http://developers.sun.com/solaris/articles/prstat.html
Topping top in Solaris 8 with prstat

		 

	 


Print-friendly Version



	By Tom Kincaid and Andrei Dorofeev, March 2001 
 

[image: image2.png]



Introduction
Different views of the system 

Finding processes that are using up the CPU
Determining User Consumption
Looking at processor sets
Identifying virtual memory usage
An in-depth look at individual processes 

Focusing on specific processes
Redirecting the output of prstat
Tracking down resource leaks
Getting the Resource Statistics for Each Thread Within a Process
Getting the micro statistics on a process
Other Solaris Performance Tools
Conclusion
Introduction

This article describes how the prstat utility can be used to provide views of a system's activity and resource consumption. In addition, identifying activity and resource consumption of individual processes and threads is discussed. The advantages of prstat over top are identified. Examples of commonly encountered performance problems, and solutions that utilize prstat, are included. 

This article will help: 

1. Solaris developers understand how their applications are consuming system resources and how the applications are spending time. With this understanding, developers can identify and correct resource leaks in their applications and gain an understanding of how their applications can be changed to perform better on the Solaris platform. 

2. Solaris system administrators understand how prstat can be used to identify the resources consumption taking place on their systems. With this understanding of resource consumption, system administrators can identify system performance problems and correct them. 

Different Views of the System

When users see a noticeable drop in system performance, it is almost always because a resource is being exhausted. The resources most commonly exhausted are CPU, memory, and disks. The Solaris operating environment has many tools for identifying which resources is being overtaxed. Some common Solaris tools for monitoring a system's usage of memory, CPU, and disks are vmstat, mpstat, and iostat respectively. In addition, the Solaris performance tool perfmeter can be used to graphically monitor system resource utilization on systems that have the appropriate graphic ability. 

Note: On some Solaris servers, windowing systems are not available. For this reason, the subject of viewing resource utilization graphically will not be presented in any detail in this article. 

Once you have identified which resource is being exhausted, you can use prstat to identify which processes causing it. 

Finding Processes that are Using Up the CPU

Suppose you are using a Solaris system to write a document in StarOffice and you notice that it is taking a long time to process large spreadsheet calculations and other tasks. 

If you suspect that the system is behaving poorly because the CPU resources are being overtaxed, a quick way to get some kernel statistics on CPU usage is to use the mpstat command. 

The mpstat 5 5 command will print the CPU statistics 5 times at 5 second intervals. The following is a sample output of this command. 

kincaid/tartan 49 $ mpstat 5 5 

CPU
minf
mjf
xcal
intr
ithr
csw
icsw
migr
smtx
srw
syscl
usr
sys
wt
idl
0
1
0
0
345
224
589
220
0
0
0
799
29
1
0
70
0
1
0
0
302
200
752
371
0
0
0
1191
99
1
0
0
0
0
0
0
341
221
767
375
0
0
0
1301
100
0
0
0
0
0
0
0
411
256
776
378
0
0
0
1313
99
1
0
0
0
0
0
0
382
241
738
363
0
0
0
1163
97
3
0
0
kincaid/tartan 50 $ 

In the output sample above, 4 of the 5 samples have CPU 0 with a combined user time and sytem time at 100 and idle time at 0 (column headings usr, sys, idl). This indicates that the CPU is completely consumed on this system. 

The following is the perfmeter output for CPU, page, and disks. 

[image: image3.jpg]—Perfmeter V3.6.7 | ||

—Perfmeter V3.6. - |

_—PerfmeterV3.6.2 - | |

i |





perfmeter output 

After gathering the data from perfmeter and mpstat, which indicates that the system CPU resources are overtaxed, you can use prstat to identify which processes are consuming the CPU resources. The prstat -s cpu -n 5 command is used to list the five processes that are consuming the most CPU resources. The -s cpu flag tells prstat to sort the output by CPU usage. The -n 5 flag tells prstat to restrict the output to the top five processes. 

kincaid/tartan 43 $ prstat -s cpu -n 5 

PID
USERNAME
SIZE
RSS
STATE
PRI
NICE
TIME
CPU
PROCESS/NLWP
13974
kincaid
888K
432K
run
40
0
36:14.51
67%
cpuhog/1
27354
kincaid
2216K
1928K
run
31
0
314:48.51
27%
server/5
14690
root
136M
46M
sleep
59
0
0:00.59
2.3%
Xsun/1
14797
kincaid
9192K
7496K
sleep
59
0
0:00.10
0.9%
dtwm/8
14851
kincaid
24M
14M
sleep
48
0
0:00.03
0.3%
netscape/1
Total: 97 processes, 190 lwps, load averages: 2.18, 2.15, 2.11
In the example output, there is a process named cpuhog that is consuming the majority (67 %) of the CPU cycles. If this process is killed using the kill -9 13974 command, and the mpstat command is subsequently repeated, the output shows that the CPU is idle the majority of the time. The office application that was tested becomes very responsive and the spreadsheet calculations complete faster. 

