SQUARE SNOWFLAKE/ANTI-SNOWFLAKE

Course/Level: NSW Secondary High School Stage 5 Mathematics - Additional Content
The square snowflake is created in a very similar way to the Koch snowflake. Starting with a square, smaller squares are added to the middle third of each side at each iteration. The first few stages of iteration are shown below.

The Anti-Snowflake is produced in much the same way, except squares are removed from the middle third of each side in each iteration.

Stage 0

Stage 1

Stage 2

Stage 3

1. (a) Consider the square snowflake at the nth stage of iteration and its corresponding antisnowflake at the same stage of iteration.

Explain why
(i) The two shapes are equal in perimeter.
(ii) The sum total area of the two shapes is equal to $2 A_{0}$, that is twice the area of the original square at Stage 0 .
2. At the nth stage of iteration of the Square Anti-snowflake, I_{n} equals the number of sides, L_{n} equals the side length, P_{n} is its perimeter and A_{n} is its area.
(a) Explain the following, for $n=1,2, \ldots$,
(i) $\quad I_{n}=5 \times I_{n-1}$
(ii) $L_{n}=\frac{L_{n-1}}{3}$
(iii) $P_{n}=\frac{5}{3} \times P_{n-1}$
(iv) $\quad A_{n}=\frac{5}{9} \times A_{n-1}$
(b) Use these results to complete the table below. (Let l be the side length of the square at Stage 0).

Stage	Number of Sides	Side Length	Perimeter	Area
0	5	l	P_{0}	A_{0}
1	5×4	$\frac{l}{3}$	$5 \times P_{0}$	$\frac{5}{9} \times A_{0}$
2	$5^{2} \times 4$	$\frac{l}{3^{2}}$	$5^{2} \times P_{0}$	$\left(\frac{5}{9}\right)^{2} \times A_{0}$
3				
4				
n				

(c) As you increase the number of iterations, explain why
(i) the perimeter of the Square anti-snowflake approaches infinity.
(ii) the area of the Square anti-snowflake approaches zero.
(d) Hence use your answers to Question 1 to explain why the Square snowflake (where n tends to infinity) is twice the area of the square at Stage 0 .

