, if I were a registered customer
what would I want to do on the course
booking website?

Ensure that user stories are
valuable

Ensure that the user stories offer value to
a user role rather than defining sub-goals
or tasks that need to be undertaken during
development. The user stories shown below
are sub-goals, as logging on to the system
and entering payment details are steps that
the customer would need to complete in
order to book a course. On their own they are
not valuable to the customer as they define
the user interface.

yy As a registered customer I need to log
on to the course booking system.

yy As a registered user I need to enter my
payment details criteria.

This level of detail should not be captured as
separate user stories. Instead the user story
should read:

yy As a registered customer I need to
book one training course for myself so
that I can attend.

(continued)

190

MODELLING STORIES AND SCENARIOS

Table 12.4  (Continued)

User stories have a meaningful end Ensure that each story has a meaningful
end. Consider the following user story: ‘As a
registered customer I want to manage my
bookings.’

How is it possible to know when a registered
customer has finished managing course
bookings? This would better be described as
multiple stories such as:

yy As a registered customer I can view a
course booking.

yy As a registered customer I can update
a course booking.

yy As a registered customer I can cancel
a course booking.

The workshop facilitator plays a key role in the user story workshop by keeping the
workshop on track, applying the guidelines in Table 12.4 and ensuring that each partici-
pant contributes. Business analysts are often well placed to facilitate the workshop on
behalf of the development team.

It is during the conversation that the detail of the story is revealed, so the user story itself
is not a specification of what the solution needs to do. Therefore, user stories should not
be ‘signed off’ nor should they form a contract for the software to be delivered. User sto-
ries should enable the development team to respond quickly, and with fewer overheads,
to rapidly changing real-world requirements. The detailed requirement emerges as the
user story is developed and the artefacts to define this detail may take many forms, for
example, models, designs, business rules definitions and prototypes.

The confirmation

A user story remains an informal statement of the requirement until the corresponding
acceptance test criteria are produced. Appropriate acceptance criteria must be written
during conversations with the customer. These criteria will be used to ensure that the
goals of the user story have been fulfilled in the resulting solution. The conversations
uncover the detail of the requirement, which is developed within the working software
and accepted once it is agreed that it delivers the confirmations agreed during the user
story conversations. This is the main difference between a formal requirement, which
forms a contract, and a user story, which provides a basis for collaboration. The inten-
tion of the user story is to be able to respond faster and with fewer overheads to rapidly
changing real-world requirements.

The acceptance criteria for a user story are written as confirmations, usually on the
back of the user story card as shown in Figure 12.3. It may be helpful to write confirma-
tions for the large or high-level user stories described earlier (e.g. epics) as this helps to

191

AGILE AND BUSINESS ANALYSIS

test business processes, and identify business rules or constraints. This can support the
work to split the user stories and may provide a useful starting point for BDD scenarios
(BDD is discussed later in this chapter).

When writing confirmations, it is useful to consider criteria such as SPAM:

S: security
P: performance
A: availability
M: monitor/measure

Figure 12.3  Example user story ‘confirmation’

Once a user story has been agreed for inclusion in an iteration backlog, formal accept-
ance tests must be written to ensure that the goals of the story are met.

For example, the user story ‘As a registered customer I want to cancel a course book-
ing so that I don’t have to pay for a course I can’t attend’, may have the following
confirmations:

yy Verify that only the registered customer can cancel a course that they have
booked.

192

MODELLING STORIES AND SCENARIOS

yy Verify that only cancellations made 24 hours or more before 09:00 on the course
date can be cancelled without incurring a fee.

yy Verify that delegates cancelling courses on the day of the course are charged
50 per cent of the course fee.

A story can have any number of acceptance tests depending upon what is needed to
ensure that the software functionality works correctly. A user story is not considered
complete until it has passed its acceptance tests.

Where a user story is at an atomic level, in that it complies with ‘INVEST’ rules and is
small enough to be delivered within an iteration, the acceptance tests should be written
in a format compliant with testing. BDD is a popular approach for writing acceptance
tests and is described later in this chapter.

Relevance of user stories

User stories are not appropriate for all types of requirements nor are they appropriate
for all organisations, especially those who have a strong cultural bias towards formal
sign-off of documents in order to release project funding. Other requirement formats
exist for non-functional, general or technical requirements and these are discussed
in Chapter 13. Adopting the user story format in a project, but then following strin-
gent sign-off procedures for the stories in order to formalise a contract between the
customer and the development team is not in line with the agile approach.

In his book User stories applied (2004) Cohn states that,

while user stories are a very flexible format that works well for describing much
of the functionality of many systems, they are not appropriate for everything. If you
need to express some requirements in a form other than user story, then do so.

Agile is a philosophy underpinned by principles and values. User stories help in the appli-
cation of the agile philosophy by providing a basis for collaborative discussions between
developers and customers regarding the functionality to be delivered by working software.

SCENARIOS

Scenarios are used frequently in many aspects of business. They may be used to
describe the different ways actors interact with a software system, a functional area of
a business or the organisation itself.

There are many different definitions of scenarios, but in its simplest form a scenario
describes a sequence of activities performed in response to a real-world event. The
event could originate from outside the business or system, an external event, or could
be an internal event originating from inside the business or system. Alternatively, an
event could be based upon a particular date and time. Examples of events are:

yy a person calling on the telephone to make a complaint;

yy a customer placing an order for a product online;

193

AGILE AND BUSINESS ANALYSIS

yy an internal user raising an invoice through the invoice system;

yy a librarian checking whether a book is available to borrow;

yy a customer going into a store to buy a product.

In each of the above cases, the event would trigger a sequence of activities that would
result in an outcome. The outcome is sometimes referred to as the scenario goal.

Scenarios are particularly useful as they help to uncover the detail of how work is car-
ried out. This detail includes:

yy interaction: the interaction between the software/business system and a
customer;

yy sequence: the order, or steps, in which things are carried out;

yy acceptance: the checks to ensure that the scenario is working as it should.

Scenarios help to identify where assumptions have been made and define necessary
detail. They help to avoid issues such as business rules being misunderstood, data
requirements not being identified or the wrong things being tested.

Additionally, scenarios enable ‘what if analysis’ to ascertain what would happen in a
specific situation or if something unexpected happens. This is particularly important to
elicit non-functional requirements or to derive tests to prove that a system or process
is functioning correctly or within the limits expected. For example, what would happen if
we raised 200 invoices concurrently; or if we expected to have a surge of users logging
onto a system at the same time? The system needs to be tested to make sure it can cope
with these possible situations.

Scenarios are developed using the approach shown in Figure 12.4.

Figure 12.4  Approach to developing scenarios

194

MODELLING STORIES AND SCENARIOS

Scenarios can apply at various stages during system development and may be cre-
ated using many different formats, both textual and diagrammatic; further information
regarding documenting and modelling scenarios is presented in Chapter 11. Some of
the typical formats used within agile approaches are described in Table 12.5.

Table 12.5  Scenario formats

Use cases Originating from the UML, use cases describe the
interaction of an actor with a system (both business
or IT system). This technique is discussed in Chapter
11. Use case development begins by clarifying
the basic flow or main usage scenario. Once this
is understood, alternate flows are identified and
documented. A use case may contain many flows.
Each flow through a use case is a scenario.

Usage scenario A derivative of use cases is defined in www.
agilemodeling.com which uses specific examples
of actors to represent the interaction and behaviour
of that user in a given situation. This tends to make
it more personal than the impersonal approach
adopted for use cases. Other differences are that
usage scenarios tend to follow just one path of logic
rather than considering the basic and alternative
paths defined within use cases. This is because
usage scenarios tend to be developed ‘just in time’
and focus on a particular pathway that handles a
specific combination of circumstances. They are
usually discarded once they have served their
purpose.

BDD scenario BDD originated as a technique used in testing but
has a lot of similarities to usage scenarios in that
BDD scenarios are written from the perspective of
a user with specific characteristics. BDD scenarios
are defined for small individual user stories and
represent the acceptance criteria for a story. BDD
scenarios use a specific language called Gherkin
and are defined below.

BEHAVIOUR DRIVEN DEVELOPMENT

Many agile projects are starting to adopt BDD as a technique for writing acceptance
tests that can be automated. BDD is a collaborative exercise between the developer,
tester and business representative, who is often the business analyst. It ensures that
development projects remain focused on delivering what the business actually needs.

195

AGILE AND BUSINESS ANALYSIS

BDD was originally developed by Dan North (n.d.) in early to mid-2000. It addresses the
problem that can occur when business analysts write a detailed specification that is
then translated into software requirements by the developer and translated into test
cases by the tester. This approach can lead to misunderstanding and miscommunica-
tion. BDD brings these roles together, as shown in Figure 12.5 below, so discussions are
collaborative, thereby minimising the opportunity for miscommunication or misunder-
standing. It should be noted that the roles may be perspectives that are adopted for the
discussion rather than specific roles within the agile development team.

Figure 12.5  BDD collaboration

BDD can be very beneficial when used to develop acceptance tests in that it helps to
ensure:

yy shared understanding amongst the business and development team;

yy traceability as development work can be traced back to business objectives;

yy delivery of software that meets the business needs;

yy improved quality of code.

196

MODELLING STORIES AND SCENARIOS

There are two main elements to BDD, which are:

yy the practice of writing examples of what the business needs to do in a language
that both the business and development team can understand;

yy the use of written examples as the basis of automated tests, providing a means
of checking functionality to ensure that it works as required by the business.

Table 12.6 provides the structure used in BDD with a worked example.

Table 12.6  BDD structure and example

Feature Title A title and a description that
encompasses the different
scenarios. The description
is often written as a user
story.

Booking courses

As a registered customer
I want to book a course so
that I can be more skilled.

Scenario BDD heading The actual scenario for
the feature. Features will
usually have multiple
scenarios.

Booking a standard
available course on the
website.

Given Context The context for the start of
the story. For example, I am
a registered customer and
I have searched for course
details.

Given the ‘agile business
analysis’ course is
scheduled for 8 May, and I
am a registered customer,
and there are >1 places
available to book

When Action The action they carry out When I make a booking for
8 May.

Then Outcome The outcome that is
achieved from carrying out
the action

Then I will be confirmed
on the course and places
available to book will be
reduced by 1.

STORY MAPPING

Story mapping is a technique introduced by Jeff Patton (2014) to explore the broader
picture for the system under development. This helps to provide a context that may
be missing when using a backlog of stories. A story map can be used to visualise any
backlog and therefore is not restricted to IT development projects. For example, it could
be used with business epics (Chapter 6) to visualise process improvements. The story
map provides several views of the system, including:

yy the broader picture of what the project is trying to achieve;

yy the end-to-end process of the system told from the user’s perspective;

197

AGILE AND BUSINESS ANALYSIS

yy the stories required to meet the end-to-end process;

yy the proposed delivery of the project in terms of the releases;

yy dependencies between stories and processes.

There are different approaches to creating story maps. One approach is to identify high-
level user stories as a starting point. To create a story map, the following steps are
suggested:

yy Step 1: identify user roles and user stories.

yy Step 2: discover logical groupings.

yy Step 3: place in a narrative flow (backbone).

yy Step 4: analyse for breaks in the workflow.

yy Step 5: decompose stories.

yy Step 6: create a first release.

These steps are covered in more detail below.

Step 1: identify user roles and user stories

Before creating a story map, it is important to have done preliminary work to define the
scope of the system and identify the user roles and user stories. A business process
could also be helpful to provide a contextual view and determine the logical sequence of
tasks. Both views are important to consider within the story map. It is worth sketching
out existing business processes if they do not exist as these provide a better under-
standing of the ‘as is’ system.

Step 2: discover logical groupings

Analyse the user stories and group similar user stories under logical headings. For
example, user stories such as ‘register bookings’, ‘cancel bookings or ‘update bookings’
may be logically grouped under a heading such as ‘manage bookings’. These logical
headings are essentially ‘themes’ and will help to communicate the broader picture and
help to order and prioritise the story map.

Step 3: place in a narrative flow (backbone)

The next step is to determine the narrative flow setting out the logical progression
of the story map. This is sometimes called the ‘backbone’. Creating the backbone
requires the themes (Jeff Patton (2014) refers to these as ‘activities’) to be arranged
in a logical flow from left to right (horizontally) along a board or wall. The backbone
must represent the flow of work of the business, reflecting the ‘tasks’ to be conducted
and the order in which this should be done. For example, it is not possible to confirm a
booking before the booking details have been received. Placing these in a logical flow
helps the customer and the development team to visualise a workflow and identify
any gaps.

198

MODELLING STORIES AND SCENARIOS

Under each ‘theme’ place the epics (the high-level user stories), or tasks if using a
business process model, for that theme. For example, if the theme is ‘manage pay-
ments’ then some of the epics might be ‘make payment’ or ‘process payment’. Figure
12.6 provides an example of a story map backbone showing themes and tasks/epics.

Figure 12.6  Story map backbone

Step 4: analyse for breaks in the workflow

The tasks in the story map backbone may be carried out by different roles and where
this is the case it may be worthwhile showing the roles on the story map backbone. It is
important to pay particular attention to points in the sequence where the themes transi-
tion to a different role, as this is where gaps may occur.

When using a business process model, it is worthwhile using it to validate the sequence
of the themes and tasks on the story map backbone. Where there are differences
between the story map and business process model views, there will need to be dis-
cussions about these differences to identify where changes need to be made. This may
result in revisions to the business process model or may highlight missing aspects
within the story map. This may result in the identification of additional epics and, ulti-
mately, user roles and user stories.

This step helps to instil confidence in the story map, as it ensures that it is in a logical
sequence that reflects the processes and working practices of the business.

Step 5: decompose stories

Once the story map backbone has been confirmed it can be populated with user stories.
The user stories created during step 1 should be placed underneath the relevant themes
and tasks defined within the story map backbone. When placing the user stories onto
the backbone it is possible that a user story doesn’t fit under any of the themes or tasks
currently identified within the backbone. In this situation, there are two possibilities: a
new theme or task may need to be added to the backbone or the user story may be out
of scope. This will require customer and product owner discussion to decide which is
the case.

199

AGILE AND BUSINESS ANALYSIS

When placing the user stories onto the story map the level of criticality should be
considered. This is represented on the vertical axis of the story map, which should be
labelled ‘used frequently’ at the top and ‘seldom used’ at the bottom. An example of this
is shown in Figure 12.7 below. User stories that are used more often should be placed
higher up the story map than those seldom used.

Figure 12.7  Story map populated with decomposed stories

It is likely that the user stories identified so far are all epics and will therefore require
further decomposition in order to uncover the lower-level user goals that can be deliv-
ered within an iteration. Decomposing stories was discussed earlier in this chapter.

200

MODELLING STORIES AND SCENARIOS

Another technique for splitting stories is described by Jeff Patton (2014) and is called
‘Good, Better, Best’. This technique also helps to clarify the criticality of the story. The
technique is concerned with asking the following questions, within each of the three
categories, for each story.

Good

What would be just good enough for this story? For example, what would be enough
to demonstrate the functionality but probably not enough to make a customer happy?
Write down the characteristics that would make a story just good enough and then
treat each characteristic as a separate user story. Place the new user on the story map
according to the level of criticality.

Better

Then ask, what would make it better? This might include things such as speed of use,
or improved navigation of screens or improved search ability.

Best

Finally ask, what would make it fabulous? This is where you can be really innovative.
You don’t need to worry too much about feasibility or acceptability, as all stories are just
ideas until they are agreed within an iteration.

Step 6: create a first release

Once the story map is created it can be used to decide what should be built first.
Some teams focus straight away on the first iteration, where others focus on a first
release that will contain numerous iterations. The first deliverable may be an experi-
mental prototype that is demonstrated to customers in order to test an idea or reduce
a recognised risk. This is often referred to as an MVP or Minimal Viable Solution (MVS).
Feedback collected through the early deliverables will enable the customer and devel-
opment team to learn from the process and create further user stories for future itera-
tions and releases.

The early deliverables should facilitate and validate learning, so they may be low-fidelity
prototypes that do not use or generate actual data. They may be prototypes that aim to
address risk and test assumptions concerning functionality and usability, so they may
not be appropriate for delivery into a live business environment.

Once ideas have been tested and risks reduced, future deliverables may focus on being
complete enough for release to the live business environment. This is sometimes
referred to as the MMP and should address the prioritised user needs and fulfil expec-
tations of user experience.

Jeff Patton (2014) suggests drawing a horizontal line across the story map to identify
the first deliverable. Everything above the line is in the first deliverable, and everything
below the line will be done in subsequent deliveries as shown in Figure 12.8 below.
Each deliverable, whether an MVP or MMP, should attempt to encompass the minimum
set of stories required to meet the needs of the business. Patton’s technique of ‘Good,
Better, Best’, combined with MoSCoW prioritisation (Chapter 9), may be used to define

201

AGILE AND BUSINESS ANALYSIS

the minimum set of stories to be delivered. The earlier the deliverable is demonstrated,
the quicker learning can take place. This will help to avoid wasting money and time –
after all, initial ideas may turn out to be wrong!

Figure 12.8  Using the story map to define deliverables

Creating a solution with just the right amount of features sounds like common sense.
After all, why would a project want to deliver more features than are necessary?
However, determining the right amount of features can be difficult, so sometimes pro-
jects deliver over-engineered solutions that contain unnecessary features. Where this
is the case, the additional features can clutter the user interface, making the system
difficult to use, and can also increase maintenance cost. This is why the MMP is an
important concept, as it helps the project team to focus on developing the features that
matter to the customer.

CONCLUSION

This chapter has looked at a range of techniques that are relevant to agile projects,
primarily where the focus is on software development but business application is also

202

MODELLING STORIES AND SCENARIOS

possible. Business analysts are well aware of the need to expand their toolkits in order
to ensure that they can adapt to the range of situations possible on a change project.
The techniques discussed in this chapter are beneficial in exploring requirements with
customers such as end users and enabling the evolution of detail during the develop-
ment process.

REFERENCES

Cohn, M. (2004) User stories applied. Boston, MA: Addison Wesley.

Jefferies, R.E. (2001) Essential XP: card, conversation, confirmation. Ron Jefferies.
Available from: http://ronjeffries.com/xprog/articles/expcardconversationconfirma-
tion/ [20 December].