Note: The -s cpu option is the default setting for prstat. Therefore, if the intent is to sort output by CPU usage, specifying the -s cpu option is not necessary. For the purpose of this article, the -s cpu option is set to distinguish it from other ways of sorting the output produced by prstat. 

mpstat 5 5 

CPU
minf
mjf
xcal
intr
ithr
csw
icsw
migr
smtx
srw
syscl
usr
sys
wt
idl
0
1
0
0
348
225
577
219
0
0
0
780
32
1
0
67
0
1
0
0
307
206
353
104
0
0
0
433
0
0
0
100
0
0
0
0
304
203
347
103
0
0
0
359
0
0
0
100
0
0
0
0
303
203
347
104
0
0
0
368
0
0
0
100
0
0
0
0
318
211
349
103
0
0
0
369
0
0
0
100
kincaid/tartan 53 $ 

Determining User Consumption

Occassionally there are many small processes, each of which consume a small piece of the CPU. On a system such as a computing server that is shared by many users, prstat can be used to determine which user (as opposed to which processes) is consuming the most resources. If the user consuming the most resources on the system can be identified, it is possible to move at least part of the work to another machine. To have prstat report statistics about resource consumption by user, add the -a option to the prstat command line. 

Adding the -a option to any prstat command will identify how many processes each user is using, what percent of the CPUs, and how much memory, they are using on a system, as shown above. The command prstat -s cpu -a -n 8 asks for the top 8 processes consuming the CPU and a list of resource consumption statistics for each user. 

The output below shows that user larry is consuming the most CPU resources. 

kincaid/tartan 43 $ prstat -s cpu -a -n 8 

PID
USERNAME
SIZE
RSS
STATE
PRI
NICE
TIME
CPU
PROCESS/NLWP
17005
larry
888K
432K
run
21
0
0:03.15
38%
cpuhog/1
17015
larry
888K
432K
run
21
0
0:03.06
36%
cpuhog/1
17175
larry
944K
872K
run
24
0
0:00.37
5.7%
find/1
16911
moe
944K
872K
sleep
58
0
0:00.48
3.3%
find/1
16915
moe
944K
872K
sleep
59
0
0:00.43
3.3%
find/1
17849
curly
944K
872K
run
31
0
0:00.00
3.0%
find/1
16472
root
132M
42M
sleep
59
0
0:01.00
0.9%
Xsun/1
16827
kincaid
6864K
4704K
sleep
48
0
0:00.05
0.4%
dtterm/1
NPROC
USERNAME
SIZE
RSS
MEMORY
TIME
CPU
7
larry
7504K
5656K
0.6%
0:06.58
80%
8
moe
8248K
6800K
0.7%
0:01.31
6.6%
3
curly
3336K
2832K
0.3%
0:00.00
3.0%
34
root
213M
95M
9.5%
0:03.05
1.0%
78
kincaid
433M
294M
30%
0:00.38
0.7%
Total: 132 processes, 218 lwps, load averages: 3.90, 4.29, 2.45
kincaid/tartan 44 $ 

Looking at Processor Sets

The Solaris operating environment is used to host applications on multi-processor machines. Frequently, system administrators create what is known as a processor set. A processor set is a group of CPUs to which tasks can be assigned. For instance, consider a machine containing four CPUs that is being used to run a web server and an application server. One approach to partitioning the system CPU resources between these two tasks is to create two processors with two CPUs each, and to bind the web server to one processor set and the application server to the other processor set. This avoids having one server consume all the CPU resources on the machine. 

Included below is a set of commands you can use to create two processor sets. 

# psrset -c 0

created processor set 1

processor 0: was not assigned, now 1

# psrset -a 1 1

processor 1: was not assigned, now 1

# psrset -c 2

created processor set 2

processor 2: was not assigned, now 2

# psrset

user processor set 1: processors 0 1

user processor set 2: processor 2

After creating processor sets, prstat commands can be restricted to retrieve the process statistics for processes bound to a specific processor set. This is accomplished with the -C option. For example, prstat -C 1 -s cpu will report all the process activity for processes bound to processor set 1, and sort the results by CPU usage. This is extremely useful for identifying which processes are running on what processor sets. 

Evaluating the CPU column for processor sets is also useful for determining how busy a processor set is, which then determines what processor set to assign future computing tasks to. 

Note: The CPU column of prstat always reports the percentage of system CPU resources a process is consuming and not the percentage of CPU resources of a processor or a processor set, even if the -C option is specified on the command line. For example, if there is a two-processor set on a four-processor system and a prstat -C is executed on the processor set, since the processor set has 50% of the system's CPUs, the total percentages of the CPU column will not exceed 50%. 

Identifying Virtual Memory Usage

When the active computing tasks on a system require memory resources that exceed the physical memory available on the machine, the system moves units of memory called pages to disk to make memory available for an active section of a program. This is known as paging. When a system starts paging, there will be a significant drop in performance. A good tool for determining if a system is paging is sar. The sar -g command will yield the paging statistics for a given system. 

A common cause for system paging is a process or group of processes that are using a majority of the system's memory. prstat is an excellent tool for identifying which processes are consuming the majority of a system's memory. Use prstat -s size, which is similar to the previous command, but which sorts prstat output by size instead of by CPU usage. 

