Fractal Tree

Course/Level: NSW Secondary High School Stage 5 Mathematics - Additional Content
At each stage of iteration, two branches are attached at a fixed angle to each of the outermost branches. The length of each successive branch decreases by a fixed ratio. The initial stage consists of a single branch of length one unit.

In the diagram below, the angle between successive branches is 45° while the ratio of the length of any branch to its preceding branch is $1 / 2$.

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 4

1. Complete the table below.

Stage	Number of new branches	Total number of branches	Length of each new branch	Total length of all branches
0	1	1	1	1
1	2	3	$1 / 2$	2
2	4	7	$1 / 4$	3
3				
4				
n				

2. Complete the following table.

	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
Increase in height of tree	1	$\frac{\sqrt{2}}{4}$	$\frac{1}{4}$	$\frac{\sqrt{2}}{16}$	$\frac{1}{16}$		

3. If h is the height of the fractal tree, show that $h=1+\frac{\sqrt{2}+1}{4}\left(1+\frac{1}{4}+\frac{1}{16}+\cdots\right)$
4. Using the formula $1+r+r^{2}+\ldots=\frac{1}{1-r}$ (where $-1<r<1$), find the simplest expression for h.
5. If w is the width of the fractal tree, explain why $w=2(h-1)$ and hence find the simplest expression for w.
