SEQUENCES AND SERIES

SEQUENCES

A list of numbers that follow some sort of pattern or rule is called a sequence. For example, $2,4,6,8, \ldots$ is a sequence; the first term is 2 , the second term is 4 , and so on.

All sequences are either finite or infinite. A finite sequence has a last term. An infinite sequence has no last term and continues indefinitely (indicated by ...).

Each number in a sequence is called a term. The following notation is used to represent the terms in any sequence:

$$
u_{1}, u_{2}, u_{3}, \ldots, u_{n}, \ldots
$$

where

For example, for the sequence

$$
2,4,8,16,32, \ldots
$$

we have

$$
\begin{array}{ll}
u_{1}=2 & (\text { The first term is } 2) \\
u_{2}=4 & \text { (The second term is } 4) \\
u_{3}=8 & \text { (The third term is } 8 \text {) }
\end{array}
$$

and so on.
Often, a sequence can be described by a mathematical formula. The formula is a rule that gives us the value of any term. In fact, it gives us the value of the nth term, u_{n}, in terms of n.

EXAMPLE 1

Write down the first 3 terms of the sequence $u_{1}, u_{2}, u_{3}, \ldots$ if the nth term is given by the formula $u_{n}=n^{2}+n$.

SOLUTION

We simply use the formula for the nth term:
Put $n=1$ into the formula:

$$
\begin{aligned}
& u_{1}=1^{2}+1=2 \\
& u_{2}=2^{2}+2=6 \\
& u_{3}=3^{2}+3=12
\end{aligned}
$$

Put $n=2$ into the formula:
Put $n=3$ into the formula:

Sometimes we are given a sequence and asked to find a formula for the nth term.

Example 2

For the sequence $1,4,9,16, \ldots$, find a formula for the nth term.

SOLUTION

By inspection,

$$
\begin{aligned}
& u_{1}=1=1^{2} \\
& u_{2}=4=2^{2} \\
& u_{3}=9=3^{2} \\
& u_{4}=16=4^{2}
\end{aligned}
$$

For the nth term, $u_{n}=n^{2}$.

EXAMPLE 3

For the following sequences, find the value of the tenth term.
(a) $\quad u_{n}=\frac{3}{(n+1)(n+2)}$
(b) $\quad u_{n}=\pi$

SOLUTION

Put $n=10$ into the formula for u_{n} :
(a) $\quad u_{10}=\frac{3}{10.11}=\frac{3}{110}$
(b) $u_{10}=\pi$

ARITHMETIC SEQUENCES

In an arithmetic sequence, each term is equal to the previous term plus a constant value.
For example, the sequence

$$
5,8,11,14, \ldots
$$

is an arithmetic sequence. Here, each term is equal to the previous term plus the constant 3 . In all arithmetic sequences the difference between adjacent terms is a constant value. This difference is called the common difference.

More examples:
Arithmetic Sequence
First Term
Common Difference
$5,11,17,23, \ldots$
15
6
$12,8,4,0, \ldots$
12
-4
$-3,0,3,6, \ldots$
-3
3

If a is the first term of an arithmetic sequence and d is the common difference, then the sequence is

$$
a, a+d, a+2 d, a+3 d, \ldots
$$

Each term is d more than the previous term.

In an arithmetic sequence, the value of the nth term is given by

$$
u_{n}=a+(n-1) d
$$

EXAMPLE 4

For the sequence

$$
2,5,8,11,14, \ldots
$$

(a) Find a formula for the nth term
(b) Find the 35th term

SOLUTION

(a) This is an arithmetic sequence with $a=2$ and $d=3$.

$$
\begin{aligned}
u_{n} & =a+(n-1) d \\
& =2+(n-1) \cdot 3
\end{aligned}
$$

Thus,

$$
u_{n}=3 n-1
$$

(b) Put $n=35$ into the formula for the nth term: $u_{35}=3 \times 35-1=104$.

GEOMETRIC SEQUENCES

In geometric sequences, each term is equal to the previous term multiplied by a constant value. For example, the sequence

$$
2,6,18,54, \ldots
$$

is a geometric sequence since each term is 3 times the previous term. In all geometric sequences, the ratio of any term to its previous term is a constant value. This constant is called the common ratio.

For example,

Geometric Sequence	First Term		Common Ratio
$1,3,9,27, \ldots$	1	3	
$2,-6,18,-24, \ldots$	2	-3	
$-2,-1,-\frac{1}{2},-\frac{1}{4}, \ldots$	-2	$\frac{1}{2}$	

If the first term of a geometric sequence is a and the common ratio is r, the sequence is

$$
a, a r, a r^{2}, a r^{3}, \ldots
$$

Each term is r times the previous term.

In a geometric sequence, the value of the nth term is given by

$$
u_{n}=a r^{n-1}
$$

ExAMPLE 5

Find the twelfth term of the geometric sequence

$$
2,6,18,54, \ldots
$$

SOLUTION

This is a geometric sequence since with $a=2$ and $r=3$. Therefore,

$$
\begin{aligned}
u_{n} & =a r^{n-1} \\
& =2 \times 3^{n-1}
\end{aligned}
$$

Put $n=12$ into this formula for the nth term: $u_{12}=2 \times 3^{11}=354294$.