The following output illustrates sar -g for a system that is paging at a very high rate. 

sar -g 5 5 

SunOS tartan 5.8 Generic_108528-01 sun4u 02/12/01 

13:20:37
pgout/s
ppgout/s
pgfree/s
pgscan/s
%ufs_ipf
13:20:42
39.92
538.72
670.26
1147.31
0.00
13:20:47
36.60
483.80
515.40
353.80
0.00
13:20:52
40.20
508.20
632.00
1125.20
0.00
13:20:57
35.80
462.60
580.40
1141.60
0.00
13:21:02
0.00
0.00
0.00
0.00
0.00
Average
30.51
398.72
479.69
753.74
0.00
Once it has been determined that the system performance drop off is a result of heavy paging activity, the next step is to determine which processes have introduced the increase. Also, any time scanning occurs (as indicated by the column pgscan/s in the above output) there is a memory shortage on the system. It is not easy to identify all the reasons for paging, but identifying the processes that are consuming the most virtual memory is a good start. To view the process consuming the most virtual memory, use the command prstat with the -s size option. The command prstat -s size -n 5 provides the top five processes on a system in terms of virtual memory consumption. Included below is the output from the prstat -s size -n 5 command on the system on which the above sar command was run. 

tartan% prstat -s size -n 5 

PID
USERNAME
SIZE
RSS
STATE
PRI
NICE
TIME
CPU
PROCESS/NLWP
21307
kincaid
1001M
616M
run
2
0
0:01.16
32%
memhog/1
16472
root
138M
43M
sleep
59
0
0:17.28
1.2%
Xsun/1
18133
kincaid
92M
31M
sleep
49
0
0:01.42
0.0%
soffice.bin/9
16574
kincaid
44M
24M
sleep
49
0
0:10.37
0.2%
.netscape.bin/1
16674
kincaid
36M
25M
sleep
49
0
0:00.08
0.0%
sdtperfmeter/1
Total: 130 processes, 220 lwps, load averages: 0.51, 0.36, 0.23
One process in the example is using over 1000 megabytes of virtual memory. The system only has 1 gigabyte of physical memory total. The process with ID 21307, memhog, is most likely the process that is slowing down the system. 

After the kill -9 21307 command is issued to terminate the process on the system, the performance returns to normal and repeating the sar command shows that all paging and scanning have ceased, as shown in the following output. 

tartan% sar -g 5 5 

SunOS tartan 5.8 Generic_108528-01 sun4u 02/12/01 

13:20:02
pgout/s
ppgout/s
pgfree/s
pgscan/s
%ufs_ipf
13:20:07
0.00
0.00
0.00
0.00
0.00
13:20:12
0.00
0.00
0.00
0.00
0.00
13:20:17
0.00
0.00
0.00
0.00
0.00
13:20:22
0.00
0.00
0.00
0.00
0.00
13:20:27
0.00
0.00
3.80
590.60
0.00
Average
0.00
0.00
0.76
118.07
0.00
An In-depth Look at Individual Processes

The previous section decribed how prstat can be used to identify processes that are causing system performance issues. This section describes how to examine the details of individual processes using prstat. 

The techniques presented in this section are useful for debugging certain classes of bugs and problems frequently encountered when developing or running server applications. 

prstat, like top, periodically updates the screen display with a new set of statistics for processes. There are two command line options that can be used to focus in on specific processes and then monitor the process for a longer period. 

Focusing on Specific Processes

To limit the statistics reported by prstat to a specific process or a set of processes, use the -p option followed by the list of process IDs. Process IDs can be obtained with the ps -ef command. This can be a useful way to gather information on a running process that you suspect has some performance issues. 

Redirecting the Output of prstat
By default, prstat will update a section of a terminal screen each time it reports new statistics about the processes it is monitoring. However, if the objective is to determine if a process is leaking resources or to learn how the process behaves over time, it is useful to have multiple sets of data reports from prstat for comparison. 

If you redirect the output of prstat to a file, each set of statistics produced by prstat will be preserved in the file. 

Tracking Down Resource Leaks

Consider the following scenario. Suppose you suspect that the server application received from a software vendor contains a slow memory leak. To illustrate the problem to the vendor, run a prstat command that is limited to the process ID of the server application and gathers the statistics every 15 seconds. The following code example shows how you can do this. 

kincaid/tartan 74 $ server & 

[1] 2423

kincaid/tartan 75 $ 

kincaid/tartan 56 $ prstat -p 2443 15 > server.out &

kincaid/tartan 57 $ tail -f server.out

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    32M 1008K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    47M 1248K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    62M 1488K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    77M 1728K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    92M 1968K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid   107M 2208K sleep   58    0   0:00.00 0.0% server/1

From the data gathered by prstat, it is clear that the process is growing by roughly 15 meg. every 15 seconds. In addition, the resident set size of the process is growing by roughly 40K every 15 seconds as well. While there may be explanations for this other than a memory leak in the server application, the data, like that shown in the code example, should raise strong suspicions about there being a memory leak in the application. 