North, D. (n.d.) Introducing BDD. Dan North & Associates. Available from: https://
dannorth.net/introducing-bdd/ [20 December 2016].

Patton, J. (2014) User story mapping. Sebastopol, PA: O’Reilly Media.

Scaled Agile Framework (n.d.) Available from: www.scaledagileframework.com
[19 January 2017].

Wake, W.C. (2001) Extreme programming explored. Upper Saddle River, NJ: Addison
Wesley.

FURTHER READING

Agile Alliance (n.d.) User Stories. Agile Alliance. Available from: www.Agilealliance.org/
glossary/user-stories/ [20 December 2016].

Agile Inc. (n.d.) SAFe 4.0 for Lean Software and System Engineering. Agile Inc. Available
from: www.scaledAgileframework.com [20 December 2016].

Ambler, S. (2002) Agile modeling: effective practices for eXtreme Programming and the
unified process. New York: John Wiley & Sons.

Ambler, S. and Lines, M. (2012) Disciplined Agile delivery: a practitioner’s guide to Agile
software in the enterprise. Upper Saddle River, NJ: IBM Press.

Bittner, K. and Spence, I. (2002) Use case modeling. Boston, MA: Addison Wesley.

Cadle, J. (ed.) (2014) Developing information systems. Swindon: BCS.

Cockburn, A. (2000) Writing effective use cases: the Agile software development series.
Boston, MA: Addison Wesley.

Jacobson, E. (1995) The object advantage: business process reengineering with object
technology. New York: Addison Wesley.

203

13	� ORGANISING TASKS AND
REQUIREMENTS

This chapter covers the following topics:

yy types of requirement;

yy the requirements catalogue;

yy the itemised backlogs;

yy requirements catalogue or solution backlog?

yy recording non-functional requirements;

yy hierarchy of requirements.

INTRODUCTION

Business analysts may be involved in many different types of project. For example,
software development, process change, capability uplift or hybrid projects that encom-
pass many different aspects. Whatever the project, there will be a business context that
provides a rationale for the change and some high-level business requirements that
form a backdrop for the project against which more detailed requirements may evolve.
Prioritisation (see Chapter 9) plays an important part in determining which projects
within the analysis portfolio are enacted and, within projects, which business require-
ments are included within the initial solutions delivered to the business.

Understanding the business context for a change project is vital. Without business
analysis to determine the nature of the problem to be solved or the opportunity to be
grasped, and without understanding of the high-level business requirements, there is a
risk of a myriad of detailed requirements being raised in a fragmented and inconsistent
manner. To overcome this possibility, there has to be some early understanding and
documenting of the business context and the business needs to be addressed. This does
not mean that every last detail of every business requirement has to be documented
and cross-referenced; it does mean, however, that an agile business analyst needs to
ensure that there is sufficient documentation containing the required level of detail. This
requires business analysts to work closely with their business customers, using their
domain knowledge and analytical skills to uncover where effort needs to be expended
and at what point.

Managing the requirements is also important so that those with the potential to offer
value at an early stage or overcome an urgent problem are progressed first, while other

204

ORGANISING TASKS AND REQUIREMENTS

aspects to be tackled at a later stage are recognised and not overlooked. Also, changes
to the high-level scoping requirements need to be expected and processes to handle
such changes must be embedded within the project approach. Having said this, it is also
important to recognise that there is little point in documenting and managing require-
ments purely for the sake of producing and controlling documentation; there has to be a
genuine need to be addressed and the approach adopted has to be sufficient to address
this need. Understanding the levels of requirements definition, the different ways in
which requirements may be documented and the alternative governance mechanisms
will help business analysts to deliver beneficial solutions at the earliest stage possible.
This is explored further in Chapter 11.

This chapter looks specifically at the different types of requirements and the require-
ments hierarchy and explores their value in an agile change project; it also discusses
the different ways requirements can be recorded and managed.

TYPES OF REQUIREMENT

One of the commonly used structures distinguishes between the four different
types of requirement shown in Figure 13.1 below: general, technical, functional and
non-functional requirements.

Figure 13.1  Types of requirement

205

AGILE AND BUSINESS ANALYSIS

The rationale for these categories is that each one focuses on different aspects of a
solution, with the business and technical requirements providing strategic and archi-
tectural contexts for the solution. The four types of requirement are described below.

General requirements These are the overview general requirements to be
addressed by the solution. Some of these requirements
may be enforced by law, for example, regulatory require-
ments. Others may be internal policy, for example, market-
ing or branding requirements. Other general requirements
may concern requests from senior business managers, for
example, for a new service offering. Some general require-
ments offer a composite view of desired features or func-
tional requirements and need to be decomposed when
considering the solution in further detail.

The general requirements set out the context for the
change project. Some – such as those setting out com-
pliance or policy requirements – may have been defined
for the entire organisation during a previous project and
therefore may be reusable. However, these requirements
are still subject to prioritisation and it is often the case
that they are the most important requirements to prioritise
because they indicate where effort should be focused and
at what point. Some of these requirements may have been
suggested by stakeholders without consideration of cost or
feasibility or impact. It is vital that business analysis is con-
ducted to examine the rationale for each requirement and
to determine whether there is a real business need to be
addressed and the cost of doing so, the goal to be achieved
in delivering the requirement and the urgency with which
the requirement should be delivered.

Technical requirements Most organisations have defined technical standards of one
sort or another; the larger the organisation, the greater the
likelihood of extensive technical standards. However, even
the smallest of organisations is likely to have standardised
on software for documentation and communication.

An understanding of the technical constraints is an impor-
tant aspect of a change project, as it could mean the differ-
ence between success and failure. There may be an entire
technical infrastructure with selected hardware and soft-
ware, networking and communication suppliers. There may
be standards for data definition and transmission. Failing to
understand these requirements could cause serious prob-
lems and delays. However, many of them are reusable so
they should not have to be defined for each project. An agile
business analyst needs to be aware of these requirements
and ensure that previous definitions of technical constraints
are used where possible.

206

ORGANISING TASKS AND REQUIREMENTS

Functional
requirements

The functional requirements set out features and goals
that should be met by the solution. A fundamental aspect
of agile business analysis involves considering the most
appropriate way to elicit, elaborate and record functional
requirements.

Functionality may be explored and documented in many
ways, as set out in Chapters 11 and 12. For example, it may
be helpful to analyse and model functionality using tech-
niques such as use cases and user stories. These artefacts
may be created at different levels, providing a clear link
between the business need and the proposed solution. They
also offer a means of recording the required features and
the goals to be achieved by the solution. They show a clear
link between the business and solution requirements when
using these techniques.

However, in some cases, a catalogue of requirements may
be the most relevant approach. For example, if a project
has a strong contractual basis, it may be necessary to list
the requirements in a catalogue and clearly identify aspects
such as the owner, the rationale and any cross-references
to other project documents.

Non-functional
requirements

Non-functional requirements define the level of service
quality to be provided by the solution. They cover a range of
areas, in particular:

yy access and security;

yy capacity and scalability;

yy availability, robustness and maintainability;

yy business continuity, backup and recovery;

yy performance and response;

yy deletion and archiving;

yy compatibility and interfacing;

yy accessibility and usability.

These requirements may be recorded within the functional
requirements documentation, such as where a non-func-
tional requirement – for example the speed of the response
– relates to a specific functional requirement to provide
some information or take some action. An example might
be in a restaurant, where an order must be taken within ten
minutes of seating customers at a table. A non-functional
requirement that is embedded within the description of
a functional requirement is sometimes referred to as an
associated non-functional requirement or could be written
as detailed acceptance criteria using techniques such as
BDD, as discussed in Chapter 12.

207

AGILE AND BUSINESS ANALYSIS

Other non-functional requirements apply to several func-
tional requirements and may be relevant across the entire
solution. For example, wherever information or data is
recorded or accessed, there may be an overarching require-
ment setting out the level of access available to different
user roles. These requirements are sometimes referred to
as system-wide or solution-wide non-functional require-
ments.

The means of recording non-functional requirements
needs to be considered carefully whatever the develop-
ment approach to be used. However, this is particularly the
case when working in an agile environment. This subject is
considered in further detail later in this chapter.

THE REQUIREMENTS CATALOGUE

A catalogue is a central repository of information. It may encompass a list of services
or products or any other item that needs to be listed and organised centrally. A require-
ments catalogue provides a central repository for requirements that have been identi-
fied for a particular change project and is typically organised such that requirements
that have similarities are located together.

Each requirements catalogue entry records the information about a specific require-
ment. This information may include some of the following aspects for each requirement:

yy unique identifier;

yy name and description;

yy type of requirement;

yy owner with responsibility for decisions about the requirement (for example, the
level of priority);

yy source who identified the requirement;

yy designated level of priority;

yy related requirements (such as non-functional requirements) and other
documents;

yy rationale justifying the inclusion of the requirement;

yy version history for the requirement.

One of the frequent misconceptions about the requirements catalogue is that each entry
has to be definitively and rigorously complete before the catalogue can be agreed. This
misconception needs to be challenged, as in many circumstances it is not desirable, or
even possible, to provide a detailed definition. A general requirement may be a high-level
statement such as ‘the solution must use company branding standards’. In this case,
there would be little point in spending time recording links to the potentially numerous
related requirements; it just needs to be accepted that this will be applied whenever

208

ORGANISING TASKS AND REQUIREMENTS

relevant to the solution. Similarly, technical constraints and some non-functional
requirements, such as those related to accessibility and usability, have a solution-wide
application and could be cross-referenced to many functional requirements. However,
to do this would be a waste of time; understanding that these requirements are relevant
to each development iteration would suffice.

It may also be the case that the requirements catalogue is used to record high-level
functional requirements where the detail is defined using modelling approaches. So, we
might define the following requirement: ‘the solution must record customer details’, but
then use a data model to define what is meant by ‘customer details’. In the past, require-
ments catalogues have been used to contain as much narrative information as possible;
information that has then been duplicated (and sometimes contradicted) in business
process, use case and data models. This has meant that time has been spent on activi-
ties of little value and often areas of very low priority have been explored to the same
level of detail as those that are absolutely essential. If we want to use a requirements
catalogue, we need to ensure that it is used in an informed way, recording relevant
information to support the development of the required solution.

Agile business analysis is founded on applying business analysis in line with the agile
philosophy and principles. Documentation that is sufficient to the situation is a key ele-
ment of this approach and the use of the requirements catalogue should be considered
within this context. Agile projects may find it helpful to use a requirements catalogue
for some categories of requirement – for example, the general requirements – because
they provide a contextual view. However, it may be more beneficial to use an alternative
approach such as a backlog of user stories to record areas of functionality requested
by customers.

THE ITEMISED BACKLOGS

The concept of a backlog derives from the Scrum approach to software development.
Each backlog provides a means of listing the work items to be conducted by the project
during the development of the product. Hence, Scrum calls the backlog the ‘product
backlog’. However, a software product is not sufficient to improve business; it needs
to be deployed in conjunction with the other required changes to processes, jobs, skill
enhancements and organisational changes.

Business analysis has always taken a holistic view, moving beyond focusing on software
products to think about multi-faceted solutions to business problems or opportuni-
ties. In some situations, there may not be a need for software at all. For example, a
simplification to a process might address a particular business problem and deliver
the required benefits. Therefore, looking at the concept of a backlog from a business
analysis perspective, a solution backlog containing a list of itemised requirements to
be met, is more relevant. The solution backlog might relate purely to a software prod-
uct but, in our experience, the chances of such a limited solution generating business
improvements are low.

While the solution backlog contains the entire set of required work items, we also need
to consider the use of backlogs in driving the solution development. There are two other
backlogs to consider: the release backlog, which contains the work items that form the

209

AGILE AND BUSINESS ANALYSIS

set of changes that are to be deployed into operation; and the iteration backlog, which
lists the items to be worked on during a specific iteration. The release backlog contains
the minimal set of items from the solution backlog that will offer value when delivered
to the stakeholders. These three versions of the backlog are represented in Figure 13.2
below.

Figure 13.2  Three different views of the backlog

The solution backlog

The term ‘solution backlog’ reflects the business analysis world view that change
projects focus on providing a solution that addresses a problem or grasps a business
opportunity. The solution may involve a software product but invariably, for a business
change to be successful, it may also encompass broader aspects such as people,
process and organisational changes. Each of these aspects needs to be considered
when scoping the proposed solution.

When the project is focused on software development, the backlog items drive the work
of the software development team; this is the focus of agile methods such as Scrum and
XP. However, as described in Chapter 3, business analysts are often involved in different

210

ORGANISING TASKS AND REQUIREMENTS

aspects of change projects so may need to apply a broader, more holistic focus. In these
situations, the backlog should reflect the need for the solution to encompass a range
of areas. Business epics (discussed in Chapter 4) may be used to describe these work
items. For example, where the project is concerned with business process change, the
backlog items may include the following:

yy As an expenses administrator, I need to have a set of common instructions for
staff so that they can provide the information and receipts I require.

yy As an internal auditor, I need to have access to the relevant audit guidance so
that I can produce an accurate report regarding the audit status of a department.

Once these items reach the level of priority where they are allocated to an iteration for
further development, there will need to be collaboration and communication with busi-
ness stakeholders in order to elaborate on the requirement and ensure that the needs
are met. In doing this, business analysis is needed to investigate the requirement and
ensure that there is a clear justification for the changes. This may involve challenging
some of the detail provided by the business stakeholders to ensure that the root causes
of any problems are uncovered and the actual issues, rather than the manifest symp-
toms, are addressed by the solution.

The solution backlog allows business analysts to think holistically about the elements
to be included in the backlog and extend their focus beyond software development.
The solution backlog has similarities to the requirements catalogue in that it provides
a prioritised master list of the items to be considered for inclusion in the solution. It is
also a living document in that it develops over time, beginning with an initial set of items
and evolving as more detail of the required features emerges. It is prioritised using an
approach to rank or categorise the items. Chapter 9 sets out the different prioritisation
approaches that may be used to do this.

An accepted feature of the solution backlog – and possibly one of the key differences
with the requirements catalogue approach – is that there is not a sense that the backlog
is ‘signed off’ as a complete record of the requirements for the solution. Instead, it is
accepted that there is further understanding needed and more details to uncover. The
solution backlog should be maintained, and priorities adjusted, using a collaborative
approach that involves the project team and the key business stakeholders.

The items recorded in a backlog may be of different types. For example, they may be
functional requirements that set out what the solution must enable the customer to
do. Or, they may be non-functional requirements that define the levels of quality to be
offered by the solution. The functional features to be delivered as part of the solution
may be defined using techniques such as use cases or user stories; the exact technique
used will depend upon the situation as discussed in Chapter 11.

Ordering and reordering the solution backlog

The development of the solution requires the project team to explore the work items
documented in the backlog. This work may cause additional items to be identified as
the team explore the solution in further detail and this will require re-prioritisation of
the backlog.

211

AGILE AND BUSINESS ANALYSIS

Where the work items are recorded user stories, they are used by the project team to
evolve the understanding of what is to be delivered. This work may cause additional
user stories to be generated, which are added to the backlog. The new user stories may
be large or may be of a more manageable size and complexity. Adding new stories will
require the re-prioritisation of the backlog so that the most important items are high-
lighted; this will ensure that they are incorporated within the next release or iteration.
Therefore, there is an ongoing, iterative approach to prioritisation that will require col-
laboration with the business stakeholders. The aim of a business change project is to
improve the work of an organisation or produce a marketable product that may be sold
by the organisation. The work to achieve this requires ongoing awareness of the busi-
ness context into which any solution will be delivered. As a result, business analysis is
essential if decisions regarding prioritisation, ordering and selection of the backlog items
are to be effective and in line with business needs. This ‘ordering and reordering’ of the
backlog is also described in Chapter 15 and referred to as ‘product backlog refinement’.

The timing of the backlog ordering activity can be critical. It is possible to do this dur-
ing an iteration, but this approach may deflect the project team from the work they are
undertaking. However, if the business analyst is involved in the reordering activity, this
would allow the work of the project team to continue while ensuring that the basis for
deciding upon the next iteration is in place. A further benefit of the business analyst
involvement in this activity is that it helps to ensure that the development work remains
consistent with the original goals and business case for the project.

The release backlog

Solutions developed using an agile approach will be delivered in releases, or increments,
and each increment may comprise a set of software features, process improvements
and organisational changes. An increment may be developed during one or several
iterations but essentially is delivered into operation once there is a set of changes that
is internally consistent and will offer value to the customer organisation.

The release backlog is an important concept because it sets out what is to be delivered
in the next increment. Therefore, it must be internally consistent and complete – there
is little point in introducing a partial solution that requires significant effort to be spent
on workarounds.

The iteration backlog

Each iteration needs to have a designated package of work items. These items should be
subject to analysis, development and testing within the iteration and result in functional-
ity that has the potential to be deployed. The backlog for the iteration needs to contain
a set of items to be worked on during the iteration. While the time to deliver the items
will have been estimated (Chapter 14) and the team velocity will have been calculated
(Chapter 15), it is always possible for the estimates to be incorrect or for the team to
work more slowly than predicted. As a result, it is useful to include items that have not
been prioritised as ‘mandatory’ within the iteration backlog in order that there is some
contingency should delays occur.

For example, if using MoSCoW prioritisation, the iteration backlog might contain sev-
eral ‘must have’ items, some ‘should have’ and some ‘could have’. This set of items

212

ORGANISING TASKS AND REQUIREMENTS

provides a basis for ensuring that the urgent mandatory requirements are addressed
and that there is the opportunity to work on the lower priority ‘should have’ and the
optional ‘could have’ features. Where items take longer than originally conceived, per-
haps because greater complexity emerges during the development team’s work and
delays are encountered, the lower priority requirements provide a means of ensuring
that no time is wasted in the iteration and that the urgent mandatory requirements are
delivered. The inclusion of different priority levels provides contingency and reduces
risk. The iteration backlog is a key element in iteration planning and is considered in
detail in Chapter 15.

REQUIREMENTS CATALOGUE OR SOLUTION BACKLOG?