SERIES

In mathematics, a series is the sum of terms of a sequence. For example,

$$
4,7,10,13,16
$$

is a sequence, while

$$
4+7+10+13+16
$$

is a series.
In general, if $u_{1}, u_{2}, u_{3}, \ldots$ is a sequence, then

$$
u_{1}+u_{2}+u_{3}+\ldots
$$

is the (corresponding) series.

ARITHMETIC SERIES

An arithmetic series is the sum of an arithmetic sequence. Remember that an arithmetic sequence is of the form

$$
a, a+d, a+2 d, \ldots, a+(n-1) d, \ldots
$$

The sum to n terms is

$$
S_{n}=a+a+d+a+2 d+\ldots a+(n-1) d
$$

We can use the following formula to evaluate this sum.

For an arithmetic series, the sum to n terms is

$$
S_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

or

$$
S_{n}=\frac{n}{2}(a+l)
$$

where l is the nth term

EXAMPLE 6

Find a formula for the sum to n terms of the series $5+1-3-\cdots$ and hence find the sum to 20 terms.

SOLUTION

We have $a=5, d=-4$. Therefore,

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
& =\frac{n}{2}(2 \times 5+(n-1) \times(-4)) \\
& =\frac{n}{2}(10-4 n+4) \\
& =\frac{n}{2}(14-4 n) \\
& =n(7-n)
\end{aligned}
$$

The sum to 10 terms is thus -260 .

GEOMETRIC SERIES

A geometric series is the sum of a geometric sequence. Since a geometric sequence is of the form

$$
a, a r, a r^{2}, a r^{3}, \ldots, a r^{n-1}, \ldots
$$

the sum to n terms is

$$
S_{n}=a+a r+a r^{2}+\ldots a r^{n-1}
$$

For a geometric series, the sum to n terms is

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

or

$$
S_{n}=\frac{a-r l}{1-r}
$$

These formulae do not apply when $r=1$. In this case, $S_{n}=n a$.
where l is the last term.

EXAMPLE 7

Find the formula for the sum to n terms of the geometric series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$ and hence find the sum to 10 terms.

SOLUTION

For this series, $a=1$ and $r=\frac{1}{2}$. Therefore,

$$
\begin{aligned}
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
& =\frac{1\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}} \\
& =2\left(1-\frac{1}{2^{n}}\right) \\
& =2-\frac{1}{2^{n-1}}
\end{aligned}
$$

Putting $n=10$ gives $S_{10}=2-\frac{1}{2^{9}}=\frac{1023}{512}$.

INFINITE GEOMETRIC SERIES

An infinite series has an infinite number of terms. The series

$$
a+a r+a r^{2}+\ldots a r^{n-1}+\ldots
$$

is an infinite geometric series where the first term is a and the common ratio is r.

Limiting Sum

If the sum to n terms of an infinite geometric series approaches some value as the number of terms increases, then the series is said to have a limiting sum.

An infinite geometric series has a limiting sum if and only if $-1<r<1$. The limiting sum is then given by:

$$
\begin{aligned}
S & =a+a r+a r^{2}+\ldots \\
& =\frac{a}{1-r}, \quad \text { if and only if }-1<r<1
\end{aligned}
$$

EXAMPLE 8

Find the limiting sum of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$

SOLUTION

This is an infinite geometric series with $a=1$ and $r=\frac{1}{2}$. Since $-1<r<1$, the series does have a limiting sum. Thus,

$$
\begin{aligned}
S & =1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \\
& =\frac{1}{1-\frac{1}{2}} \\
& =2
\end{aligned}
$$

The following table gives the value of the first 10 terms and their sums for the series in the above example.

n	nth term	Sum to n terms
1	1	1
2	$\frac{1}{2}=0.5$	1.5
3	$\frac{1}{4}=0.25$	1.75
4	$\frac{1}{8}=0.125$	1.875
5	$\frac{1}{16}=0.0625$	1.9375
6	$\frac{1}{32}=0.03125$	1.96875
7	$\frac{1}{64}=0.015625$	1.984375
8	$\frac{1}{128}=0.0078125$	1.9921875
9	$\frac{1}{256}=0.00390625$	1.99609375
10	$\frac{1}{512}=0.001953125$	1.998046875

The table confirms that the series $S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$ has a limiting sum of 2 , and also that the nth term decreases in value (approaching 0) as n increases (approaching infinity).

EXAMPLE 9

Write an expression for $1-x+x^{2}-x^{3}+\ldots$ where $-1<x<1$.

SOLUTION

We have $a=1$ and $r=-x$. Since $-1<r<1$, a limiting sum exists:

$$
\begin{aligned}
S & =1-x+x^{2}-x^{3}+\ldots \\
& =\frac{1}{1-(-x)} \\
& =\frac{1}{1+x}
\end{aligned}
$$

Example 10

Explain why the series $1+1.1+(1.1)^{2}+(1.1)^{3}+\ldots$ does not have a limiting sum

SOLUTION

The common ratio for this series is $r=1.1$ and since $r>1$, the series does not have a limiting sum.