Here is an example of a how prstat can be used to observe a Java server application leaking threads. prstat always lists the number of lwps (threads) in each process. 

kincaid/tartan 47 $ prstat -p 3221 > threads.out & 

[1] 3235

kincaid/tartan 48 $ tail -f threads.out


   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M run     58    0   0:00.00  32% java/43

Total: 1 processes, 43 lwps, load averages: 1.29, 1.20, 1.18

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M sleep   58    0   0:00.00  36% java/45

Total: 1 processes, 45 lwps, load averages: 1.44, 1.23, 1.19

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M sleep   58    0   0:00.00  38% java/48

Total: 1 processes, 48 lwps, load averages: 1.43, 1.23, 1.19

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M run     44    0   0:00.00  45% java/50

Total: 1 processes, 50 lwps, load averages: 1.65, 1.29, 1.21

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M sleep   58    0   0:00.00  52% java/52

Total: 1 processes, 52 lwps, load averages: 2.03, 1.37, 1.24

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M run     48    0   0:00.00  55% java/55

This output shows the number of lwps increasing over time. Hence, it is possible that the server application is leaking threads. 

Getting the Resource Statistics for Each Thread Within a Process.

You can also use prstat to find other resource leaks. A very nice feature of prstat is that by using the -L switch, prstat will report statistics for each thread of a process. 

This has a variety of uses, including: 

· The ability to see how the balance of the work is being distributed across the pool by viewing the CPU usage of each thread. 

· The option to further narrow down resource leaks to individual threads and not just a process. For example you can determine which thread is leaking memory. 

To illustrate, the following output shows the resource statistics for each thread of a server application. 

^C

kincaid/tartan 49 $ 

kincaid/tartan 49 $ prstat -L -p 3295

PID
USERNAME
SIZE
RSS
STATE
PRI
NICE
TIME
CPU
PROCESS/LWPID
3295
kincaid
28M
10M
sleep
38
0
0:00.01
2.1%
java/16
3295
kincaid
28M
10M
sleep
55
0
0:00.01
1.9%
java/17
3295
kincaid
28M
10M
sleep
48
0
0:00.01
1.8%
java/15
3295
kincaid
28M
10M
sleep
58
0
0:00.01
1.8%
java/23
3295
kincaid
28M
10M
sleep
52
0
0:00.01
1.7%
java/12
3295
kincaid
28M
10M
sleep
48
0
0:00.01
1.6%
java/22
3295
kincaid
28M
10M
sleep
58
0
0:00.01
1.5%
java/13
3295
kincaid
28M
10M
sleep
58
0
0:00.01
1.5%
java/14
3295
kincaid
28M
10M
sleep
48
0
0:00.01
1.4%
java/19
3295
kincaid
28M
10M
sleep
48
0
0:00.01
1.4%
java/18
3295
kincaid
28M
10M
sleep
38
0
0:00.01
1.4%
java/21
3295
kincaid
28M
10M
sleep
58
0
0:00.01
1.3%
java/24
3295
kincaid
28M
10M
sleep
58
0
0:00.01
1.2%
java/20
3295
kincaid
28M
10M
sleep
58
0
0:00.00
0.0%
java/1
3295
kincaid
28M
10M
sleep
58
0
0:00.00
0.0%
java/11
3295
kincaid
28M
10M
sleep
0
0
0:00.00
0.0%
java/10
3295
kincaid
28M
10M
sleep
59
0
0:00.00
0.0%
java/9
3295
kincaid
28M
10M
sleep
0
0
0:00.00
0.0%
java/8
3295
kincaid
28M
10M
sleep
0
0
0:00.00
0.0%
java/7
3295
kincaid
28M
10M
sleep
59
0
0:00.00
0.0%
java/6
3295
kincaid
28M
10M
sleep
58
0
0:00.00
0.0%
java/5
Total: 1 processes, 24 lwps, load averages: 1.30, 1.22, 1.21
kincaid/tartan 50 $ 
Getting the micro statistics on a process

To examine further what a process is doing, you can use the -m option to have prstat print out the micro statistics of the process. When you specify the -m option, a different set of columns is presented by prstat that represent how the process spent its time since the last sample was taken. The following table lists the micro statistic column headings and their meanings. 

Column Heading
Meaning
USR
The percentage of time the process has spent in user mode

SYS
The percentage of time the process has spent in system mode

TRP
The percentage of time the process has spent in processing system traps

DFL
The percentage of time the process has spent processing data page faults

LCK
The percentage of time the process has spent waiting for user locks

SLP
The percentage of time the process has spent sleeping

TFL
The percentage of time the process has spent processing text page faults

Following is sample output from using the -m option on the server application in the previous section. 

prstat -m -p 3295

     PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP  

  3295 kincaid  0.8 0.0 0.0 0.0 0.0 0.0  99 0.0  22   4  25   0 java/24

Explaining the meaning and implications of all these columns is beyond the scope of this paper. However, as you become familiar with operating system concepts and Solaris internals, the ability to monitor the micro statistics of an individual process or a group of processes becomes a very powerful tool, especially when trying to identify performance-related problems or issues. In addition, the -m option can be used with the -L option so the micro statistics of each thread of a process can be monitored. 

Other Solaris Performance Tools

As mentioned previously, prstat can be used with other Solaris performance monitoring tools to strengthen a developer's arsenal for debugging and diagnosing system performance issues. Some of the other Solaris tools that are worth reading about are: sar, iostat, netstat, and mpstat. All of these are great tools for identifying system performance issues. prstat is a nice complement to these tools because it helps further identify the processes and threads that may be responsible for system performance problems. 