It is important to recognise that the focus of the requirements catalogue is different to
that of the backlog. For this reason, it may be helpful for an agile change project to have
both documents, each providing a specific set of information as follows:

yy a requirements catalogue setting out certain types of requirement, in particular
the general business requirements and technical requirements. It may also be
useful to catalogue non-functional requirements; this is discussed further in a
later section of this chapter;

yy a solution backlog setting out the work items for the project team, in particular
any functional requirements to be delivered by the solution.

The importance of pre-project analysis, where a proposed initiative is investigated and
options evaluated, was discussed in Chapter 6. This work is unlikely to benefit from
the development of a solution backlog because at this stage it is not known whether
a solution is required or feasible. However, it will always be important to record the
business requirements, as they form the basis for understanding why a change pro-
ject is needed and the key aspects to be included. There may also be some technical
issues or constraints that need to be considered when evaluating the feasibility of a
proposed solution. A requirements catalogue is a useful document to record these types
of requirements.

The nature of some of the requirements, for example, general requirements and techni-
cal requirements, may mean that they need to be viewed separately from the functional
features to be delivered. A data protection requirement, for example, may need to apply
across all the features of the solution and the different elements, whether software,
process or people. These requirements need to be defined so that they provide a con-
text for the rest of the work, and techniques such as use cases or user stories do not
offer an efficient way of doing this. It is preferable for the solution-wide requirements
to be recorded as a distinct set. A requirements catalogue setting out any solution-wide
requirements and used in conjunction with a solution backlog formed of work items to
be delivered would meet several needs. This approach would:

yy distinguish those requirements that need to be considered during every iteration
and ensure that they are visible to the project team;

yy provide a means of grouping the contextual requirements that set out the
business and technical constraints;

213

AGILE AND BUSINESS ANALYSIS

yy enable the work on the various elements of the solution (software, process,
people and organisational changes) to have access to a unique definition of the
solution-wide requirements;

yy provide a basis for thinking about the best way to record requirements rather
than trying to force them into an unhelpful format.

It is useful to distinguish between the work items to be delivered during an iteration
and the requirements that must be applied to the entire solution. The solution backlog
is an excellent tool for recording work items to be undertaken on a change project. It
provides an effective means of driving the release and iteration backlogs, and helps
to ensure that prioritisation work is focused on meeting immediate needs. However,
a requirements catalogue provides an extremely useful structure and format for the
broader requirements that are not best defined using feature-based techniques such
as use cases and user stories. Using a requirements catalogue in conjunction with the
solution and related backlogs will enable a change project to ensure that work is gov-
erned effectively and conducted to address business needs.

RECORDING NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements are often the most difficult requirements to define. There
are several reasons for this, including:

yy the wide range of non-functional requirements to be considered;

yy there is often a lack of focus on non-functional requirements until later in the
project;

yy the complexity surrounding some of these requirements.

Another issue is that some non-functional requirements only apply to a specific feature
or a small area of functionality, whereas others apply much more widely. A response-
time requirement may relate to just one user story – for example, the time to provide a
quotation for a service – while another such non-functional requirement – for example,
the time to return information following a query – may apply across the entire solution.

Some non-functional requirements, such as archiving and deletion, relate closely to
legal and business policy needs and may be concerned with areas of data rather than
functional requirements. Others, such as availability, may apply to every aspect of a sys-
tem. Some of these purely relate to an IT system, some to a combination of manual and
automated processes, while others may be completely manual. As this indicates, there
are a lot of reasons why non-functional requirements require considerable analytical
work if they are to be defined clearly.

Where a non-functional requirement has a very specific purpose, it may be included
within the relevant user story. If we take as an example the response time requirement
mentioned above, we might develop a user story as follows:

yy As a theatre-goer I want to find out the availability of tickets within 5 seconds
so that I can decide whether or not to make a booking.

214

ORGANISING TASKS AND REQUIREMENTS

The bold section comprises the non-functional requirement relating to response time.
As this is documented within a user story, it provides enough information for further
discussion but does not set out the requirement in detail.

However, if there is a non-functional requirement that applies solution-wide, then
documenting it within each user story would be impractical and confusing. Instead,
it may be preferable to document it within a requirements catalogue section that is
dedicated to non-functional requirements. A good example of this would be a security
requirement where there are several different levels of security across different areas
of data, one way of recording this succinctly is to use a matrix. An example setting out
the access permissions and limitations for a ticket sales website is shown in Figure
13.3 below.

Figure 13.3  Example requirements catalogue definition of access requirements

Limitations to be placed upon the following website usage categories:

control data, for example, passwords, registrations: level 1
customer data: level 2
sales order data: level 3
website management system: level 4
content information deemed to be valuable: level 5
content information not within level 5: level 6

Website controller Band A (levels 1, 3, 4, 5, 6)
Marketing director Band B (levels 2, 3, 5, 6)
Marketing assistant, sales assistant Band C (levels 3, 5, 6)
Information seeker, potential customer,
purchaser

Band D (level 6)

Registered customer Band E (levels 5, 6)
Website maintainer Band F (levels 4, 5, 6)

Another possibility is to highlight non-functional requirements at an outline level but
using a more visible form. For example, as shown in Figure 13.4, it can be useful to cre-
ate sticky notes that provide the essence of the non-functional requirements that are
particularly relevant to a current iteration. The specific details may then be recorded
formally in the catalogue where they can be accessed when needed and the notes
ensure that the relevant non-functional requirements are kept visible to the agile team.
This approach is particularly useful for non-functional requirements that apply across
the solution and could also be used for constraints related to general and technical
requirements.

215

AGILE AND BUSINESS ANALYSIS

Figure 13.4  Visible non-functional requirements and constraints

Note: NFR = non-functional requirement.

Each non-functional requirement should be considered separately to identify the best
recording mechanism. A general rule is that solution-wide, non-functional requirements
are best documented in a catalogue, although it is advisable to couple this with the
more visible approach described above. The catalogue will provide a means of describ-
ing each requirement in the most appropriate way; the access requirements example
shown above is an example of one approach but others will be required for different
types of non-functional requirements. A textual description of the requirement may also
be useful where it applies to just one feature or user story but contains significant rules
and complexity.

HIERARCHY OF REQUIREMENTS

The different types of requirement form a hierarchy that is invaluable during business
analysis, particularly within an agile environment. This hierarchy is shown in Figure
13.5 below.

Some of the general requirements, as discussed earlier, may state legal regulations
or policies with which the solution must comply. Some requirements are raised by
stakeholders who know what they want the solution to include to achieve a business
goal. These are all within the general requirements category and are at the top of the
requirements hierarchy. The general requirements set the context and the high-level
goals for the solution. They also provide the basis for further analysis and definition,
and thereby support the elicitation and elaboration of the more detailed functional
and non-functional requirements to be provided by the solution. The technical require-
ments have a different role in that they set constraints within which the functional and
non-functional requirements must operate. Therefore, there is a hierarchical link with
both general and technical requirements, each with a different focus.

The general and technical requirements must be understood if the delivered product or
system is to offer value to the organisation. Without this understanding, the customers
may request features or quality characteristics that would meet local needs or support

216

ORGANISING TASKS AND REQUIREMENTS

Figure 13.5  Hierarchy of requirements

individual experiences but not address broader organisational requirements or consider
the impact of such requests on timescales or costs. A recent report (Luftman et al.,
2012) emphasised the importance of the alignment between the business and the IT
function, and the concerns chief information officers have about the lack of such align-
ment. This is where business analysis can offer insights that are necessary if requests
for services, features and characteristics are to be considered advisedly. One way of
ensuring this is to consider the rationale for a requirement – in particular how it links
to aspects such as the business strategy and CSFs for the organisation. In some situa-
tions, asking the customer why a particular requirement is needed can be vital in elicit-
ing the real nature of the business need and ensuring that root causes of problems are
addressed rather than symptoms just being masked.

Deriving detailed requirements

Where an overarching business requirement or need has been expressed, it is often
possible to analyse the requirement to derive more specific solution requirements. For
example, a business policy regarding customer support is likely to generate several
usability and accessibility non-functional requirements; data protection regulations
concerning confidentiality of personal data will give rise to non-functional require-
ments regarding access permissions and restrictions, deletion timescales and so on; a
business process requirement regarding a new service to be offered to a customer may
cause the creation of functional requirements covering aspects such as information
provision, service registration and service delivery.

217

AGILE AND BUSINESS ANALYSIS

Understanding the hierarchy places any customer requests firmly in the business con-
text and enables the business analyst to understand the rationale for the requests. It
also provides a structure for understanding overarching business goals that may then
be decomposed into lower-level goals (see Chapter 8).

Hierarchy of use cases

Business use cases, as described in Chapter 6, provide an excellent basis for setting
out the overall context and scope for a change or development project. They provide a
means of identifying user roles and reflecting the needs expressed by senior managers
within the organisation. They can also be used to relate business events (or triggers) to
a business process and to the achievement of a business goal. They provide a means
of prioritising at a business need level and allow the customers to clearly show which
areas of the solution are considered to have the most potential value.

Use cases can be decomposed from a business to system level where the solution is an
IT system; this is reflected in Figure 13.6 below. This also provides a hierarchical struc-
ture whereby decomposed business goals and the corresponding functional require-
ments can be represented. Ensuring that the hierarchy and the links between the levels
reflect the needs of the business is a key business analysis task.

Figure 13.6  Decomposed business use case into system use cases

An alternative decomposition may form a hierarchy that includes system use cases,
reflecting the functionality to be provided by an IT system, plus other actors providing
services or conducting work that is outside the system under development. The busi-
ness use case may incorporate work that needs to be performed manually by the busi-
ness staff or may require services to be provided by an external organisation (see such
as a requirements Figure 13.7). A typical example is the use of online payment services
from specialist organisations, such as Worldpay or PayPal.

218

ORGANISING TASKS AND REQUIREMENTS

Figure 13.7  Decomposed business use case showing external actor component

One of the major limitations of use cases is that they document functions to be provided
by a business or IT system. So, business requirements such as complying with data
protection legislation or applying organisational branding, are not well recorded using
a business use case approach. Similarly, the majority of technical constraints and non-
functional requirements are recorded more accurately using alternative approaches
such as a requirements catalogue or matrix.

Hierarchy of user stories

Agile practitioners have long created user stories as a means of recording and defin-
ing the features required in a solution. A user story is a statement of desired software
functionality told from the perspective of a user role. A user story should be of a suffi-
ciently small size to be delivered within an iteration. Chapter 12 describes the structure
and format of user stories, explaining that in themselves they do not contain enough
information to deliver the finished product or solution; they form the basis for further
analytical and design work.

However, user stories may be developed at different levels of granularity. Sometimes
the business stakeholders identify user stories that are at an overview level, requiring
the delivery of a business goal; often these user stories cannot be developed within an
iteration because of their size. Such user stories are known as ‘epics’ and are typically
too large and complex to estimate with any degree of accuracy. Epics need to be split
into smaller user stories that can be delivered by an iteration. It is possible that some
of the smaller stories within an epic may be delivered by the manual processes sup-
ported by the software rather than by the software product itself. Again, we can form a
hierarchy, using the user story technique, to move from high-level business stories and
goals to more detailed and specific stories with smaller goals.

User stories are used during both the analysis and the planning process for agile soft-
ware development projects. They provide insights into the features to be included in a
software product and provide a means of breaking down functionality to a granular level.

219

AGILE AND BUSINESS ANALYSIS

One of the criticisms often levelled at user stories is that they can present a fragmented
picture of the solution and, when this approach is used, it is difficult to see the whole
picture. One way of dealing with this issue is to combine the development of use cases
and user stories such that a holistic view of the required functionality is obtained. The
user roles are the key sources for both use cases and the user stories so these tech-
niques work well together to identify and define functionality. Two possible approaches
to avoiding fragmentation are:

yy Build a hierarchy of use cases, from business to system. These diagrams will
enable the analyst to gain a contextual view of the situation under investigation
and help to ensure that all aspects are considered. The system use cases can then
be explored using user stories. This hierarchy is reflected in Figure 13.8 below.

Figure 13.8  Hierarchy of use cases leading to user story development

yy Use a context diagram (as discussed in Chapter 11) to define the set of user
roles prior to identifying the user stories. This will separate out the discussion
about user roles, providing a means of focusing on them and building a good
set before beginning to identify user stories.

Whichever is the case, it is useful to recognise that the higher-level, more complex user
stories are typically identified first and then decomposed to reveal specific user stories
focused on achieving more detailed sub-goals. The user stories are recorded in the solu-
tion backlog and prioritised to indicate which features are the most important. The effort
to develop each user story is estimated. A set of estimated, prioritised user stories can
then be selected to form the basis for the work of an iteration.

220

ORGANISING TASKS AND REQUIREMENTS

Business analysts may be needed to explore the user stories, particularly if there are
more detailed aspects such as tacit knowledge, data, business rules or interactions to
be uncovered. These more detailed areas are not recorded in the backlog but form the
models associated with the original user story.

CONCLUSION

There are several different approaches to recording requirements, each of which may
be helpful according to the particular circumstances. This chapter has looked at some
of the standards that may be adopted to record and manage the features to be included
in a solution.

Business analysts should have expertise in applying a toolkit of approaches to elicit,
analyse and document business needs at different levels and across a range of aspects.
For this reason, they are well placed to offer support to the project, helping to record,
prioritise and investigate the solution requirements, features and goals. Identifying
the most relevant and useful approach to adopt when recording these items is a key
element of business analysis. It is particularly important when working in an agile
development environment, as following documentation standards blindly or recording
unnecessary levels of detail at an early stage can result in wasted efforts that could
have been expended elsewhere to deliver greater benefit.

REFERENCE

Luftman, J., Zadeh, H.S., Derksen, B., Santana, M., Rigoni, E.H. and Huang, Z. (2012) Key
information technology and management issues 2011–2012: an international study.
Journal of Information Technology, 27 (3): 198–212.

FURTHER READING

Cockburn, A. (2000) Writing effective use cases: the Agile software development series.
Boston, MA: Addison Wesley.

Cohn, M. (2004) User Stories applied: for Agile software development. Boston, MA: Addison
Wesley.

Paul, D., Cadle, J. and Yeates, D. (2014) Business analysis: 3rd edition. Swindon: BCS.

221

14	� ESTIMATING AGILE PROJECTS

This chapter covers the following topics:

yy agile estimation approaches;

yy why and when to estimate;

yy estimation techniques.

INTRODUCTION

Accurate estimation is essential to all types of change projects, but the Just Enough,
Just in Time concept presents new challenges for business analysts working alongside
or within agile teams. When the detail of project scope is not known up front, how can
the team provide useful estimates?

This chapter introduces the key principles that underpin most agile estimation tech-
niques, and puts them into context. Examples demonstrate how agile teams use esti-
mation in practice and highlight how these techniques can be utilised effectively by
business analysts.

AGILE ESTIMATION APPROACHES

Business analysts will be familiar with estimation, and there are many well-documented
techniques and methods. Estimation on agile projects is just as important as in other
types of project, but there are a few differences and a few new techniques. These
techniques apply to all types of project, not just those involving software development.

Agile approaches are different to traditional approaches and it is important that business
analysts understand these differences if the agile values and principles are to be upheld.

The agile values promote ‘Responding to change over following a plan’ and ‘Customer
collaboration over contract negotiation’, and there is a principle that ‘Working soft-
ware is the best measure of progress’. Some sources have now replaced ‘software’
with ‘product’, which accepts that elements of a product, other than software, should
be considered.

222

ESTIMATING AGILE PROJECTS

Consequently, these agile values and principles suggest that estimates should be
treated in a somewhat different way from traditional projects. Specifically, agile teams
approach estimation with an assumption that the factors that contribute to the esti-
mate will change, and hence the estimates will change. This means that it is vital to
understand what is being estimated, and why. An estimate is a best guess, based on
the knowledge that the team has at the time. It should also have a tolerance, or margin
of error. This might be quite large at the start of a project, because so many things have
the potential to change. As the project proceeds, more things become certain, risks are
reduced and the estimates can be more precise. In addition, more of the work has been
completed, leaving less work still to be done.

This is, in some ways, similar to what happens on traditional projects – the initial esti-
mates may be updated as the project progresses, usually at the end of the project
stages. The difference with agile estimating is that it is done on an ongoing basis, and
there is a focus on preparing detailed estimates only for elements that are required in
the near future and not on estimating elements that may never be developed.

It should be noted that all estimates made during the course of the project are accept-
able; it’s just that early in a project, the estimates are less precise and more subject to
change. Figure 14.1 below illustrates the estimation cycle used in an agile project.

Figure 14.1  Estimation cycle

WHY AND WHEN TO ESTIMATE

Estimation is required at all stages of an agile development cycle, and will serve differ-
ent purposes at each stage.

yy At the very start of a project, the team may have to estimate how long the whole
project will take, or how much work can be expected in a given timescale.

yy As the product backlog is developed, estimates of the size of the backlog items
are required, but should not be too detailed in case they are not required.

223

AGILE AND BUSINESS ANALYSIS

yy At the start of an iteration, the team must estimate how much work they think
they can deliver in the iteration.

yy As the user stories are broken down into tasks, the amount of time each task
should take is sometimes estimated.

yy Throughout an iteration, the team may estimate whether they are on track to
deliver the user stories with which they started.

yy At the end of an iteration, the velocity of the team is re-estimated, based on the
evidence from the just-completed iteration. This may lead to re-estimation of
the project or release milestones. Velocity is explained in Chapter 15.

ESTIMATION TECHNIQUES

Agile estimation approaches mostly rely on the whole team contributing to the estimate
(Wideband Delphi), because the whole team (including business analysts) will be deliv-
ering the project; and on some form of relative sizing, because humans are much better
at comparing things than at calculating actual numbers. These approaches allow agile
teams to come up with helpful estimates that are accurate enough without attempting
to be highly precise.

Wideband Delphi

Wideband Delphi was developed in the 1970s by Barry Boehm and John Farquhar. The
technique relies on obtaining estimates from suitably qualified people and then synthe-
sising them to produce the final estimate. Most agile estimation techniques rely on the
theory of Wideband Delphi and some form of relative sizing.

