

## SQUARE SNOWFLAKE/ANTI-SNOWFLAKE

Course/Level: NSW Secondary High School Stage 5 Mathematics - Additional Content

The square snowflake is created in a very similar way to the Koch snowflake. Starting with a square, smaller squares are added to the middle third of each side at each iteration. The first few stages of iteration are shown below.



The Anti-Snowflake is produced in much the same way, except squares are removed from the middle third of each side in each iteration.



1. (a) Consider the square snowflake at the *n*th stage of iteration and its corresponding antisnowflake at the same stage of iteration.

Explain why

- (i) The two shapes are equal in perimeter.
- (ii) The sum total area of the two shapes is equal to  $2A_0$ , that is twice the area of the original square at Stage 0.
- 2. At the *n*th stage of iteration of the Square Anti-snowflake,  $I_n$  equals the number of sides,  $L_n$  equals the side length,  $P_n$  is its perimeter and  $A_n$  is its area.
  - (a) Explain the following, for n = 1, 2, ...,
    - (i)  $I_n = 5 \times I_{n-1}$  (ii)  $L_n = \frac{L_{n-1}}{3}$  (iii)  $P_n = \frac{5}{3} \times P_{n-1}$  (iv)  $A_n = \frac{5}{9} \times A_{n-1}$
  - (b) Use these results to complete the table below. (Let l be the side length of the square at Stage 0).

| Stage | Number of Sides   | Side Length     | Perimeter        | Area                                    |
|-------|-------------------|-----------------|------------------|-----------------------------------------|
| 0     | 5                 | l               | $P_0$            | $A_0$                                   |
| 1     | 5×4               | <u>l</u> 3      | $5 \times P_0$   | $\frac{5}{9} \times A_0$                |
| 2     | 5 <sup>2</sup> ×4 | $\frac{l}{3^2}$ | $5^2 \times P_0$ | $\left(\frac{5}{9}\right)^2 \times A_0$ |
| 3     |                   |                 |                  |                                         |
| 4     |                   |                 |                  |                                         |
| n     |                   |                 |                  |                                         |

- (c) As you increase the number of iterations, explain why
  - (i) the perimeter of the Square anti-snowflake approaches infinity.
  - (ii) the area of the Square anti-snowflake approaches zero.
- (d) Hence use your answers to Question 1 to explain why the Square snowflake (where n tends to infinity) is twice the area of the square at Stage 0.