Conclusion

prstat is a great addition to the Solaris tool set. It is standard, beginning with Solaris 2.8. Developers no longer need to track down a version of top with each new release of Solaris. prstat has all of the most commonly used features of top plus several very powerful features not found in top. 


Topping top in Solaris 8 with prstat

 Introduction

Different views of the system 

Finding processes that are using up the CPU

Determining User Consumption

Looking at processor sets

Identifying virtual memory usage

An in-depth look at individual processes 

Focusing on specific processes

Redirecting the output of prstat

Tracking down resource leaks

Getting the Resource Statistics for Each Thread Within a Process

Getting the micro statistics on a process

Other Solaris Performance Tools

Conclusion

Introduction

This article describes how the prstat utility can be used to provide views of a system's activity and resource consumption. In addition, identifying activity and resource consumption of individual processes and threads is discussed. The advantages of prstat over top are identified. Examples of commonly encountered performance problems, and solutions that utilize prstat, are included. 

This article will help: 

Solaris developers understand how their applications are consuming system resources and how the applications are spending time. With this understanding, developers can identify and correct resource leaks in their applications and gain an understanding of how their applications can be changed to perform better on the Solaris platform. 

Solaris system administrators understand how prstat can be used to identify the resources consumption taking place on their systems. With this understanding of resource consumption, system administrators can identify system performance problems and correct them. 

Different Views of the System

When users see a noticeable drop in system performance, it is almost always because a resource is being exhausted. The resources most commonly exhausted are CPU, memory, and disks. The Solaris operating environment has many tools for identifying which resources is being overtaxed. Some common Solaris tools for monitoring a system's usage of memory, CPU, and disks are vmstat, mpstat, and iostat respectively. In addition, the Solaris performance tool perfmeter can be used to graphically monitor system resource utilization on systems that have the appropriate graphic ability. 

Note: On some Solaris servers, windowing systems are not available. For this reason, the subject of viewing resource utilization graphically will not be presented in any detail in this article. 

Once you have identified which resource is being exhausted, you can use prstat to identify which processes causing it. 

Finding Processes that are Using Up the CPU

Suppose you are using a Solaris system to write a document in StarOffice and you notice that it is taking a long time to process large spreadsheet calculations and other tasks. 

If you suspect that the system is behaving poorly because the CPU resources are being overtaxed, a quick way to get some kernel statistics on CPU usage is to use the mpstat command. 

The mpstat 5 5 command will print the CPU statistics 5 times at 5 second intervals. The following is a sample output of this command. 

kincaid/tartan 49 $ mpstat 5 5 

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl 

0 1 0 0 345 224 589 220 0 0 0 799 29 1 0 70 

0 1 0 0 302 200 752 371 0 0 0 1191 99 1 0 0 

0 0 0 0 341 221 767 375 0 0 0 1301 100 0 0 0 

0 0 0 0 411 256 776 378 0 0 0 1313 99 1 0 0 

0 0 0 0 382 241 738 363 0 0 0 1163 97 3 0 0 

kincaid/tartan 50 $ 

In the output sample above, 4 of the 5 samples have CPU 0 with a combined user time and sytem time at 100 and idle time at 0 (column headings usr, sys, idl). This indicates that the CPU is completely consumed on this system. 

The following is the perfmeter output for CPU, page, and disks. 

perfmeter output  

After gathering the data from perfmeter and mpstat, which indicates that the system CPU resources are overtaxed, you can use prstat to identify which processes are consuming the CPU resources. The prstat -s cpu -n 5 command is used to list the five processes that are consuming the most CPU resources. The -s cpu flag tells prstat to sort the output by CPU usage. The -n 5 flag tells prstat to restrict the output to the top five processes. 

kincaid/tartan 43 $ prstat -s cpu -n 5 

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP 

13974 kincaid 888K 432K run 40 0 36:14.51 67% cpuhog/1 

27354 kincaid 2216K 1928K run 31 0 314:48.51 27% server/5 

14690 root 136M 46M sleep 59 0 0:00.59 2.3% Xsun/1 

14797 kincaid 9192K 7496K sleep 59 0 0:00.10 0.9% dtwm/8 

14851 kincaid 24M 14M sleep 48 0 0:00.03 0.3% netscape/1 

Total: 97 processes, 190 lwps, load averages: 2.18, 2.15, 2.11 

In the example output, there is a process named cpuhog that is consuming the majority (67 %) of the CPU cycles. If this process is killed using the kill -9 13974 command, and the mpstat command is subsequently repeated, the output shows that the CPU is idle the majority of the time. The office application that was tested becomes very responsive and the spreadsheet calculations complete faster. 