General process

yy Each estimator is given a specification of the work (activity, task or deliverable)
and is asked to provide their estimate for it. These estimates are compiled
anonymously.

yy The estimates are then summarised (still anonymously) and the summary is
circulated to all the estimators.

yy Estimators reconsider their own estimates in the light of the summary and
provide a revised estimate if they wish.

yy The above process is repeated as many times as necessary to achieve a
reasonable consensus.

The participants bring different experience and knowledge to their estimates and,
because the estimates are anonymous, personal disagreements are avoided and the
estimates can be considered objectively.

224

ESTIMATING AGILE PROJECTS

Relative sizing

Most people have difficulty in defining precise estimates for complex tasks. However,
they find it much more straightforward to make comparisons between estimates for
different tasks.

Relative sizing is a way of using experience to gauge the size of something using his-
torical information or judgement. It can allow very precise estimates, quickly, without
requiring complex analysis.

The concept can be illustrated with the jar of jelly beans shown in Figure 14.2.

Figure 14.2  Relative sizing using jelly beans

Trying to estimate the number of jelly beans is a surprisingly difficult task, because
there is no reference point upon which to base the estimate. However, if the number of
jelly beans in a full jar is known, the problem becomes much simpler. This is because
humans are very good at judging relative sizes – we find it quite straightforward to tell
that something is twice as big or four times as long. Therefore, being told that a full
jar contains 440 beans makes estimating how many are in the jar in Figure 14.2 much
easier, and results in a much more precise and accurate estimate.

This is fundamental to agile estimation; comparing the requirement or item being esti-
mated to previous items results in a much more accurate estimate.

The things being compared don’t have to be exactly the same, they just need to be
similar enough that they can be compared. For example, being told how many smarties
were in a full jar should still result in a reasonable estimate of the number of jelly beans
in the half-full jar.

225

AGILE AND BUSINESS ANALYSIS

Estimation units

Teams can estimate in any unit that helps them. The advice is generally to try to avoid
using actual time units (like days or hours). Some commonly used units are shown in
Table 14.1 below.

Table 14.1  Commonly used estimation units

User stories, epics or
number of requirements

Especially useful at the ‘whole-project’ level as they
are relatively easy to count. However, since stories
are not all the same size it can be misleading. You
can use epics or separate stories in small, medium or
large stories to make the process more granular (for
example, a 25 epic, 40 story project).

Story points A very commonly used abstract unit. What one point
means will differ between teams, so it is important
that everybody’s view of a point is the same.

Ideal developer days/
hours

This assumes a developer could spend all the time on
the work. Can be helpful to provide consistency, but it
is easy to underestimate the non-coding time in real
life, especially when deciding how much work can be
done in an iteration.

Days/hours Seemingly logical, and easy to map into available time,
but notoriously difficult to get right. Common in non-
agile projects but, really, only good for simple, well-
understood tasks.

Abstract units Non-numeric and abstract representations of size.
Examples are small, medium, large, extra-large. Or
using more abstract terms: animals, area, volume and
so on. Like story points, they abstract away from real
life, but the whole team needs to know what they mean
and how they relate. Sometimes called Nebulous Units
of Time or NUTs.

Up-front estimation

At some point in almost every project, usually around the start or before it begins,
somebody wants to know what will be delivered, when and at what cost. Given what we
know about agile projects, this is a hard question to answer. There is usually more work
to do than the team will have time to complete, and the customer is rarely certain on
scope and detailed requirements at the beginning.

To estimate how long a project might take, a traditional team may try to break down all
the requirements, estimate all the parts, add up the days and add some contingency. An
agile team might approach that differently:

226

ESTIMATING AGILE PROJECTS

yy Get together and spend some time understanding the project.

yy Think about what kinds of work will be involved.

yy Try to compare the work to previous projects.

yy Come up with a rough idea of how long it might take, perhaps as a number of
iterations, taking into account factors such as team size, familiarity with the
problem space and so on.

yy Once the team start work, they will get a feel for how fast they are going, and
can revise their estimate.

Taken at first glance, that seems a very bad way to come up with an estimate. However,
because the agile team will be delivering the product in a prioritised way, the most
important work will be delivered first. So, even if the estimate is too low, and the project
has to stop before all the requirements are delivered, the missing requirements will be
the lowest in priority. It requires trust between the project sponsors and the team and,
for teams working in a commercial context, the contract and commercial terms need
to be carefully considered.

This type of approach follows many of the agile core values and principles – it is iter-
ative, involves the whole team, uses just enough detail, and focuses on value to the
customer. It is also a good way to access the team’s tacit knowledge in a way that an
analytic breakdown of the problem isn’t able to do. Business analysts play an important
role here, particularly with their ability to think more broadly than just about the tasks
of the team, and to consider people, process, organisational and facilities aspects in
addition to software.

This overall approach can be applied to all kinds of estimation with agile teams, includ-
ing non-IT projects. The key thing to remember is Just Enough, Just in Time. For exam-
ple, items on the product backlog aren’t committed to at this point, so only need rough
sizing, and low level tasks during an iteration might not need an estimate at all.

Relative estimation (bucket method)

In this technique, a small set of estimation categories or buckets (perhaps 3–5) are
chosen as the estimate results. The team start with a story and decide which bucket it
should belong in. The next story is then discussed, compared with the first, and a bucket
chosen for it, and so on.

This is a good way to roughly divide up a backlog, and it can be particularly effective
when used at product backlog level. Because there are only a small number of possible
values, and they must cope with the smallest to largest story, the results can be a little
coarse for some types of estimation.

Examples of this include ‘T-shirt sizing’, where the ‘buckets’ are T-shirt sizes, such as
extra-small, small, medium, large and extra-large. Other teams use groups of animals
(small animals, medium sized, etc.) or measures of volume (shot, half, pint, etc.). This
method can also be used with a very limited number of choices (big/small).

227

AGILE AND BUSINESS ANALYSIS

Ordering

Sometimes called Relative Mass Estimation, this technique uses an intermediate
ordered stage. This means it can also be used for prioritisation, and can be used for
ordering and estimating other attributes, not just work. It is applied in the WSJF prior-
itisation technique used in some agile methods (see Chapter 9).

To begin, all the items being estimated should be on cards that can be moved around
a large table.

yy The first story is discussed and the team decides roughly how big they think it
is and place it somewhere on the table – on the left, if it is small; on the right if
it is big; or somewhere in-between.

yy The next story is discussed and the team decides if it requires more or less
work than the first story. It is placed on the table in the appropriate place.

yy This continues with each story placed somewhere on the table depending on
how easy or hard it is relative to the existing cards.

This results in a very visual representation of the work the team has to do, with the
hardest work at one side and the easiest work on the other.

Finally, the stories have a numeric estimate placed on them. This can be done by start-
ing at the easiest story, allocating it 1 point. The team members then work their way up
through the stories, allocating each story 1 point until the team reaches a story that they
think is twice as difficult as the first story. This gets 2 points, and so on. Any numeric
sequence could be used, including Fibonacci, or one of the relative sizing methods men-
tioned above. The important thing to remember is that it is a rough estimate and not to
dwell too much on the value.

This technique can also be used to assess priority of stories, and can be gamified where
players take it in turns to move cards around the board, challenge decisions or add a
new card.

Divide to size

This method aims to get all the items the same size as one another. The team begins
by deciding what size that should be (say, 5 points, or 1 ideal developer day). After that:

yy A story is discussed.

yy If the team believes it is the right size or less, it stays.

yy Otherwise, it is divided into more than one story, and they are discussed. This is
repeated until all the parts are the ideal size or less.

yy The team them discusses the next story.

228

ESTIMATING AGILE PROJECTS

Planning Poker®

There are several variations of planning games that agile teams use at various times to
help make estimation more fun. The most well-known is Planning Poker®, which was
developed by Mountain Goat Software. This game uses special cards to limit the choice
of estimates to promote discussion and help to reach consensus more quickly.

The game is played by the whole team, and can be used for estimating anything with
a numeric unit. It is commonly used to size user stories for the backlog. The game
uses sets of cards (See Figure 14.3) with a sequence of numbers printed on them. The
numbers usually follow a modified Fibonacci sequence (such as 0, 1, 2, 3, 5, 8, 13, 20,
40, 100).

There is a lot of uncertainty in estimation, so having discrete choices forces teams to
converge on a single number. Discussions about the uncertainty are encouraged as the
gaps between the numbers increase. Some packs of cards add in ½, infinity, ‘don’t know’
and a request for a break. The numbers can represent any numeric unit.

Figure 14.3  Planning Poker® cards

Playing Planning Poker®

The game is played in an estimation workshop or planning meeting. For each story to
be estimated, the team goes through the cycle shown in Figure 14.4.

229

AGILE AND BUSINESS ANALYSIS

Figure 14.4  Planning Poker® process

yy The story is described (often by the customer) and the team discuss it. This lets
them ask questions and clarify any assumptions or risks.

yy Each team member privately chooses their estimate for the story and deals
their card, face down.

yy At the same time, all the estimates are revealed.

yy If they are all the same, the estimate is recorded.

yy If they are not the same, the high and low votes are discussed and the reasons
behind them explained.

yy The team vote again.

yy This process is repeated until the team agree on an estimate.

yy The next story is chosen, and the entire process is repeated until all the stories
have been estimated.

The process should involve the whole team, and it is preferable that the team mem-
bers are co-located. However, there are electronic versions of the cards available
to allow remote participation. Before the meeting, the team must have a common

230

ESTIMATING AGILE PROJECTS

understanding of what the values mean. Typically, they will pick a story everyone is
familiar with from an earlier iteration and agree how many points that story repre-
sents. They can then apply relative sizing judgements to estimate the new stories.
The numbers matter – an 8-point story should be about four times as difficult as a
2-point story.

This game can be modified in a variety of ways. Teams can choose their own numbers or
number sequences, or even choose non-numeric votes such as different sized shapes
or animals (for example, flea to elephant).

One of the problems with using numbers is that people naturally relate them to
days’ effort. This can be misleading because different people work at different rates,
particularly in a multi-disciplinary team of generalising specialists. Using days as
a unit can also be easily misinterpreted by other stakeholders, particularly where
the estimates have not taken account of other activities like holidays, training or
management meetings and there is confusion between the concepts of effort and
elapsed time.

The game is usually (but not always) used to judge story size and the relative time
a story will take to deliver. Business analysts have an important role to play, as they
can often bring insights to the team that will affect their estimates. For example, a
business analyst might point out that user experience testing will require more users
than the developers thought, or that a business process will require updating, which
is additional work. They may also be aware of complex business rules that underlie
some stories.

CONCLUSION

Estimation is not an exact science: estimates are almost always at least a little bit
wrong; and sometimes a lot wrong. Agile projects expect and anticipate change, so agile
estimation must also expect change. Largely, that means doing as little work as possible
to get to an answer that can be used.

There are many different ways to estimate. Most rely on collaboration and the experi-
enced expert principles of Wideband Delphi. They also apply a form of abstract relative
sizing.

The key things to focus on are that the whole team has the same understanding of the
units being used and to apply the Just Enough, Just in Time principle.

FURTHER READING

Ambler, S. (2009) Dr Dobb’s Journal. Lies, great lies and software development project
plans. UBM. Available at: www.drdobbs.com/architecture-and-design/dr-dobbs-agile-
update-0709/218700176 [20 December 2016].

231

AGILE AND BUSINESS ANALYSIS

Ambler, S. (n.d.) Agile Modelling. Ambysoft Inc. Available at: www.agilemodeling.com [20
December 2016].

Boehm, B. (1981) Software engineering economics. Englewood Cliffs, NJ: Prentice Hall.

Cohn, M. (2005) Agile estimating and planning. Upper Saddle River, NJ: Prentice Hall.

232

15	 �PLANNING AND MANAGING
ITERATIONS

This chapter covers the following topics:

yy the iteration;

yy iterations and goals;

yy planning the iteration;

yy managing and monitoring the iteration;

yy reviewing the iteration;

yy the role of business analysis in agile iterations.

INTRODUCTION

This chapter explores the work conducted within the iteration, the fundamental element
of an agile project. There are many aspects to understanding how an iteration works,
including planning, monitoring and reviewing the work. The techniques and approaches
used during these activities are discussed below. The key artefact for an agile project
is the backlog. In Chapter 13, we discussed this in the context of a solution so referred
to the ‘solution backlog’. Here, the focus is very much on the delivery of the software
product so we refer to the ‘product backlog’ or often, simply, the backlog. However, the
concept of a central repository of work items, such as requirements and user stories,
remains the same. As such, the backlog is an artefact that business analysts in agile
teams will become very familiar with.

THE ITERATION

Many agile methods are described as iterative and incremental, so it is important to
understand what these terms mean.

yy Iterative: the work evolves through elaboration and successive refinement.

yy Incremental: the product is delivered in several parts, with each part building
on the last, usually adding new features or qualities.

Often, the delivery of the increment coincides with the end of an iteration, but in
some projects, particularly where they are large or complex, it may take several

233

AGILE AND BUSINESS ANALYSIS

iterations before an increment is ready for delivery. This is where the working soft-
ware delivered at the end of an iteration does not offer sufficient functionality for it
to be deployed.

The iterations defined by the various agile methods share many common features,
though they may use different terminology. This chapter will define and discuss the
features of an iteration in a method-agnostic way, and will describe a range of tech-
niques and practices to plan, manage and track the iteration. Business analysis has an
important role to play throughout, and, in some cases, active business analyst involve-
ment is critical to success.

Iterations have a set of typical attributes that are described below.

yy Goal: some reason or purpose for the iteration to exist. The iteration should do
something and have something to show for the work at the end. There should
be clear business value.

yy Plan: the steps required to meet the goal should be clear and agreed with the
team, the customer and other important stakeholders. This includes how the
work will be tested and accepted. By planning only this iteration in any detail,
the team is mitigating against the risk that future requirements (or goals) will
change.

yy Implement: the steps agreed are done by the team, with a focus on achieving the
goal. For software products, this may appear like a mini-waterfall of steps for
each work item, with all the activities from requirements capture to integration
and testing required.

yy Monitor and review: even within an iteration, progress is reviewed, often daily,
and the team should know whether the goal is still achievable, and desirable.
This progress should be visible and transparent, and often uses physical
components like boards, sticky notes and wallcharts. This means that both the
team and other stakeholders can monitor progress.

yy Review the iteration: continuous improvement is a critical element of agile
development, so agile teams take every opportunity to identify things to do
better, but especially at iteration boundaries. This includes acknowledgement
of things that went poorly, but it also means understanding that the project itself
will change and evolve; and that may require the team to change its behaviour
or composition.

yy Decide the next iteration: the team, with the customer, decides whether there
will be a further iteration and, if so, how it should happen. This may include
making changes identified in the review.

A simplified iteration cycle incorporating these attributes is represented in Figure 15.1.

234

PLANNING AND MANAGING ITERATIONS

Figure 15.1  Cycle of an iteration

Iteration
This cycle may be familiar to business analysts as it is a variation on the Shewhart
Cycle, popularised by W. Edwards Deming (1982), with his Plan-Do-Study-Act wheel
developed in the 1950s. Agile teams often work at a high level of intensity during an
iteration and are focused and optimised to react to change.

Figure 15.2 shows a slightly different view of an iteration, identifying some of the activi-
ties common to iterations using more familiar terminology: ‘prepare backlog’ and ‘itera-
tion planning meeting’ are forms of planning; ‘daily stand-up meetings’, ‘show and tell’
and ‘retrospective’ are types of review. These activities are described in further detail
later in this chapter.

Figure 15.2  Iteration activities

235

AGILE AND BUSINESS ANALYSIS

In agile projects, the iterative process is often layered and iterations can be considered
to exist at several levels of abstraction (see Figure 15.3):

yy micro-increment level (for example, daily iterations);

yy delivery level (for example, two week iterations);

yy project or architectural level (for example, phases like business case
development; inception or construction, that could take several weeks or
months);

yy strategic or release level (for example, major product releases).

Figure 15.3  The layered approach to iterations

Several approaches (particularly those focused on scaling or enterprise-level projects
like SAFe, DAD or the UP) address some of this layering specifically. But even those that
do not (such as Scrum or XP) still provide some approaches and practices that teams
can use at any level of iteration.

This chapter covers the most common level of abstraction – the delivery layer, which
is shown in Figure 15.3 above. This typically involves short iterations (two to four
weeks), each of which delivers a version of the overall product and culminates in a
final increment or release after several iterations. These iterations are called ‘sprints’
when using Scrum.

ITERATIONS AND GOALS

Each iteration must focus on achieving a goal that will provide business value to some
degree. As the iterations progress, they contribute to an increment that may be deployed
for use in the business. As increments progress, they contribute to delivering the overall
solution for the project and, in turn, this contributes to the delivery of the predicted
business benefits. How these iterations, increments and goals interrelate is shown in
Figure 15.4.

236

PLANNING AND MANAGING ITERATIONS

Figure 15.4  The relationship between iterations, releases and goals

Although the overall release plan may be decided at the start of the project, it is impor-
tant not to plan too much detail into later iterations, as they may change. All changes
should always be tested against higher-level goals to ensure that they are being met.

The benefits of goals

Goals serve to focus the team on what is important. Even with a prioritised backlog as
described in Chapter 13, it can be easy for teams to lose focus on what will offer value
to the customer. This is where a business analysis perspective can be very helpful.
Where possible, goals should be described in line with what is deemed valuable to the
customer. Decomposing and working with goals is explained in detail in Chapter 8.

Goals are also helpful when naming iterations. For example, calling the iteration ‘Allow
credit card website purchases’ instead of ‘iteration 4’ means that is it very clear that
the purpose of this work is to make the credit card purchase section of the website
work. There may be other tasks on the backlog, but if those that relate to the credit card
processing have not been completed, the goal cannot be met.

237

AGILE AND BUSINESS ANALYSIS

The iteration goal also needs to be aligned with the project and release goals. This
alignment helps to ensure that the iteration contributes to the goals of the release, the
release contributes to the goals of the project, and the intended value to the business is
delivered. Agile methods embrace and anticipate change, but sometimes changes that
happen during development can mean that the project becomes slightly misaligned
with the original intent. When this begins to happen, it is critical to recognise it straight
away and decide if further action needs to be taken.

