FRACTAL TREE

Course/Level: NSW Secondary High School Stage 5 Mathematics – Additional Content

At each stage of iteration, two branches are attached at a fixed angle to each of the outermost branches. The length of each successive branch decreases by a fixed ratio. The initial stage consists of a single branch of length one unit.

In the diagram below, the angle between successive branches is 45° while the ratio of the length of any branch to its preceding branch is $\frac{1}{2}$.

1. Complete the table below.

Stage	Number of new branches	Total number of branches	Length of each new branch	Total length of all branches	
0	1	1	1	1	
1	2	3	1/2	2	
2	4	7	1/4	3	
3					
4					
n					

2. Complete the following table.

	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
Increase in height of tree	1	$\frac{\sqrt{2}}{4}$	$\frac{1}{4}$	$\frac{\sqrt{2}}{16}$	$\frac{1}{16}$		

3. If h is the height of the fractal tree, show that
$$h = 1 + \frac{\sqrt{2} + 1}{4} \left(1 + \frac{1}{4} + \frac{1}{16} + \cdots \right)$$

4. Using the formula
$$1+r+r^2+...=\frac{1}{1-r}$$
 (where $-1 < r < 1$), find the simplest expression for h.

5. If w is the width of the fractal tree, explain why w = 2(h-1) and hence find the simplest expression for w.