Note: The -s cpu option is the default setting for prstat. Therefore, if the intent is to sort output by CPU usage, specifying the -s cpu option is not necessary. For the purpose of this article, the -s cpu option is set to distinguish it from other ways of sorting the output produced by prstat. 

mpstat 5 5 

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl 

0 1 0 0 348 225 577 219 0 0 0 780 32 1 0 67 

0 1 0 0 307 206 353 104 0 0 0 433 0 0 0 100 

0 0 0 0 304 203 347 103 0 0 0 359 0 0 0 100 

0 0 0 0 303 203 347 104 0 0 0 368 0 0 0 100 

0 0 0 0 318 211 349 103 0 0 0 369 0 0 0 100 

kincaid/tartan 53 $ 

Determining User Consumption

Occassionally there are many small processes, each of which consume a small piece of the CPU. On a system such as a computing server that is shared by many users, prstat can be used to determine which user (as opposed to which processes) is consuming the most resources. If the user consuming the most resources on the system can be identified, it is possible to move at least part of the work to another machine. To have prstat report statistics about resource consumption by user, add the -a option to the prstat command line. 

Adding the -a option to any prstat command will identify how many processes each user is using, what percent of the CPUs, and how much memory, they are using on a system, as shown above. The command prstat -s cpu -a -n 8 asks for the top 8 processes consuming the CPU and a list of resource consumption statistics for each user. 

The output below shows that user larry is consuming the most CPU resources. 

kincaid/tartan 43 $ prstat -s cpu -a -n 8 

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP 

17005 larry 888K 432K run 21 0 0:03.15 38% cpuhog/1 

17015 larry 888K 432K run 21 0 0:03.06 36% cpuhog/1 

17175 larry 944K 872K run 24 0 0:00.37 5.7% find/1 

16911 moe 944K 872K sleep 58 0 0:00.48 3.3% find/1 

16915 moe 944K 872K sleep 59 0 0:00.43 3.3% find/1 

17849 curly 944K 872K run 31 0 0:00.00 3.0% find/1 

16472 root 132M 42M sleep 59 0 0:01.00 0.9% Xsun/1 

16827 kincaid 6864K 4704K sleep 48 0 0:00.05 0.4% dtterm/1 

NPROC USERNAME SIZE RSS MEMORY TIME CPU 

7 larry 7504K 5656K 0.6% 0:06.58 80% 

8 moe 8248K 6800K 0.7% 0:01.31 6.6% 

3 curly 3336K 2832K 0.3% 0:00.00 3.0% 

34 root 213M 95M 9.5% 0:03.05 1.0% 

78 kincaid 433M 294M 30% 0:00.38 0.7% 

Total: 132 processes, 218 lwps, load averages: 3.90, 4.29, 2.45 

kincaid/tartan 44 $ 

Looking at Processor Sets

The Solaris operating environment is used to host applications on multi-processor machines. Frequently, system administrators create what is known as a processor set. A processor set is a group of CPUs to which tasks can be assigned. For instance, consider a machine containing four CPUs that is being used to run a web server and an application server. One approach to partitioning the system CPU resources between these two tasks is to create two processors with two CPUs each, and to bind the web server to one processor set and the application server to the other processor set. This avoids having one server consume all the CPU resources on the machine. 

Included below is a set of commands you can use to create two processor sets. 

# psrset -c 0

created processor set 1

processor 0: was not assigned, now 1

# psrset -a 1 1

processor 1: was not assigned, now 1

# psrset -c 2

created processor set 2

processor 2: was not assigned, now 2

# psrset

user processor set 1: processors 0 1

user processor set 2: processor 2

After creating processor sets, prstat commands can be restricted to retrieve the process statistics for processes bound to a specific processor set. This is accomplished with the -C option. For example, prstat -C 1 -s cpu will report all the process activity for processes bound to processor set 1, and sort the results by CPU usage. This is extremely useful for identifying which processes are running on what processor sets. 

Evaluating the CPU column for processor sets is also useful for determining how busy a processor set is, which then determines what processor set to assign future computing tasks to. 

Note: The CPU column of prstat always reports the percentage of system CPU resources a process is consuming and not the percentage of CPU resources of a processor or a processor set, even if the -C option is specified on the command line. For example, if there is a two-processor set on a four-processor system and a prstat -C is executed on the processor set, since the processor set has 50% of the system's CPUs, the total percentages of the CPU column will not exceed 50%. 

Identifying Virtual Memory Usage

When the active computing tasks on a system require memory resources that exceed the physical memory available on the machine, the system moves units of memory called pages to disk to make memory available for an active section of a program. This is known as paging. When a system starts paging, there will be a significant drop in performance. A good tool for determining if a system is paging is sar. The sar -g command will yield the paging statistics for a given system. 

A common cause for system paging is a process or group of processes that are using a majority of the system's memory. prstat is an excellent tool for identifying which processes are consuming the majority of a system's memory. Use prstat -s size, which is similar to the previous command, but which sorts prstat output by size instead of by CPU usage. 