This is especially important where the iteration goals have been set by different stake-
holders or customers from those involved in setting the project goals. Indications during
early iterations that the project goals are wrong or will not be met, need to be commu-
nicated to the stakeholders responsible for the higher-level goals immediately. This is
particularly critical where project goals have other purposes (such as being linked to
contract payments or dependencies on other projects).

This cross-checking between iteration goals and project goals is one of the ways that
agile methods can provide early warning of project issues. Early warning means that
there is time to correct, or, if the changes are catastrophic, that the cost of cancelling
the project is reduced – it is always cheaper to cancel a project earlier rather than later!

It is not always the case that the iteration goal is decided first. Often, the prioritised
user stories will determine the goal. However, the converse is also true – knowing the
overarching goal of the iteration may cause some user stories to be ‘promoted’ because
it becomes clear that they contribute directly to the goal.

What is important, however, is that the user stories that are delivered provide features
that are valuable to the business. This upholds the agile value of ‘working software over
comprehensive documentation’.

When setting goals, possible pitfalls to look out for are:

yy goals set by the development team, not the customer;

yy goals that only cover a small amount of the work of the iteration;

yy iteration goals not well aligned with project or release goals;

yy different stakeholders having different views on what the goals are (or should
be).

PLANNING THE ITERATION

Simplicity–the art of maximising the amount of work not done–is essential1

Before work can begin on an iteration, a degree of planning is required and this should
be in line with the agile maxim of ‘Just Enough, Just in Time’. Starting with a properly
ordered backlog, the team must agree which backlog items should be selected for this
iteration. This means that they must know what resources they have available, and
must have sufficient understanding of the work that will be required to satisfy each
requirement. The team must have enough information to answer these questions, but

238

PLANNING AND MANAGING ITERATIONS

as discussed in previous chapters and in the agile principles, there should not have
been a lot of up-front work in case a requirement changes or isn’t required. This can be
achieved in several ways:

yy a product backlog refinement session: during the previous iteration to confirm
the priority of the requirements and add just enough detail to allow them to be
estimated;

yy an iteration planning meeting: at the start of the next iteration, for the whole
team to size the highest priority requirements and provide estimates on which
ones can be completed during the iteration. This work can often commence
towards the end of the previous iteration in preparation;

yy a requirements elaboration step: as soon as the team starts working on a
requirement, to ensure that they understand the necessary detail, and to agree
the acceptance criteria for success.

Several factors can affect iteration planning. Many arise at the start of projects, par-
ticularly when using approaches that do not cover the whole project life cycle. Scrum,
for instance, expects several preconditions to be met before it can begin: there must
be an ordered backlog of requirements in place and the team must have the environ-
ment, facilities and skills to begin delivering working software in less than one month in
duration. In practice, this is rarely the case and teams require time to reach this stage.
The backlog needs to be created and there may be technical or architectural risks to be
mitigated. There may also be structural or architectural elements required that simply
take longer to build than allowed for in a typical sprint. These must all be understood
enough before release or iteration planning can begin.

The phase where these essential factors are put in place is often called ‘sprint 0’, but
it isn’t a formal part of Scrum and there isn’t a great deal of guidance on how to do it.
This means it can be easy to fall into some of the bad practices of traditional develop-
ment. Business analysis is an important skill at this stage of the project, and the busi-
ness analyst must ensure that the agile values and principles are still adhered to. The
most important thing to remember is that the goal of ‘sprint 0’ is just to be able to start
‘sprinting’; and this requires ‘just enough’ work to be done.

Team velocity

Teams work at different speeds from one another. Velocity is the term used to predict
how much value a team can deliver during a defined time frame, based on knowledge
about how they have performed in the past. Various measures of value can be used, but
a popular approach involves user story points. These are discussed in Chapter 14, along
with further detail on estimation techniques and measures.

Knowing the velocity of a team is important for two reasons: first, to be able to give a
rough idea of how long in total a project may take to complete; second, to be able to
work out how much work should be attempted in each iteration.

To calculate the duration of simple projects, the basic technique is:

239

AGILE AND BUSINESS ANALYSIS

yy guess how many points of value the team can deliver during the first
iteration;

yy use the first iteration of representative work to establish a baseline for
velocity;

yy based on initial velocity and an idea of the size of the whole backlog, the
team works out how many iterations should be required to deliver the whole
backlog;

yy after the second iteration, the velocity of the team is re-estimated.

Figure 15.5  Calculating team velocity

Figure 15.5 shows an example of estimation using story points.
Since units, like story points, are subjective different teams may estimate the same
value differently. In other words, one team’s 8 story points could be another team’s 13
story points. This means that story point sizing and therefore team velocity are unique
only to that team.

If the agile team is a highly performing team, estimates of velocity can be very accu-
rate, particularly when estimating work with which the team is familiar. However, if the
team changes, the velocity needs to be recalibrated. So, to maintain predictable veloc-
ity, teams need to remain constant. This doesn’t mean that teams cannot change, but
it does mean that when there is a change to the team, we cannot expect the velocity to
remain the same.

This method works well for simple, well-understood projects and once projects are well
underway. It can be an excellent way to understand team capability and predict future
deliveries. However, it fails if the backlog gets too big, where the project is not well
understood at the outset or where it is likely that the requirements will change. This is
for the following reasons:

240

PLANNING AND MANAGING ITERATIONS

yy To obtain an accurate estimate, a whole release worth of user stories must be
estimated.

yy Even assuming that’s possible, while the team is doing this, they aren’t working
on anything that will offer value to the customer and they are delaying the time
when something valuable may be delivered.

yy It is likely that things will change to invalidate the estimate, for example, team
behaviour, new and changed requirements, false assumptions.

yy To estimate large, complex or high-change projects, the concept of team velocity
is not as helpful and alternative approaches should be used.

The same approach can be used to track how much value the team is able to deliver
each iteration, and to help predict the right amount of stories to plan for the next itera-
tion. This can still be helpful when the overall project size is not known, as it helps to
optimise the work done preparing stories for the next iteration.

Since velocity is a measure of the volume of valuable software produced within a given
timebox (i.e. an iteration), only work that offers value to the business should be included
when calculating velocity. Other work carried out by the team, such as technical spikes
or management activities should not be counted as velocity. In practice, however, itera-
tions often include other tasks, such as spikes, refactoring, fixing defects, management
activities or partially completed stories. Where these tasks deliver genuine value they
should be included, but often they aren’t.

A good approach is to allocate 60 per cent of the available effort for story point delivery
and ensure that any activities that don’t generate business value are in the remaining 40
per cent. Over time, the amount of non-value-generating work will average out, and the
team will have a reasonably accurate estimate of the amount of value they can deliver
in an average iteration.

Iteration planning meeting

The iteration planning meeting is a critical meeting for the team and must involve the
whole team, including the business analysts. This is important because it is the whole
team who will be doing the work so it is critical that they all contribute to the meeting
and commit to the outcome. The key business stakeholders should also attend, particu-
larly a business representative such as the product owner. Business analysis skills are
important to the success of this meeting; they ensure that the team is delivering the
right requirements, and that the project team and business stakeholders understand
one another. The purpose of the meeting is to:

yy agree the goal of the iteration;

yy agree which items from the product backlog will be included in the iteration
backlog, and their priority;

yy get commitment from the team members that the iteration plan is achievable
and that they have the skills to deliver it.

241

AGILE AND BUSINESS ANALYSIS

The iteration planning meeting is usually held at the start of the iteration and is consid-
ered as part of the iteration. It should be after the review meeting for the previous itera-
tion so that any changes can be incorporated within the new iteration. It is an important
meeting and, as such, should have sufficient time devoted to it. Founder of Scrum, Ken
Schwaber, recommends that 5 per cent of the overall iteration duration should be spent
on planning and preparing for the iteration (Schwaber and Sutherland 2014). The meet-
ing is usually divided into two parts.

Part 1

This part focuses on identifying which backlog items2 should be included in the itera-
tion. Since the product backlog should already be ordered, the team should start at the
highest priority item, estimate how big they think it is and work out whether they have
the effort to complete it in this iteration. If so, they continue down the list until there is
not enough effort left in the iteration. Some of the estimation techniques discussed in
Chapter 14 can be used if necessary.

When deciding which backlog items to put into the iteration, teams must also consider
what will happen if all the work planned isn’t completed. Since iterations are often
timeboxed, the iteration will sometimes end before all the tasks for a backlog item are
finished. For this reason, it is helpful to consider the priorities of the work of the itera-
tion and ensure that the mix of priorities provides some contingency, as discussed in
Chapter 9. For example, using the MoSCoW prioritisation approach might mean allocat-
ing mainly backlog items with a priority of ‘M’, but also including some with a priority of
‘S’. In the situation where some backlog items need to be dropped, it is possible to defer
the ‘S’ backlog items until a future iteration. A good rule of thumb is to ensure that ‘M’
backlog items account for no more than 60 per cent of the total backlog items set for
the iteration.

Following this approach also allows teams to include backlog items with a ‘C’ level of
priority where they are linked to higher priority backlog items and need little additional
effort to deliver, or where they are mitigating risk for higher priority backlog items in
later iterations. Since the MoSCoW priority is revisited in each iteration, this is also a way
of bringing forward backlog items that will be ‘M’ or ‘S’ in later iterations for the team
to start on if they have time left toward the end of this iteration.

During Part 1 of the planning meeting, it is likely that there will have been little work
on the backlog items. Accordingly, it is usual at this point for some backlog items to be
too big to be completed in a single iteration. Where this is the case, the backlog items
(usually user stories) are decomposed in line with the goal decomposition approach
described in Chapter 8. Since this involves discussing, adjusting, breaking down and
estimating backlog items, it is essential that the product owner and any other signifi-
cant customers are present. Given the need to collaborate with stakeholders, business
analysis skills will be extremely helpful during this work.

At the end of Part 1, the team has an agreed and prioritised backlog of work, and they
should be confident that they can achieve them all in the time available. However, the
selected backlog items remain at a high level of abstraction so the underlying tasks, and
who will complete them, may not be clear.

242

PLANNING AND MANAGING ITERATIONS

Part 2

During Part 2 of the iteration planning meeting, the team must further decompose the
stories to allow them to start work. However, since there is a prioritised list, the high
priority stories should be worked on first and the lower priority stories can be left until
later.

For each story to be broken down, the set of individual tasks should be identified and
estimated. If individual tasks are being estimated, it is good practice for the team to be
responsible for the estimate. Consequently, the estimate can accommodate different
skill or experience levels and so the collective expertise of the team responsible for
completing the tasks adds to the accuracy of the estimate. At this level of estimation, it
is common practice to use hours, days or ‘ideal’ developer days as the unit of measure.

At this stage, it is common for some requirements to be vague and for the team to strug-
gle to break them down fully. Perhaps there is uncertainty about what exactly is involved
or perhaps the right technical solution is not clear. To address this, teams create specific
tasks to gather information. These types of tasks are often called a ‘spike’ – a short, usu-
ally time-bound, task that results in additional information to help the team estimate
stories (for example, deeper requirements elaboration or technology investigations).
Spikes can exist on the backlog in their own right or they can be added in iteration plan-
ning meetings when it becomes clear that they are necessary. The results of spikes will
allow existing stories to be progressed or new stories to be added to the project.

The problem with spikes is that they consume effort from the team during the iteration,
yet they deliver no business value themselves. For this reason, it is important to ensure
that spikes are Just Enough, Just in Time, and are only planned for high priority or
high-risk stories.

Possible issues during iteration planning

Issues may arise that cause problems during the iteration planning meeting. Some of
the potential issues are:

yy lack of involvement from the whole team or over-dominance from a small
number of team members;

yy poor customer involvement or non-attendance;

yy functional, rather than goal, decomposition of stories;

yy over-optimistic estimates that lead to too much work being accepted for the
iteration;

yy poor documentation of what previous iterations have delivered;

yy difficulty estimating because of a lack of knowledge about the story;

yy a poorly ordered or poorly maintained backlog leading to the wrong work being
done;

yy over-optimistic velocity, or forgetting to include holidays or training courses;

yy failure to incorporate lessons learned from the retrospective/review meetings.

243

AGILE AND BUSINESS ANALYSIS

Product backlog refinement

One of the most important artefacts of any agile team, particularly for business analysts,
is the backlog. As described in Chapter 13, there are two main backlogs: the product
backlog and the iteration (or sprint) backlog.

The product backlog is first created at the start of the project and comprises the list of
requirements that the project stakeholders think they want the project team to deliver.
Although theoretically an ordered list, product backlogs are frequently long and, in
reality, it tends to just be the stories towards the top that are properly ordered or pri-
oritised.

At the start of an iteration (in the planning meeting described previously), the team
should examine the product backlog with the product owner and assess the top
items – those of the highest priority – to create the iteration backlog that will shape
the work for the forthcoming iteration.

However, that implies that the product backlog is still up to date and accurate, and, sadly,
that’s not always the case. The project team concentrate on the iteration; the product
owner helps them (and often has other responsibilities) and the poor old backlog can
get a bit neglected.

This is where the process of ‘product backlog refinement’ is needed. This is the practice
of preparing the product backlog for forthcoming iterations, by doing some or all of the
following things:

yy reassessing the relative priorities of stories (techniques like WSJF can help
here (Chapter 9);

yy removing stories that are no longer required;

yy adding and prioritising new stories that have come to light;

yy identifying possible ‘spikes’ and prioritising them;

yy checking the estimates for the higher priority stories and considering splitting
into separate stories. For these stories, elaborate the requirement with
additional detail in preparation for the discussion at the planning meeting;

yy ensuring product and goal coherence. Consider whether the changes proposed
affect other requirements for the product, including any already delivered, and
that the agreed goals are still being met.

These backlog refinement activities are shown in Figure 15.6.

This task should be carried out with the product owner and business stakeholders, but
does not always need to involve the whole team. It is a task that is ideally suited to busi-
ness analysts. However, there some constraints are important to consider:

yy Suggested changes to the backlog must not alter or extend the overall agreed
scope of the project (particularly where this has a financial impact).

244

PLANNING AND MANAGING ITERATIONS

Figure 15.6  Backlog refinement activities

yy Changes must not compromise the project and release goals.

yy Where the project has committed to an overall amount of work (for instance,
through a contract) then adding new work must be balanced by taking out
similarly sized work.

Where these constraints need to be broken or challenged, then a more formal and clas-
sic approach to change management or change control needs to be applied.

Managing and visualising progress

In order to properly plan, manage and track the work of the team, it is important to
communicate what is happening. Agile boards are a popular technique derived from
Lean manufacturing to help visualise and manage workflows. They can be physical
boards or tables, or may be implemented using software tools.

The board is constantly updated through the iteration by team members, allowing them
to self-organise, spot problems early and help one another. It is the focal point for the

245

AGILE AND BUSINESS ANALYSIS

team, providing the raw material for daily meetings and helping to provoke discussion.
Since boards are often on display in the team area, they also enable transparency within
the team, which is a core pillar of Scrum (Chapter 5).

The agile board is particularly important for Kanban and its derivations, but can
also add value to other agile methods. An agile board for an iteration is shown in
Figure 15.7.

Figure 15.7  Agile board

Each row on the agile board is a user story, taken from the product backlog and
agreed by the team to be developed in this iteration during the iteration planning
meeting. Each user story is turned into multiple task items, which all start in the ‘To
do’ column and gradually migrate toward the right as they progress. In some methods
(for example, Kanban), the number of tasks allowed to be in each column is limited,
and team members work from the right to the left to unblock columns and encour-
age flow.

246

PLANNING AND MANAGING ITERATIONS

The columns typically found on an agile board are:

Stories This means the user story to be delivered (‘As a user I want to …’).

To do This is the set of tasks identified to complete the user story.

Work in
progress

This refers to any task that is currently being worked on by a member of
the agile team.

To verify Once complete, tasks must be tested or reviewed. In some teams, this is a
formal ‘approval’ stage. For software, the test stage could be a separate task.

Done Task cards move into this column when they are done. A user story can
only be considered done once all the task cards within the row for that
story have been moved into the ‘done’ column, and it is agreed that the
‘Definition of Done’ for the story has been achieved.

Projects often customise their boards, and can use colours, shapes, codes or extra col-
umns to add information.

Agile boards also support other elements of agile development. Since all the tasks out-
standing are visible, team members are encouraged to choose their own tasks. They
should first look for tasks that will create space on the board (the tasks toward the right,
such as testing or reviewing), but should also select tasks that suit their own skills and
development requirements. This is central to the ‘whole team’ concept, and the ‘self-
organising’ nature of agile teams.

The board should help the team members to see if there is a skill shortage within the
team or whether the team is unbalanced in some way. This may require others to join
the team, possibly to provide additional skills.

At the end of the iteration, the stories that have been completed – those that have all
their sub-tasks in the ‘done’ column – can be added up and, if accepted by the business
owner, can be used to update the team velocity.

Agile boards also support methods without timeboxed iterations. In those methods,
increments are released when a set number of stories are complete. This might be
important in support life cycles, where the cost and impact of updating a version will
need to be worth the potential benefit.

It is common for new tasks to be identified as the work progresses and the team learns
more about the stories. This is why it is important that the team works on the higher
priority stories before starting lower priority stories.

Dealing with change

The second agile principle states: ‘Welcome changing requirements, even late in
development.’

Change is inevitable, even with simple projects. Many agile practices and techniques
have evolved specifically to make dealing with change easier, and more likely to result in

247

AGILE AND BUSINESS ANALYSIS

increased value to the customer. That’s why it’s important that agile teams are prepared
for change, seek it out and help to harness it for the benefit of the customer.

This is embodied nicely in another principle: ‘Simplicity – the art of maximising the
amount of work not done – is essential’, and the maxim Just Enough, Just in Time.
When things change, work done against the old requirement is wasted and represents
unnecessary time and/or cost.

Agile teams have many factors at their disposal to cope with change, such as iteration
length. Given that teams try hard to do as little work as possible on requirements until
they formally enter an iteration, it follows that changes to things not yet started will have
low impact on the team. With short iterations, it will never be terribly long before the
customer has an opportunity to change the team’s focus. And in the worst case, where
the change is so significant that the iteration must be scrapped, the maximum amount
of time lost will be limited to the time already spent on this iteration.

