Properties of Quadrilaterals - Worked Example

Course/Level

NSW Secondary High School Year 11 Preliminary Mathematics.

TOPIC

Plane Geometry: Properties of Quadrilaterals. (Syllabus Ref: 2.2)

Example

(a) Show that a diagonal of a parallelogram divides it into two congruent triangles.
(b) Hence show that the opposite sides of a parallelogram are equal.

Steps to follow

1. Draw a diagram of a parallelogram and construct (or add) its diagonal.
2. State what is given in the problem, what has been constructed, and the aim of the problem.
3. Prove the result
4. State conclusion

Steps to follow

1. State what is given and what needs to be proved.
2. Name congruent sides
3. State conclusion

Solution to (a)

Given: Parallelogram $A B C D$.
Construction: Draw diagonal $B D$.
Aim: \quad To prove that $\triangle D A B \equiv \triangle D C B$
In $\triangle D A B$ and $\triangle D C B$,

$$
\begin{array}{lll}
\angle A D B=\angle D B C & \text { (alternate angles, } A D \| B C \text {) } & \text { A } \\
\angle A B D=\angle B D C & \text { (alternate angles, } A B \| D C \text {) } & \text { A } \\
B D=B D & (B D \text { is common) } & \mathrm{S} \\
\therefore \triangle D A B \equiv \triangle D C B & \text { (AAS) } &
\end{array}
$$

Thus, a diagonal divides a parallelogram into two congruent triangles.

Solution to (b)

Given: Parallelogram $A B C D, \triangle D A B \equiv \triangle D C B$.
Aim: To prove that $A D=B C$ and $A B=D C$.
$A D=B C \quad($ Corresponding sides in congruent $\Delta \mathrm{s})$
$A B=D C \quad($ Corresponding sides in congruent $\Delta \mathrm{s})$
Thus, the opposite sides of a parallelogram are equal.