The following output illustrates sar -g for a system that is paging at a very high rate. 

sar -g 5 5 

SunOS tartan 5.8 Generic_108528-01 sun4u 02/12/01 

13:20:37 pgout/s ppgout/s pgfree/s pgscan/s %ufs_ipf 

13:20:42 39.92 538.72 670.26 1147.31 0.00 

13:20:47 36.60 483.80 515.40 353.80 0.00 

13:20:52 40.20 508.20 632.00 1125.20 0.00 

13:20:57 35.80 462.60 580.40 1141.60 0.00 

13:21:02 0.00 0.00 0.00 0.00 0.00 

Average 30.51 398.72 479.69 753.74 0.00 

Once it has been determined that the system performance drop off is a result of heavy paging activity, the next step is to determine which processes have introduced the increase. Also, any time scanning occurs (as indicated by the column pgscan/s in the above output) there is a memory shortage on the system. It is not easy to identify all the reasons for paging, but identifying the processes that are consuming the most virtual memory is a good start. To view the process consuming the most virtual memory, use the command prstat with the -s size option. The command prstat -s size -n 5 provides the top five processes on a system in terms of virtual memory consumption. Included below is the output from the prstat -s size -n 5 command on the system on which the above sar command was run. 

tartan% prstat -s size -n 5 

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP 

21307 kincaid 1001M 616M run 2 0 0:01.16 32% memhog/1 

16472 root 138M 43M sleep 59 0 0:17.28 1.2% Xsun/1 

18133 kincaid 92M 31M sleep 49 0 0:01.42 0.0% soffice.bin/9 

16574 kincaid 44M 24M sleep 49 0 0:10.37 0.2% .netscape.bin/1 

16674 kincaid 36M 25M sleep 49 0 0:00.08 0.0% sdtperfmeter/1 

Total: 130 processes, 220 lwps, load averages: 0.51, 0.36, 0.23 

One process in the example is using over 1000 megabytes of virtual memory. The system only has 1 gigabyte of physical memory total. The process with ID 21307, memhog, is most likely the process that is slowing down the system. 

After the kill -9 21307 command is issued to terminate the process on the system, the performance returns to normal and repeating the sar command shows that all paging and scanning have ceased, as shown in the following output. 

tartan% sar -g 5 5 

SunOS tartan 5.8 Generic_108528-01 sun4u 02/12/01 

13:20:02 pgout/s ppgout/s pgfree/s pgscan/s %ufs_ipf 

13:20:07 0.00 0.00 0.00 0.00 0.00 

13:20:12 0.00 0.00 0.00 0.00 0.00 

13:20:17 0.00 0.00 0.00 0.00 0.00 

13:20:22 0.00 0.00 0.00 0.00 0.00 

13:20:27 0.00 0.00 3.80 590.60 0.00 

Average 0.00 0.00 0.76 118.07 0.00 

An In-depth Look at Individual Processes

The previous section decribed how prstat can be used to identify processes that are causing system performance issues. This section describes how to examine the details of individual processes using prstat. 

The techniques presented in this section are useful for debugging certain classes of bugs and problems frequently encountered when developing or running server applications. 

prstat, like top, periodically updates the screen display with a new set of statistics for processes. There are two command line options that can be used to focus in on specific processes and then monitor the process for a longer period. 

Focusing on Specific Processes

To limit the statistics reported by prstat to a specific process or a set of processes, use the -p option followed by the list of process IDs. Process IDs can be obtained with the ps -ef command. This can be a useful way to gather information on a running process that you suspect has some performance issues. 

Redirecting the Output of prstat

By default, prstat will update a section of a terminal screen each time it reports new statistics about the processes it is monitoring. However, if the objective is to determine if a process is leaking resources or to learn how the process behaves over time, it is useful to have multiple sets of data reports from prstat for comparison. 

If you redirect the output of prstat to a file, each set of statistics produced by prstat will be preserved in the file. 

Tracking Down Resource Leaks

Consider the following scenario. Suppose you suspect that the server application received from a software vendor contains a slow memory leak. To illustrate the problem to the vendor, run a prstat command that is limited to the process ID of the server application and gathers the statistics every 15 seconds. The following code example shows how you can do this. 

kincaid/tartan 74 $ server & 

[1] 2423

kincaid/tartan 75 $ 

kincaid/tartan 56 $ prstat -p 2443 15 > server.out &

kincaid/tartan 57 $ tail -f server.out

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    32M 1008K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    47M 1248K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    62M 1488K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    77M 1728K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid    92M 1968K sleep   58    0   0:00.00 0.0% server/1

Total: 1 processes, 1 lwps, load averages: 0.00, 0.01, 0.01

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  2443 kincaid   107M 2208K sleep   58    0   0:00.00 0.0% server/1

From the data gathered by prstat, it is clear that the process is growing by roughly 15 meg. every 15 seconds. In addition, the resident set size of the process is growing by roughly 40K every 15 seconds as well. While there may be explanations for this other than a memory leak in the server application, the data, like that shown in the code example, should raise strong suspicions about there being a memory leak in the application. 

Here is an example of a how prstat can be used to observe a Java server application leaking threads. prstat always lists the number of lwps (threads) in each process. 

kincaid/tartan 47 $ prstat -p 3221 > threads.out & 

[1] 3235

kincaid/tartan 48 $ tail -f threads.out


   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M run     58    0   0:00.00  32% java/43

Total: 1 processes, 43 lwps, load averages: 1.29, 1.20, 1.18

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M sleep   58    0   0:00.00  36% java/45

Total: 1 processes, 45 lwps, load averages: 1.44, 1.23, 1.19

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M sleep   58    0   0:00.00  38% java/48

Total: 1 processes, 48 lwps, load averages: 1.43, 1.23, 1.19

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M run     44    0   0:00.00  45% java/50

Total: 1 processes, 50 lwps, load averages: 1.65, 1.29, 1.21

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M sleep   58    0   0:00.00  52% java/52

Total: 1 processes, 52 lwps, load averages: 2.03, 1.37, 1.24

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP       

  3221 kincaid    29M   11M run     48    0   0:00.00  55% java/55

This output shows the number of lwps increasing over time. Hence, it is possible that the server application is leaking threads. 