Setting a clear focus on iteration goals is also critical to coping with change. At the end
of an iteration, the customer should be able to use the product that has been delivered.
That means that it should be sufficiently tested, integrated, documented and supported.
While the Agile Manifesto values working software over comprehensive documentation,
there still needs to be enough documentation and support to allow the software to be
used by the customer.

Agile teams should be able to make a clean break at the end of each iteration, even
when it isn’t planned to be the final iteration. That means that if the customer decides
that the version demonstrated meets their needs, then the project can finish. There and
then. Not after another three iterations while we finish off the documentation, write a
support guide and fix all the bugs we didn’t have time to fix during the last iteration.

This gives the customer the ability to stop work early, potentially saving money, but in
larger organisations, it also allows business calls on priority to be acted on quickly. If
there is a higher priority project for the agile team to work on, it makes sense that they
can complete their existing commitments quickly and move on.

Non-timeboxed Iterations

Most of this chapter focuses on iterations that are time bound, and the team decides
what work can be done in the available time. That’s because most agile methods work
on some kind of timeboxed iterative model. However, this isn’t true of all methods, and
some, such as Kanban, are bounded by other factors, such as Work Completed.

However, many of the techniques and situations described are just as applicable to
non-timeboxed iterations. They are still agile methods, so still place value on the same
manifesto statements and principles as the others do.

With non-timeboxed iterations, the team must decide what criteria they will use to
decide when to release a version to the customer. This could still be goal based (and
each goal may take a different amount of time to be delivered) or it could be based on
the number of stories that are ‘Done’.

248

PLANNING AND MANAGING ITERATIONS

One advantage of goal-based iterations is that goals themselves are rarely the same
size. That means that time-bound teams will find themselves either stretched at the
end to fit everything in, or will have completed some stories that aren’t really helping
the goal. Goal-driven teams deliver when the goal is complete, which could be quicker
or slower than other goals. On the other hand, the continuous, production line nature of
some methods can make it feel like the work never ends.

MANAGING AND MONITORING THE ITERATION

Agile teams use a number of techniques and approaches when managing and monitor-
ing their iterations. These approaches typically have some attributes in common: they
embody one or more of the Agile Pillars of Transparency, Inspection and Adaptation (see
Chapter 5); they require Just Enough, Just in Time; they encourage continuous improve-
ment; and they involve the whole team.

Some common techniques are daily stand-up meetings and burn charts.

Daily stand-ups

A common agile practice is the daily stand-up meeting. This meeting, which originated
from Scrum and XP, is one of the more popular techniques for managing ongoing work
and has been widely adopted outside agile development. It is fundamental to maintain-
ing the heartbeat and rhythm of the iteration, and is a way of ensuring that pace is being
maintained and regular communication is also taking place.

The daily stand-up is facilitated by the Scrum master (in Scrum) or by the iteration
lead or team leader, however, the facilitation skills of a business analyst can prove very
useful in these meetings. It is crucial that the whole team is involved and, to encourage
participation, the meeting is usually limited to 15 minutes and conducted standing up
– partly to ensure it is kept short, but also so that there are fewer reasons to prevent
it happening. You don’t need to book a room if you can stand around the agile board to
have your meeting! Each team member is asked the following questions:

yy ‘What did you do yesterday?’ or ‘What have you completed since the last
meeting?’

yy ‘What will you do today?’ or ‘What do you plan to complete by the next meeting?’

yy ‘What impediments are you facing?’ or ‘What will stop you completing what you
plan to?’

There is some debate about what the ‘best’ questions are (and there are many more
versions than those stated above). However, the intent of the daily stand-up meeting
is to focus the participants’ attention on whether they are making the progress that is
expected, and on asking for help for anything that might delay or prevent progress. It is a
meeting of peers, not a management progress report, and should feel like an important
part of the team’s day.

The meeting focuses on the identification of issues not the solving of them. In Scrum, it
is the responsibility of the Scrum master to remove any impediments, and they focus
on that following the meeting, not during it. Similarly, if one member of the team has

249

AGILE AND BUSINESS ANALYSIS

dependencies or issues regarding the tasks of another team member, they should dis-
cuss these with each other following the meeting. If they cannot resolve an issue, it can
be escalated to the Scrum master as an impediment to team progress.

Monitoring and reporting progress

The use of agile boards has already been discussed as a good way to record and present
progress, but they only show the present situation. Burndown and burnup charts are also
used to communicate team progress. Burn charts can have value at several levels, within
iterations, for particular increments or across the whole project. Typically, burndown
charts show progress within an iteration, while burnup charts show progress across
iterations towards project or release goals. However, this is not a hard and fast rule.

Burndown charts

A burndown chart plots the amount of work, usually in the form of stories, tasks or story
points, that has been delivered by the team as they move through the iteration. Unlike
an agile board that just shows current status, burndown charts show when the work
items were delivered, and can provide useful information on how the team is working.
Figure 15.8 shows an example burndown chart.

Figure 15.8  Example of a burndown chart showing story points

75
70
65
60
55
50
45
40

S
to

ry
 P

oi
nt

s

35
30
25
20
15
10
5

1 2 3 4 5 6 7 8 9
Iteration Timeline (days)

10 11 12 13 14 15 16 17

Story Points
Remaining

Story Points
Delivered

Ideal
Burndown

The Y-axis shows what has been delivered and the X-axis shows the iteration timeline,
usually in days. Teams use their burndown chart for three main reasons:

250

PLANNING AND MANAGING ITERATIONS

yy to capture some metrics that allow them to calculate their velocity and ensure
that future iterations are loaded with the right amount of work;

yy to give themselves a sense of making progress, and give them increasing
confidence that they will meet the iteration goal;

yy to share with their customers that they are making progress, and that the
customer can expect their goal to be met.

There may be problems when the user stories are quite large and take most of the
iteration to complete, as it looks like the team is making slow progress and no stories
are being delivered. This is made worse where a story is not quite finished by the
end of the iteration because it shows on the chart that the whole story has not been
delivered rather than that the team had completed most of the work. This situation
may be avoided if user stories are appropriately sized and are small enough to show
progress.

A second issue that burndown charts can expose, even with correctly sized stories, is
where the priority of the customer (product owner) is being used to drive team behav-
iour. This is evident where the agile team is not working on the higher priority user
stories first, moving towards the lower priorities as the iteration draws to a close. This
approach shows regular deliveries on the burndown chart, and the customer knows that
the work already completed was their highest priority work.

However, it is common (particularly with teams who are struggling to adopt the agile
mindset) for teams to start the iteration by breaking down all the stories and sharing
them out amongst the team. Early on, most stories have someone working on them.
Because there are fewer team members in each story, each story will take longer. At
some point (perhaps quite late in the iteration) some stories will be completed, and
show as progress on the burndown chart. But, since the stories were all started at the
same time, the first stories to be completed might not be the highest priority ones. As
the iteration draws to a close, some stories might not be completed yet and it is possible
that they are the higher priority ones.

Burndown chart showing work remaining

An alternative approach to recording progress and reporting burndown, is to burndown
tasks rather than stories, and to record work remaining rather than stories completed.
In this method, tasks are identified and estimated in hours during the iteration planning
meeting. These tasks are then totalled and the estimated hours of work for the iteration
plotted on the Y-axis as shown in Figure 15.9.

This approach offers some benefits. If tasks are sized relatively small but not too small
(3–12 hours), then team members see progress frequently. Tasks smaller than a couple
of hours are too small to bother recording, though of course they do add up.

The downside to this approach is that it requires the whole iteration to be broken down
to quite a detailed level at the start of the iteration, and since tasks do not represent
the delivery of customer goals, it is less clear whether the team is on track or not. It is
important for the team to update the time remaining on each task at the end of each day.

251

AGILE AND BUSINESS ANALYSIS

Figure 15.9  Example of a burndown chart showing remaining effort

Estimated work
remaining

Ideal
Burndown

E
ffo

rt
R

em
ai

ni
ng

 (H
ou

rs
)

560
600

520
480
440
400
360
320
280
240
200
160
120
80
40

Iteration Timeline (days)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

While the burndown chart may not show any progress, this approach provides a more
accurate indicator of how close the work is to completion.

Burnup charts

Another representation is a burn chart that tracks progression towards a release goal.
The same measures of velocity can be used but the number of iterations is used instead
of days along the X-axis. The Y-axis is typically some measure of progress, such as
stories or story points, but the chart starts at 0 and works up rather than down. An
example is shown in Figure 15.10.

This chart of velocity scores throughout the life cycle and also allows for the valida-
tion of up-front estimates and the correction of final delivery targets. The target line
shows what the customer expects to be delivered. As the iterations proceed, the angle
of the progress line can be extrapolated to see whether the target line will be hit when
expected. The accuracy of the prediction will depend on the accuracy of the velocity
recorded in previous iterations.

This can be helpful for two reasons:

1.	 if the team experiences problems, the impact on the final delivery can be
predicted; and

2.	 if the customer wants to change the scope (up or down) the new delivery
date can be predicted.

252

PLANNING AND MANAGING ITERATIONS

Figure 15.10  A burnup chart showing progress of iterations

700
650
600
650
500
450

Total
Points

Required

Points
delivered

400

S
to

ry
 P

oi
nt

s

350
300
250
200
150
100
50

1 2 3 4 5 6 7 8 9
Project Timeline (iterations)

10 11 12 13 14 15 16 17

Either situation allows an early indication that a project may require some intervention:
typically additional resources (velocity), additional time or a reduction in scope.

REVIEWING THE ITERATION

At the end of the iteration, two important things happen:

1.	 The team shows their progress to the customer.
2.	 The team reviews the iteration and decides on any changes they want to

make.

Iteration review (show and tell)

The ‘show and tell’ meeting is a critical milestone for the team and customers. The
purpose of the session is for the development team to present back to the customer or
product owner what they have delivered during this iteration; and for the customer to
decide whether the acceptance criteria for each backlog item has been met.

The customer gets to see progress so far and can provide feedback, thoughts and ideas
to the team to help them in future iterations. This may result in changes to the backlog
or the creation of bug reports for defects in the current version.

253

AGILE AND BUSINESS ANALYSIS

These meetings are mainly for the benefit of the customer, so care must be taken by the
team not to get bogged down in technical detail. The team should ‘show’ the product in
action, demonstrate the functionality, and ‘tell’ them what the customer or user expe-
rience will be like. The aim is to make the development work come alive in the user’s
eyes. They are intended to be interactive, with the customer feeding back what they are
thinking. All feedback should be captured and responded to.

An experienced business analyst can play a critical role here, helping the customer to
understand what they are being shown (especially if it is an early, unpolished version)
and helping the development team to avoid too much technical detail.

The whole-team practice of agile means that the person closest to the development
is often best placed to present the detail; the ability to take pride in your work and be
recognised for your contribution is an important motivating factor. It should not be the
team lead or project manager claiming all the glory!

Show and tell sessions are an important part of the agile process but can often fail due
to a lack of planning or poor facilitation – areas where contributions from a good busi-
ness analyst can be invaluable.

Retrospectives

One of the most important meetings in agile iterations is the iteration retrospective
meeting. It directly addresses the core agile value of responding to change and the
principles of reflecting and becoming more effective.

The realities of agile projects are that very little is completely predictable or already perfect.
Retrospectives give teams the opportunity, in a safe environment, to reflect on how they
performed and decide on any changes they wish to make. To provide a safe environment
for honest reflection and feedback, only the direct team members should attend.

Retrospectives should take place after each iteration and all team members should
attend. Retrospectives should also be held following major releases or at the end of the
project. These retrospectives are often longer and more intensive. They can occasion-
ally be helpful if an unexpected event changes the situation, for instance, if an iteration
has to be abandoned.

A well-conducted retrospective can help the team to focus on the significant events and
help them to remember what happened. This can require good facilitation, so business
analysis skills are particularly helpful.

Running a retrospective

Many development teams simply discuss some variation of these three questions
during retrospectives, as shown in Figure 15.11.

This is a good start, but more structured approaches can lead to far greater value.
In their 2006 book, Agile retrospectives: making good teams great, Derby et al. define
a simple framework for conducting retrospectives that draws on many of the skills
possessed by business analysts. They recommend a focused facilitation approach to

254

PLANNING AND MANAGING ITERATIONS

Figure 15.11  Common retrospective questions

create the right environment to elicit the right data, analyse what the team are saying
to establish patterns and trends, and identify a small set of high-impact but manage-
able changes. The key is to pick two or three important changes rather than try to fix
everything possible.

There are two further questions that should be asked, but are often omitted:

1.	 Is the team the right shape for the next iteration? And, more critically;
2.	 Should the project continue at all?

As projects mature, the precise mix of skills and experience required may change. This
could mean that the team is too big or too small for the next iteration, or perhaps the
team was struggling with some technical detail and would benefit from some consul-
tancy or specialist training.

One key advantage of agile approaches over traditional methods is the ability for agile
teams to finish early. Because they focus on delivering working solutions and highest
priority work first, it is possible to reach a stage where the project could continue into
the next iteration, but the customer is actually quite happy with the product as it is.
Where this is the case, the team should be able to stop, resulting in a cheaper product
for the customer.

This feature of agile teams is especially important in larger organisations, where the
main benefit is that the team can now start on new, higher priority work earlier – they
are not committed to the original end date. This does, however, depend on the team
being disciplined enough to have completed all necessary non-functional requirements,
general and technical requirements.

Why retrospectives fail

The biggest danger in a retrospective is that is becomes accusatory and defensive
rather than supportive. Team members become more concerned with protecting their

255

AGILE AND BUSINESS ANALYSIS

reputation than honestly examining how the team performed. The single most effective
thing that can prevent this is to adopt a no-blame culture during the retrospective – and
to mean it. That might mean excluding managers or team leaders from the meeting, or
finding ways to permit anonymous feedback.

Some pitfalls to watch out for:

yy Poor preparation by the team: a lot can happen in an iteration and it is easy to
forget significant things.

yy Poor preparation by the facilitator: making sure the meeting is well planned
and well run with a clear focus means everyone’s time is well spent and the
team will get more benefit.

yy Assertions rather than facts: it is important to know how people feel, but it is
also important to back up that feeling with facts. For example, instead of saying
that the backlog was poorly managed, it’s better to know that Pete started Task
8 without knowing that Jane had already started it, because the backlog wasn’t
updated.

yy Dominance by a few people: it is common for one or two dominant personalities
to control an unstructured discussion and push their ideas onto the group. That
means others can’t contribute, and they might not fully believe in the decision.

yy Focusing on things you can’t change: the purpose of a retrospective is to work
out how to improve as a team so the retrospective should concentrate on things
within the team’s control.

yy Trying to change too much: especially with new teams or new projects, it is
easy to find lots of things to improve. Success is more likely if there is a focus
on a small number of specific things.

yy Trying to change the wrong things: the team needs to want to make the
changes, and be excited about changing them. When the team doesn’t have the
energy to work on an improvement, the chances are fairly high that it won’t get
done.

yy Treating the improvements as ‘nice to have’: making your team better isn’t
optional, or less important than doing what the customer requests. If the
changes are important they should be added to the backlog and be given a high
priority.

THE ROLE OF BUSINESS ANALYSIS IN AGILE ITERATIONS

Business analysis is a critical skill set in many of the key stages of an iteration. Even in
methods where dedicated business analysts are not mentioned, there are key artefacts
or practices where business analysis skills and mindset can make the difference
between success and failure.

Even where the team does not have a dedicated business analyst, there should be busi-
ness analysis skills in the agile team. Not necessarily in each member of the team, but
in enough people that the value of business analysis can be properly harnessed.

256

PLANNING AND MANAGING ITERATIONS

The presence of business analysis experience in agile teams can help them to keep
a focus on the customer and the business needs. Seeing goals from the customer’s
perspective, and being able discuss the work so that it makes sense to the customer,
can be essential for maintaining good working relationships and enabling collaboration.

Several of the practices in iterations require business analysis skill, particularly those
relating to requirements and prioritisation. The backlog is a clear example; poor busi-
ness analysis at any level can result in the wrong items being put on the backlog or in
stories being split in unhelpful ways, such as functional decomposition.

Refining the backlog is a task that is often neglected or rushed, yet it is one where a
business analysis approach is very important. The ability to critically assess stories,
apply strong prioritisation and describe requirements in a way that reflects what is
needed rather than a pre-defined solution, is extremely important. Sometimes, the cus-
tomer or product owner can fulfil the business analyst role. However, this is often not
the case, and even where it is possible, it is difficult to be both customer and analyst.

The contribution of business analysts

Where organisations have dedicated business analysts, there are a number of ways in
which they can make an important contribution to the success of agile iterations, either
as a full-time member of an agile team, or in a part-time or ancillary capacity.

Although virtually all agile methods advocate a dedicated customer representative
(often called the product owner), who is preferably co-located with the development
team, in practice it is often the case that this does not happen. Either the customer is
not co-located or they are not dedicated, and sometimes neither is the case. Teams often
look to a business analyst to fulfil this role.

Organisations that employ business analysts will also tend to develop more complex
products. Navigating this complexity, particularly where there are high-level project
dependencies, intangible business outcomes or strategic requirements, is a natural
space to call upon a business analyst. And where the organisation is expecting the
project delivery to follow agile principles, it is important that the business analysts
understand agile well.

Another factor that can complicate things is where other members of the overarching
project or programme team do not understand agile well. They may have come from a
background of classic waterfall programme delivery and challenge some of the agile
approaches. Business analysts are well placed to help re-assure them and also help
the agile team know how to interact with them. This might mean changes to how the
high-level requirements are described, or to how the business outcomes and high-level
milestones are phrased.

Agile methods tend to be optimised for the development of code. They tend not to worry
too much about the work that is required to get the backlog in order, nor to manage
the integration, rollout and business readiness tasks. Many business analysts work on
‘funnelling’ in requirements to the backlog and ensuring that all the elements of the
business change are managed.

257

AGILE AND BUSINESS ANALYSIS

CONCLUSION

Iterations are the core element for all agile development methods, and the role of
business analysis is important to their success. The quality of the product backlog,
and the ability of the team and customers to properly break down requirements to
goals delivering business value are extremely important; these are areas where strong
business analysis skills are needed.

NOTES

1  This is one of the original agile principles – http://agilemanifesto.org/principles.html.

2 � Backlog items is the term used to describe the work that the team need to deliver
within an iteration. This phrase encompasses requirements and user stories.

REFERENCES

Deming, W.E. (1982) Quality, productivity, and competitive position, later published under
the title, Out of crisis. Cambridge, MA: MIT Press.

Derby, E., Larson, D. and Schwaber, K. (2006) Agile retrospectives: making good teams
great. Dallas, TX: Pragmatic Bookshelf.

Schwaber, K. and Sutherland, J. (2014) The Scrum guide. ScrumGuides.org. Available
from: www.scrumguides.org/scrum-guide.html [20 December 2016].

FURTHER READING

Pink, D.H. (2001) Drive. Edinburgh: Canongate Books.

Shore, J. and Warden, S. (2007) The art of Agile development. Sebastopol, CA: O’Reilly
Media.

258

16	� CONSIDERATIONS WHEN
ADOPTING AGILE

This chapter covers the following topics:

yy agile adoption;

yy the business analyst role in an agile world.

INTRODUCTION

When agile approaches began in the early 2000s, they were mainly being applied by
small teams to small, relatively simple problems and they worked really well. As the
agile movement has grown and become more fashionable, teams and organisations
are trying to obtain the benefits of agile for larger and more complex problems, and
with larger and more diverse teams. The history in Chapter 2 clarifies that this is not
how agile began. As a result, it should be no surprise that some of the recommended
approaches and methods struggle when faced with large and complex problems where
the adoption of agile methods can become lost or diluted if not managed or supported
effectively.

Many companies who were relatively early adopters of agile found difficulties when
trying to solve problems that did not align with the original intention underlying agile.
To address this, they set about adapting the approaches, often with the aid of external
consultants, and have now developed their own bespoke versions. This has been hap-
pening for several years and some of these bespoke methods have now coalesced into
the more generic approaches that have gained popularity. The practice of tailoring and
extending the methods continues, and the approaches to scale agile are not the clearly
defined, well-publicised methods mentioned in Chapter 5 but bespoke adaptations cre-
ated internally to address the needs of individual companies and enterprises.

Companies deciding to adopt agile practices today are comparatively lucky. Not only are
the classic agile methods well understood, but there are also several new frameworks
and methods available that work well on more complex or larger projects. It is also the
case that organisations and businesses want to adopt agile at an enterprise level; they
want to be agile organisations. This is because an agile approach to developing goods
or services can realise the following benefits:

yy shortened time to market of new products/services;

yy adaptability to changing needs of customers;

259

AGILE AND BUSINESS ANALYSIS

yy improved quality of products/services;

yy maximised return on investment.

This chapter discusses the challenges in adopting an agile approach and how the agile
business analyst can support agile transformation, as well as add value, working within
and alongside agile change projects.

AGILE ADOPTION

It is difficult to be, or become, an agile project, programme or organisation as it requires
a new mindset and core values. The extent of the change required to adopt agile will vary
from organisation to organisation, depending upon the start point and culture. Often,
organisations want the benefits that adopting an agile approach will bring, without
understanding the amount of change that this will require.

Adopting agile software development

A good example concerns the adoption of agile software development. Making a state-
ment that agile is to be adopted is far easier than doing this successfully. The adoption of
agile should be considered a transformational change that encompasses all the POPITTM
elements. In other words, the agile values and principles need to be applied to the agile
adoption itself, and this should be seen as a programme for change. The use of POPITTM
to analyse the changes required for adopting agile are explored in Table 16.1 below.

People The project staff will need to be familiar with the agile
philosophy and principles. They will need to adopt the mindset
that these encompass and will need to be able to apply the
techniques. They will also need to understand the range of
ceremonies and events used on agile projects. Questions such as
the following will need to be addressed: Who in the organisation
does agile affect? Are people trained in agile? Are they all
motivated by the change or are some areas of the business, or
some people, sceptical? Do experienced staff feel demotivated as
they feel their previous experience is no longer valued? How do
we engage with the people affected and help them through this
difficult change?

Organisation Agile requires cultural change with the adoption of concepts
such as self-organising teams, empowered staff and a
collaborative environment with high customer engagement and
trust. Managers must become leaders and traditional project
management styles will be challenged. Procurement processes
may need to be adapted, and roles and responsibilities within

Table 16.1  POPIT™ analysis of agile adoption

(Continued)

260

CONSIDERATIONS WHEN ADOPTING AGILE

the software development teams and across the organisation
will need to be reviewed, agreed and communicated. New roles
need to be introduced and some roles removed or changed. For
example, the projects will need a product owner and an agile
team lead/Scrum master. When using most approaches, the
business analyst role is not mentioned – everyone within the
development team is allocated a developer role. Yet business
analysis is needed – how is this going to be incorporated within
the agile project teams?

Processes Software development teams will need to adopt new processes
that apply different tasks and a range of techniques, some new to
the organisation. Existing processes that align with more linear
approaches, such as those concerned with the documentation
requirements of the project management office, quality
assurance and control processes, and progress measurement,
will need to be changed to support the adoption of agile.

Information and
technology

New technological support tools such as those for continuous
integration, application life cycle management, management of
agile boards, and solution or product backlogs will be required
and will need to integrate or work alongside existing tools. People
will need to understand how the new processes will be supported
using technology.

Table 16.1  (Continued)

This analysis demonstrates that even when deploying change into an IT function, where
agile is likely to be recognised to some degree, delivering technology or new standards is
never sufficient. This is a good example of why holistic business analysis is so important.

Adopting or scaling agile

Some key factors to consider when adopting or scaling agile are shown in Table 16.2
below.

Table 16.2  Key factors for adopting or scaling agile

Organisational
culture

Agile is based on management theory that values empowerment
of staff and is based on trust. If an organisation has a
power culture where respect is earned through authority,
micromanagement is the norm when a problem arises and
responses to change tend to be inflexible, then agile might not be
the appropriate approach. If, on the other hand, the organisation
is flexible when it comes to change and values delegation and
empowerment, then agile may work well.

(Continued)

261

AGILE AND BUSINESS ANALYSIS

Customer
involvement

Close collaboration with customers is essential. If customers are
located in a different city or country, then applying agile practices
is going to be a challenge, even when using IT solutions that
support collaboration. Co-located teams still face the challenge
of having sufficient time with customers, which is problematic as
agile development needs the customer to be an integral part of
the team. If this isn’t possible, agile probably isn’t the best choice.

Team culture Agile projects require a team culture whereby teams can become
high performing teams: ‘a one team’ mentality. Some structures,
such as a matrix management structure, are not suitable for
using agile.

Geographic
distribution

Agile works on the principle of co-located teams, so, if the team
or organisation is geographically dispersed, scaling agile across
the organisation can be very difficult.

Stability of
requirements

If the requirements are unlikely to change during the project,
a method or approach where there is an early focus on
detailed requirements definition will be suitable. However, if
the requirements are volatile, an agile approach is preferable
as this allows the evolution of the detail during the iterative
development and incremental delivery of the solution.

Team skills Agile projects require a team of highly skilled and highly
motivated generalising specialists. This means that the skills
required to deliver the project outcome are available within
the team. In agile teams, the team members are multi-skilled.
Having a role-based organisation with independent specialist
roles such as requirements engineer, developer, tester, etc., can
inhibit agile development.

Business
constraints

If there are a lot of business constraints that are going to restrict
the effectiveness of agile adoption, then taking an agile approach
should be reconsidered. For example, where procurement
processes rely upon the creation of detailed requirements
documentation at an early stage in the development lifecycle.

Complexity Where a project is novel or complex, an agile approach can
provide a means of testing architectural or business risks at an
early stage, and changing the scope if this proves necessary.
Where the problems to be addressed are extensive and involve
a high degree of complexity, the relevance of an agile approach
should be considered in the light of the scaling factors described
above.

Table 16.2  (Continued)

262

CONSIDERATIONS WHEN ADOPTING AGILE

Adapting agile standards

In his 2009 paper ‘Adapting Agile methods for complex environments’, Scott Ambler
introduced a model to help teams identify whether they should be considering adapt-
ing their standard agile approaches. This has evolved into the ‘Software Development
Context Framework (SCF)’, reproduced in Figure 16.1 with permission from Scott
Ambler; it can also be applied to non-software projects. The SCF identifies six factors
that, when analysed, can help identify the likelihood of a project failing unless changes
are made to the standard approach.

Figure 16.1  Scott Ambler’s ‘Software Development Context Framework’

Team Size
2 1000s

Co-located Global

Single Division Outsourcing

None Life Critical

Straightforward Very Complex

Straightforward Very Complex

Geographic Distribution

Organizational Distribution

Compliance

Domain Complexity

Technical Complexity

Copyright 2013 Scott Ambler + Associates

Each factor is a sliding scale. Being close to the left-hand side implies that standard
agile approaches should work well; but the further to the right in any factor, the more
likely it is that the methods and approaches will need to change.

Some of the scaled agile approaches described in Chapter 5, notably DA 2.0, provide a
range of techniques, practices, mitigations and methods to deal with complexity without
sacrificing the benefits of an agile approach. Some of these approaches utilise business
analysis skills. For example, to counter the problems caused by being geographically
distributed, teams can increase the amount of modelling and planning they do to reduce
misunderstandings.

System of interest model

When embarking upon an agile adoption strategy it is beneficial to consider the ‘system
of interest’ model shown in Figure 16.2. The area of interest is usually defined by an

263

AGILE AND BUSINESS ANALYSIS

individual role or authority but could also be defined by a team or business area, for
example, a chief technical officer (CTO), deciding to adopt agile development within, or
across, an IT department or an agile business analyst deciding to apply agile principles
and values in their day-to-day work on a business improvement project.

Figure 16.2  Levels of influence when adopting agile

Whether the system of interest is derived from the perspective of an individual, team
or organisation it is useful to understand the three elements of the model as follows:

1.	 Can control What can the individual or team control when adopting agile?
For example, a team may decide to improve how they run their
iteration planning, change their estimation approach or improve
the facilitation skills within the team. These things are unlikely to
require permission and can readily improve the effectiveness of
the team.

2.	 Can influence What or whom can be influenced to improve the adoption of agile
more widely? For example, an agile business analyst may feel hin-
dered because others lack knowledge and understanding of agile.
Spending time discussing agile may help others to see the ben-
efits. Additionally, a manager of an IT department may be able to
influence business users to work more collaboratively with devel-
opment teams or influence funding for agile tools. This influence
could expand the knowledge and understanding of agile, which
could aid and extend agile adoption.

264

CONSIDERATIONS WHEN ADOPTING AGILE

3.	 Constrained by What is it that constrains a team, individual or organisation from
adopting agile more widely or scaling agile? Constraints could
come from other organisations or even internal processes. Con-
straints need to be challenged, as they may be based on percep-
tions rather than reality. For example, project office process and
templates that are suited to linear approaches may appear to
be constraints but could be open to challenge. Real constraints,
however, should be accepted and efforts applied to areas where
change can occur or can be influenced.

Because the history of many agile approaches is based on small, highly collaborative
teams, it can be harder to make them work where that environment is not present. The
system of interest model helps to identify which areas can, and should, be challenged to
help address some of the obstacles that many organisations face in wider agile adop-
tion. Areas that may require influence or challenge include:

yy organisational culture and its resistance to change;

yy pre-existing frameworks that follow a linear approach;

yy audit, regulatory or safety critical requirements that expect higher quality
assurance;

yy projects with strict contractual commitments;

yy complex user environments or where there are issues with availability of end
users;

yy sub-contracting into a project that is run in a non-agile way;

yy lack of management support or understanding of agile.

THE BUSINESS ANALYST ROLE IN AN AGILE WORLD

In this book we have discussed the importance of having business analysts who can
analyse the organisational situation and understand business needs, even when the
business situation is vague and ambiguous. We have explored how the business analyst
can understand and adopt an agile mindset and how this can add value when they
deploy their skills across multiple levels within the organisation. Business analysts are
trained to explore root causes of problems, analyse problems through a business lens,
recognise multiple perspectives and never assume that IT is always the solution. As
Abraham Maslow commented, in his The psychology of science (1966):

I suppose it is tempting, if the only tool you have is a hammer, to treat everything
as if it were a nail.

265

AGILE AND BUSINESS ANALYSIS

As agile thinking and theory expands more widely into business systems, the need for
business analysts who can readily apply the skills and approaches outlined in this book
will be a key factor in organisational agility. An agile business analyst is not about doing
agile, rather it is about being agile and this can only be achieved once an agile mindset
is adopted.

The key characteristics that agile business analysts need to adopt are summarised in
Figure 16.3.

Figure 16.3  Key characteristics of an agile business analyst

With the agile mindset firmly ingrained, business analysts can help to increase organi-
sational agility and the success of change programmes. This requires them to work at
the enterprise, programme and project levels as discussed in Chapter 3 and shown in
Figure 16.4.

266

CONSIDERATIONS WHEN ADOPTING AGILE

Figure 16.4  BA role in agile

The business analyst and the product owner

Scrum has become the preferred agile development method in many organisations and
this has raised the issue of the involvement of the business analyst, particularly with
regard to the work of the product owner. Organisations that have not adopted Scrum,
or use a variant, also report that they have a similar role to the product owner and the
same issues apply.

Ken Schwaber defined the product owner role in the Scrum guide (July 2014) where he
includes in his description the following:

The Product Owner is responsible for maximizing the value of the product and the
work of the Development Team. How this is done may vary widely across organiza-
tions, Scrum Teams, and individuals

267

AGILE AND BUSINESS ANALYSIS

The lack of clarification within Scrum regarding the business analyst role has given rise
to the following two questions:

1.	 Can the business analyst be the proxy product owner?
2.	 How can the business analyst and product owner roles co-exist?

Within some projects and organisations, the business analyst may be asked to perform
the role of the proxy product owner. This normally entails undertaking product owner
responsibilities such as managing and prioritising the backlog, attending team meetings
and representing the views of the business. This may be a temporary role or may be
longer term and the business analyst covers the duties that are the province of the
product owner. The reasons why a business analyst may be asked to be a proxy product
owner include the following:

yy product owner is overworked;

yy product owner is under-skilled;

yy product owner role split into product manager and product owner;

yy product owner is in a different city, country or continent to development team.

While business analysts typically possess skills required of a product owner, we do not
believe that the business analyst role should become the proxy product owner. Scrum
is clear that the product owner is solely responsible for managing and prioritising the
backlog and the work performed by the development team. We feel that the separation
of responsibilities between a product owner and a business analyst operating as a proxy
product owner could cause miscommunication within the development team resulting
in delays to the product delivery. We believe the better alternatives are that:

yy the business analyst becomes the actual product owner

yy the business analyst acts as a critical friend to the product owner and the
development team.

Business analysts work holistically across many business components, one of which is
IT solutions. In doing this they are applying service, systems and Lean thinking. Business
analysts who complete the International Diploma in Business Analysis with BCS, The
Chartered Institute for IT, are trained to look beyond software solutions to define and
resolve business problems. This training enables business analysts to take on the role
of product owner or to be the critical friend to the product owner. Business analysts may
have an IT or a business background, or, sometimes, both. However, the majority have
progressed to a business analyst role because they have both logical and interpersonal
skills, and a natural interest in business problem-solving. Business analysts who can
offer this range of skills not only make great product owners, but are also perfectly
capable of operating within an agile project team.

It appears to us that the product owner role requires business analysis skills – the
skills that business analysts have been developing for over 20 years. This subject arose
during an email exchange with Ken Schwaber (email conversation on 29 June 2016)
regarding why business analysts often end up as proxy product owners.

268

This extract from the exchange is reprinted with permission from Ken:

Over and over, I find the business people so tired of dealing with systems people
that the idea of [them becoming] a Product Owner is just too much. They [the busi-
ness people] don’t trust or know how to talk with and direct software services, so
they just delegate.

So, there is a need for skilled professionals who can support the product owner in repre-
senting the business, and who will be able to work collaboratively with the software
team, and build relationships based on engagement and trust. We couldn’t have put it
better – and we know just the people to do this.

CONCLUSION

Although agile was originally developed with software development in mind, its values
and principles apply more widely. The shift in mindset to adopt agile principles and
values requires a much deeper understanding and acceptance of the need for change.
The three elements that constitute agile adoption, shown in Figure 16.5, apply to the
individual, the project and the organisation.

Figure 16.5  Main elements of agile

CONSIDERATIONS WHEN ADOPTING AGILE

269

AGILE AND BUSINESS ANALYSIS

We feel that this diagram also represents what is required for the business analysis
profession to adopt agile across the three levels of business analysis work. We hope
this book helps all business analysts to develop their agile mindset and deliver agility
in all that they do.

REFERENCES

Ambler, S. (2009) Adapting Agile methods for complex environments. IBM
Rational Software. Available from: www.webfinancialsolutions.com/wp-content/
uploads/2011/10/Adapting-Agile-Methods-for-Complex-Environments.pdf [20
December 2016].

Maslow, A.H. (1966) The psychology of science. Chapel Hill, NC: Maurice Bassett Publishing.

Schwaber, K. (2016) Email conversation, 29 June.

Schwaber, K. and Sutherland, J. (2014) The Scrum Guide™ The Definitive Guide to Scrum:
The Rules of the Game. Available at: www.scrumguides.org/docs/scrumguide/v1/scrum-
guide-us.pdf [18 January 2016].

FURTHER READING

Ambler, S. and Lines, M. (2012) Disciplined Agile delivery: a practitioner’s guide to Agile
software in the enterprise. Upper Saddle River, NJ: IBM Press.

Cadle, J. (ed.) (2014) Developing information systems. Swindon: BCS.

Pichler, R. (2010) Common product owner traps. Scrum Alliance. Available from:
www.scrumalliance.org/community/articles/2010/april/common-product-owner-
traps#sthash.4GSD4tRB.dpuf [20 December 2016].