Getting the Resource Statistics for Each Thread Within a Process.

You can also use prstat to find other resource leaks. A very nice feature of prstat is that by using the -L switch, prstat will report statistics for each thread of a process. 

This has a variety of uses, including: 

The ability to see how the balance of the work is being distributed across the pool by viewing the CPU usage of each thread. 

The option to further narrow down resource leaks to individual threads and not just a process. For example you can determine which thread is leaking memory. 

To illustrate, the following output shows the resource statistics for each thread of a server application. 

^C

kincaid/tartan 49 $ 

kincaid/tartan 49 $ prstat -L -p 3295

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/LWPID 

3295 kincaid 28M 10M sleep 38 0 0:00.01 2.1% java/16 

3295 kincaid 28M 10M sleep 55 0 0:00.01 1.9% java/17 

3295 kincaid 28M 10M sleep 48 0 0:00.01 1.8% java/15 

3295 kincaid 28M 10M sleep 58 0 0:00.01 1.8% java/23 

3295 kincaid 28M 10M sleep 52 0 0:00.01 1.7% java/12 

3295 kincaid 28M 10M sleep 48 0 0:00.01 1.6% java/22 

3295 kincaid 28M 10M sleep 58 0 0:00.01 1.5% java/13 

3295 kincaid 28M 10M sleep 58 0 0:00.01 1.5% java/14 

3295 kincaid 28M 10M sleep 48 0 0:00.01 1.4% java/19 

3295 kincaid 28M 10M sleep 48 0 0:00.01 1.4% java/18 

3295 kincaid 28M 10M sleep 38 0 0:00.01 1.4% java/21 

3295 kincaid 28M 10M sleep 58 0 0:00.01 1.3% java/24 

3295 kincaid 28M 10M sleep 58 0 0:00.01 1.2% java/20 

3295 kincaid 28M 10M sleep 58 0 0:00.00 0.0% java/1 

3295 kincaid 28M 10M sleep 58 0 0:00.00 0.0% java/11 

3295 kincaid 28M 10M sleep 0 0 0:00.00 0.0% java/10 

3295 kincaid 28M 10M sleep 59 0 0:00.00 0.0% java/9 

3295 kincaid 28M 10M sleep 0 0 0:00.00 0.0% java/8 

3295 kincaid 28M 10M sleep 0 0 0:00.00 0.0% java/7 

3295 kincaid 28M 10M sleep 59 0 0:00.00 0.0% java/6 

3295 kincaid 28M 10M sleep 58 0 0:00.00 0.0% java/5 

Total: 1 processes, 24 lwps, load averages: 1.30, 1.22, 1.21 

kincaid/tartan 50 $ 

Getting the micro statistics on a process

To examine further what a process is doing, you can use the -m option to have prstat print out the micro statistics of the process. When you specify the -m option, a different set of columns is presented by prstat that represent how the process spent its time since the last sample was taken. The following table lists the micro statistic column headings and their meanings. 

Column Heading Meaning 

USR The percentage of time the process has spent in user mode 

SYS The percentage of time the process has spent in system mode 

TRP The percentage of time the process has spent in processing system traps 

DFL The percentage of time the process has spent processing data page faults 

LCK The percentage of time the process has spent waiting for user locks 

SLP The percentage of time the process has spent sleeping 

TFL The percentage of time the process has spent processing text page faults 

Following is sample output from using the -m option on the server application in the previous section. 

prstat -m -p 3295

     PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP  

  3295 kincaid  0.8 0.0 0.0 0.0 0.0 0.0  99 0.0  22   4  25   0 java/24

Explaining the meaning and implications of all these columns is beyond the scope of this paper. However, as you become familiar with operating system concepts and Solaris internals, the ability to monitor the micro statistics of an individual process or a group of processes becomes a very powerful tool, especially when trying to identify performance-related problems or issues. In addition, the -m option can be used with the -L option so the micro statistics of each thread of a process can be monitored. 

Other Solaris Performance Tools

As mentioned previously, prstat can be used with other Solaris performance monitoring tools to strengthen a developer's arsenal for debugging and diagnosing system performance issues. Some of the other Solaris tools that are worth reading about are: sar, iostat, netstat, and mpstat. All of these are great tools for identifying system performance issues. prstat is a nice complement to these tools because it helps further identify the processes and threads that may be responsible for system performance problems. 

Conclusion

prstat is a great addition to the Solaris tool set. It is standard, beginning with Solaris 2.8. Developers no longer need to track down a version of top with each new release of Solaris. prstat has all of the most commonly used features of top plus several very powerful features not found in top. 

[image: image4][image: image5][image: image6]