270

INDEX

Adaptive Software Development
(ASD) 14

agile

adoption of 259–65

alliance 13–15, 21

approaches 20–1, 73–5

boards 246–7

business analysis 25–32,
98–9, 105, 209, 265–9

business thinking 32–9

change projects 29, 213

creating solutions 17

customer collaboration 18

development 102, 118, 155,
157

disciplined 2.0 74

estimation 222–31

evolution of iterative methods
13

introduction 11

Manifesto see Agile Manifesto

methods 59–76

mindset 15–16, 24–5, 41–57

origins of 12–13

practices 21–2

responding to change 18–9

Three Pillars of 62, 249

12 principles 19–20

use cases 174

working software 17–8, 52

Agile Manifesto 2, 11, 16, 19–20,
22, 25, 31, 37, 41, 59, 161

Agile retrospectives: making good
teams great (Derby) 254–5

AgileUP 21, 70

AHP (analytical hierarchy
prioritisation) 132, 141

Ambler, Scott 27, 74, 101–2, 161,
263

analysis 146–7, 153

Anderson, David 21, 71

‘backbone’ 198–9

backlogs

explanation 209–10

iteration 210, 212, 257

and prioritisation 211–2

release 212

solutions 209–13

and stakeholders 211–2

BAM 94

BCS 268

Beck, Kent 14, 66

Bittner, Kurt 174

black box 85

Boehm, Barry 13, 224

boundaries 91

brainstorming 167

brainwriting 167

Brooch, Grady 13

burndown charts 250–2

burnup charts 252–3

business

activity models (BAM) 88–9

actors 91

agility 5–6, 8–10

analysis 256–7

architects 114

capability maps 81–2

constraints 262

epics 92–4, 211

goals 161

managers 112

process maps 87–8

process models 89–90

business analysis 25–32, 98–9,
105, 209, 265–9

Agile Manifesto 31–2

agile software projects 7–8,
25–32, 41–2, 45

and Agile teams 47–9, 102–3

landscape 4–5, 6–7

maturation of 3–4

pre-project 25–9

rationale for 2–3

and Scrum 268

within the development team
30–1

business thinking 32–9

lean 35–7, 39, 88

service 37–9

systems 32–4, 39

business use case diagrams
90–1

business use case models 90–2

change 247–8

change programmes/projects 4,
29, 29–30, 211, 213

Checkland, Peter 32

Chrysler 14

Coad, Peter 14

Cockburn, Alistair 13–14, 85–6,
126

Cohn, Mike 185, 193

collaborative working 43–6, 211

communication 43–4

competitor organisations 116

continuous improvement 49–52

Cooper, Alan 169

271

core agile values 6, 42

Course Organisation Systems 92

Covey, Stephen 47

Cox, Julian 84–5

critical success factors (CSFs)
79, 89, 91, 217

Crystal 14

customers 116, 118, 152, 262

DA 2.0 263

DAD 236

daily stand-ups 249–50

data architect/managers 115

de Luca, Jeff 14

decomposition

functional 123, 126

and goals 91, 122–6, 128–9,
201

and hierarchy 218–9

understanding goal levels
126–8

Deming cycle 51

Deming, W. Edwards 50–1, 235

Department for Work and
Pensions (UK) 4

Derby, E. 254–5

Developing information systems
(Cadle) 12–13, 84

diagrams

context 163, 172

use case 163, 172, 174–7

DMAIC 52, 57

domain experts see subject-
matter experts (SMEs)

Drucker, P. F. 57

Dynamic Systems Development
Method (DSDM) 7, 9, 14, 21,
67–8, 75

elicitation 146, 151, 153–8

epics 183–4

estimation

approaches 222–3

divide to size 228

ordering 133, 228

planning poker 229–31

relative (bucket method) 227

relative sizing 225

techniques 224

units 226

up-front 226–7

why and when 223–4

Wideband Delphi 224, 231

Extreme Programming (XP) 14

facilitated workshops 154

Farquhar, John 224

Feature Driven Development
(FDD) 14

Fifth Discipline, The (Senge) 32

Fitness for Business Purpose 21

5-forces (Porter) 80

5-Ws 73

Functional Model Map (FMM)
84–7, 150–1, 159, 181

generalising specialists 61,
101–2

goals

business 161

and decomposition 122–6,
128–9, 201

and functional decomposition
91, 123–6

and iteration 128–9, 236–8

levels 126–7

to achieve business agility
128

government/legal/regulatory
bodies 116

Handbook of Service Science
(Spohrer/Maglio) 99

Highsmith, Jim 13

horizontal view see business
thinking, lean

human touch, The (Thomas et
al) 46

IBM 13

ideas

discussing 167

sharing 167

Inmates are Running the Asylum,
The (Cooper) 169

International Diploma in
Business Analysis 268

INVEST 184, 193

iteration

and agile 52–7, 60

and business analysis 256–7

evolution of methods 13

and goals 128–9, 236–8

introduction/explanation
233–6

layered approach 236

managing/monitoring 249–53

and modelling 84, 162, 174

non-timeboxed 248–9

and planning 238–9

product backlog refinement
244–6

progress 245–7

and requirements approach
151, 154

reviewing 253–6

and teams 239–44

Jacobson, Ivar 13, 172, 174

Japan 49

Jensen, Mary Ann 49

Jones, Daniel 35–6, 88

Just Enough, Just in Time

and agile 56, 222, 227, 231

and delivery 2

and DSDM 67

and iteration 248–9

Lean principle of 18

and modelling 84, 94, 161

and stakeholders 99

Kaizen (continuous improvement)
50–1, 57

Kanban 21, 68, 71–2, 246

Kano approach 132

key performance indicators
(KPIs) 79, 89, 91

Lean

manufacturing 50, 152

software development 72–3

startup 73

thinking 21, 41

Lean software development
(Poppendieck/Poppendieck) 21,
72–3

Leffingwell, Den 74

LeSS (Large Scale Scrum) 75

Lightweight Methods 13, 15

Lines, Mark 74, 101–2

‘Manage Course Booking’ 183

‘Managing the development of
large software systems‘ (Royce)
12

manufacturing products 50

Martin, James 13, 21

272

Maslow, Abraham 265

Mehrabian, Albert 43–5

Mehrabian’s model 43–4

micromanagement 46–8, 261

Minimal Marketable Product
(MMP) 54, 153, 201–2

Minimal Viable Product (MVP) 54,
153, 201

misuse characters 163, 168,
171–2

modelling

in an agile context 94

BDD (behaviour driven
development) 185, 192–3,
195–7

benefits 159–61

explanations 159, 180

Functional Model Map (FMM)
84–7, 150–1, 159, 181

functionality 161–3

and iteration 84, 162, 174

misuse characters 171

personas 168–71

requirements approach 146,
149–50

scenarios 193–5

and stakeholders 160

system context and scope
172–8, 180–2

techniques 82–7

user journeys 178–9

user stories 182–93, 197–203

users and roles 164–8

modular business architecture
128

MoSCoW technique 5, 53, 68,
202, 212–13, 242

MOST 79, 80–1

muda (waste) 72

New York Telephone Company
13

Nexus 75

non-functional requirements
(NFRs) 162, 214–16

North, Dan 196

Ohno, T. 36

OMG Business Motivation Model
33

$100 allocation 132, 141

OpenUP 21, 70

organisational agility 79–82

Out of the crisis (Deming) 50

overprocessing 36, 152

overproduction 36, 152

pair programming 22, 66

Patton, Jeff 183, 197, 198

PayPal 128, 218

PDCA cycle 51

personas 101, 103, 105, 107,
159–79, 163

PESTLE analysis 80

Plan-Do-Study-Act wheel 235

POPIT

and agile adoption 260

and agile mindset 53, 56

and agile philosophy 17

and business agility 128

and enterprise 25, 27–8, 34,
37

key business analysis
technique 82, 87

and modelling 184

and requirements approach
150

Poppendieck, Mary and Tom 21,
72–3

power/interest grid 107–8

pre-project analysis 26–7

PRINCE2 68

prioritisation

application of 137–8

and backlogs 211–2

decomposition 138–9, 144

importance of 130–1, 204

issues 139–44

and MoSCoW framework
134–8, 140, 143

techniques 131–4

and timing 134

programme managers 29,
112–13

Project Management Institute
(PMI) 68

project managers 113

project sponsors 112

prototyping 155

Psychology of Science, The
(Maslow) 265

RACI/RASCI 44, 107–8

Rapid application development
(Martin) 13

Rapid Application Development
(RAD) 7, 13, 21, 67

Rational Software Corporation
13, 70

Rational Unified Process (RUP)
13, 70

Relative Mass Estimation see
estimation, ordering

requirements approach

agile requirements
engineering 152–4

business analysis 156–8

catalogue 208–9, 213

elicitation techniques 154–6

and engineering 145–9, 151–2

functional 207

general 206

hierarchy 216–21

introduction 145

itemised backlogs 209–14

non-functional 207–8

planning of 149–51

technical 206

types 205–6

resource audits 80

retrospectives 61, 254–6

risk reduction/opportunity
enablement 133

Royce, Winston W. 12–3

Rumbaugh, James 13

RUP 21, 70

SAFe (Scaled Agile Framework)
74–5, 133, 184, 236

scenarios 91, 118, 155–6,
180–202

Schwaber, Ken 14, 61, 242,
267–9

Scrum

and agile adoption 261, 267–8

and agile working practices
24, 61–5, 98

AND Kanban 72

and backlogs 209–10

and DA 2.0 74

daily stand-ups 249–50

development process 14

and Disciplined Agile 2.0. 7,
9, 14

and DSDM 68

and iteration 242

job and role definitions 116

and LeSS 75

273

popular method 21

and roles 111

and sprint 62–4

Three Pillars of 62

and transparency 246

Scrum Alliance guide (2016)
98–9

Scrum Guide (Schwaber) 267

ScrumBan 21

Senge, Peter 32

service level agreements (SLAs)
6

Service Science theory 99

7 habits of highly effective people
(Covey) 47

Shewhart Cycle 235

‘shout out’ approach 167

‘show and tell’ meetings 253–4

Sinek, Simon 5–6

Six Sigma 50, 52

skills

generic 101

specific 101

Soft Systems Methodology (SSM)
32–4

Software Development Context
Framework (SCF) 263

software products 4, 50

software/application architects
114

solutions

architects/designers 114

development 19, 118

testers 118

SPAM 192

Spence, Ian 174

Spiral model (Barry Boehm) 13

stakeholders

and agile philosophy 18

and analytical approaches 27

and backlogs 211–2

business analysis 98–9

business and and system
requirements 29–30

categorising 103–6, 110–1

collaborative working 97

communication 82

engagement 84, 106–10, 119

external perspectives 115–16

and modelling 160

nature of 96–7

and perspectives 110–15,
116–19

and prioritisation 131, 143

and requirements approach
146, 149, 151–4

understanding 44

and user stories 219

working with 97–8

stories

and agile boards 247

and burndown charts 250

complex 185–6

compound 185–7

hierarchy of user 219–20

mapping of 197–203

and stakeholders 219

writing workshops 155

subject-matter experts (SMEs)
111, 116–17

suppliers 80, 90, 107, 109, 116,
206

surveys/questionnaires 154

Sutherland, Jeff 14, 61

SWOT analysis 80–1

system of interest model 263–4

T-shaped professional 96,
99–103, 157–8

TDD 66

team leaders 118

teams

agile 126, 247–9, 256–7

culture of 262

and iteration 239–44

multi-skilled 99–103

self-organising 46, 99

skills of 262

velocity 212

themes 183

Thomas, Dave 13

Thomas, P. 46

Three Pillars of Scrum 62

3Cs 188

throwaway prototypes 156

time criticality 133

timeboxing 167

Toyota Production System 35, 72

traceability 147–8

transparency 61

TUBE 66

Tuckman, Bruce 48–9

Tuckman’s model 48–9

UML (Unified Modelling
Language)

activity diagram 177

description 1

notation 13, 91

UP (Unified Process) 21, 70–1,
236

Use Case Modelling (Bittner/
Spence) 174

Use-Case 2.0: the Guide to
Succeeding with Use Cases
(Bittner) 174

User Stories Applied (Cohn) 182,
193

User story mapping (Patton) 183

users

analysis matrix 163–5

business value 133

interviews 154

journeys 163

roles 163–8

UX (user experience) 47, 162

V model life cycle 25

value chains see business
thinking, lean

value propositions 38, 105

value stream diagram (Womack/
Jones) 88

value streams 81–2, 88

value-in-exchange 38

value-in-use 38

video conferencing 45

‘waterfall‘ systems 12–13, 25, 60

white box 85

‘whole team’ concept 247

WJSF (Weighted Shortest Job
First) 75, 133–4, 141

Womack, James 35–6, 88

Work in Progress (WIP) 71–2

workshops 154, 160, 167, 191

world view analysis 44, 107–8

Worldpay 128, 218

Writing effective use cases
(Cockburn) 126

WSJF prioritisation technique
228

XP 21, 66–8, 72, 210, 249

Zachman’s Framework 33

274

	Cover
	Copyright Page
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	AUTHORS’ BIOGRAPHIES
	FOREWORD
	PREFACE
	1 BUSINESS ANALYSIS IN AGILE ENVIRONMENTS
	INTRODUCTION
	THE RATIONALE FOR BUSINESS ANALYSIS
	BUSINESS AGILITY
	THE AGILE BUSINESS ANALYST
	THE AGILE BUSINESS ANALYSIS BOOK

	2 AGILE PHILOSOPHY AND PRINCIPLES
	INTRODUCTION
	THE ORIGINS OF AGILE
	THE AGILE MANIFESTO
	THE 12 AGILE PRINCIPLES
	AGILE APPROACHES
	AGILE PRACTICES
	CONCLUSION

	3 ANALYSING THE ENTERPRISE
	INTRODUCTION
	THE BUSINESS ANALYSIS PERSPECTIVE
	AGILE MANIFESTO FOR BUSINESS ANALYSTS
	AGILE BUSINESS THINKING
	CONCLUSION

	4 ADOPTING AN AGILE MINDSET
	INTRODUCTION
	RELATING THE AGILE PRINCIPLES TO BUSINESS ANALYSIS
	COLLABORATIVE WORKING
	SELF-ORGANISING TEAMS
	CONTINUOUS IMPROVEMENT
	ITERATIVE DEVELOPMENT AND INCREMENTAL DELIVERY
	PLANNING FOR AND BUILDING IN CHANGE
	DOING THE RIGHT THING AND THE THING RIGHT
	CONCLUSION

	5 UNDERSTANDING AGILE METHODS AND FRAMEWORKS
	INTRODUCTION
	KEY ELEMENTS IN AGILE METHODS
	POPULAR AGILE METHODS AND APPROACHES
	SCALED AGILE APPROACHES
	CONCLUSION

	6 MODELLING THE BUSINESS CONTEXT
	INTRODUCTION
	ORGANISATIONAL AGILITY
	USING MODELLING TECHNIQUES
	MODELLING AT A BUSINESS LEVEL
	CONCLUSION

	7 WORKING WITH STAKEHOLDERS AND ROLES
	INTRODUCTION
	THE NATURE OF STAKEHOLDERS
	THE MULTI-SKILLED TEAM
	CUSTOMER CATEGORIES
	STAKEHOLDER ENGAGEMENT
	STAKEHOLDER CATEGORIES, ROLES AND PERSPECTIVES
	CONCLUSION

	8 DECOMPOSING GOALS
	INTRODUCTION
	THE RELEVANCE OF GOAL-BASED ANALYSIS
	GOAL AND FUNCTIONAL DECOMPOSITION
	UNDERSTANDING GOAL LEVELS
	USING GOALS TO ACHIEVE BUSINESS AGILITY
	USING GOALS TO DEFINE ITERATIONS AND RELEASES
	CONCLUSION

	9 PRIORITISING THE WORK
	INTRODUCTION
	THE IMPORTANCE OF PRIORITISATION
	PRIORITISING REQUIREMENTS
	APPLYING PRIORITISATION
	PRIORITISATION DECOMPOSITION
	PRIORITISATION ISSUES
	CONCLUSION

	10 DECIDING THE REQUIREMENTS APPROACH
	INTRODUCTION
	THE REQUIREMENTS ENGINEERING FRAMEWORK
	PLANNING THE REQUIREMENTS APPROACH
	ISSUES WITH REQUIREMENTS ENGINEERING
	AGILE REQUIREMENTS ENGINEERING
	REQUIREMENTS ELICITATION TECHNIQUES
	THE ROLE OF BUSINESS ANALYSIS IN ELICITATION
	CONCLUSION

	11 MODELLING USERS AND PERSONAS
	INTRODUCTION
	BENEFITS OF A MODELLING APPROACH TO REQUIREMENTS
	MODELLING USERS AND FUNCTIONALITY
	ANALYSING USERS AND ROLES
	ANALYSING PERSONAS AND MISUSE CHARACTERS
	ANALYSING THE SYSTEM CONTEXT AND SCOPE
	VISUALISING USER JOURNEYS
	CONCLUSION

	12 MODELLING STORIES AND SCENARIOS
	INTRODUCTION
	MODELLING SYSTEM USAGE
	USER STORIES
	SCENARIOS
	BEHAVIOUR DRIVEN DEVELOPMENT
	STORY MAPPING
	CONCLUSION

	13 ORGANISING TASKS AND REQUIREMENTS
	INTRODUCTION
	TYPES OF REQUIREMENT
	THE REQUIREMENTS CATALOGUE
	THE ITEMISED BACKLOGS
	REQUIREMENTS CATALOGUE OR SOLUTION BACKLOG?
	RECORDING NON-FUNCTIONAL REQUIREMENTS
	HIERARCHY OF REQUIREMENTS
	CONCLUSION

	14 ESTIMATING AGILE PROJECTS
	INTRODUCTION
	AGILE ESTIMATION APPROACHES
	WHY AND WHEN TO ESTIMATE
	ESTIMATION TECHNIQUES
	CONCLUSION

	15 PLANNING AND MANAGING ITERATIONS
	INTRODUCTION
	THE ITERATION
	ITERATIONS AND GOALS
	PLANNING THE ITERATION
	MANAGING AND MONITORING THE ITERATION
	REVIEWING THE ITERATION
	THE ROLE OF BUSINESS ANALYSIS IN AGILE ITERATIONS
	CONCLUSION

	16 CONSIDERATIONS WHEN ADOPTING AGILE
	INTRODUCTION
	AGILE ADOPTION
	THE BUSINESS ANALYST ROLE IN AN AGILE WORLD
	CONCLUSION

	INDEX
	Back Cover

