MATHEMATICS PRELIMINARY EXTENSION 1 ASSESSMENT TASK TEST 1

COURSE/LEVEL

NSW Secondary High School Year 11 Preliminary Extension Mathematics.

TOPICS

- Basic Arithmetic (Syllabus Reference: 1.1, 1.2)
- Algebra and Surds (Syllabus Reference: 1.3)
- Equations (Syllabus Reference: 1.4, 1.4E)
- Geometry 1 (Syllabus Reference: 2.1, 2.2, 2.3, 2.4)

TOTAL TIME: 45 MINUTES

INSTRUCTIONS Attempt all questions

Show all necessary working

Approved calculators may be used.

Marks may be deducted for careless or poorly arranged work

©Mathematics Plus, 2002

QUESTION 1

(a) Solve for *x*:

(i)
$$3x^2 + 5x - 2 < 0$$

(ii)
$$\frac{3}{x+4} \ge 1$$

(b) Simplify: $x^{-1} \div (x + x^{-1})^{-1}$ 2

(c) Solve for
$$x$$
: 3

(i)
$$8\sqrt{2} = 2^x$$

(ii) $9^{2-x} = 3^{-x}$

QUESTION 2 (Start a new sheet of paper) MA

(a) Factorise
$$x^3y - 25xy^3$$
 2

$$(x+1)(x-2)(2x+4) = 0$$

(c) Simplify: 2

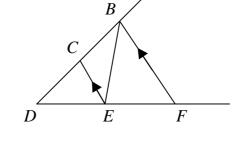
- (i) |7-4| |3+11|
- (ii) |x-4| |4-x|

(d) Solve for y: |3y-7| - 4 > 0 2

(e) Simplify
$$\frac{1}{x} + \frac{1}{2x}$$
 1

MARKS

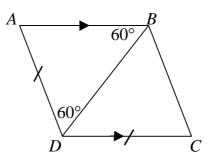
©Mathematics Plus, 2002 **QUESTION 2** (continued)


Solve for *x* only: (e)

QUESTION 3 (*Start a new sheet of paper*)

(a) In the diagram, *CE* and *BF* are parallel.

The line BF bisects angle ABE.

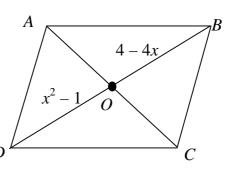

- Prove that BE = BC. (i)
- (ii) Prove that $\frac{DB}{BE} = \frac{DF}{EF}$

A

(b) In the figure,

 $AB \parallel DC$, AD = DC, $\angle ADB = \angle ABD = 60^{\circ}.$

- (i) Prove that $\triangle ADB$ is congruent to $\triangle CDB$.
- (ii) What is the size of $\angle BCD$? Give reasons for your answer.


x + y = 3 $x^2 + y^2 = 29$

(c) *ABCD* is a parallelogram.

The length of *OD* is $x^2 - 1$ and the length of *OB* is 4 - 4x.

Find the value of *x*, giving reasons where appropriate.

(Note: there is just one solution for x.)^D

MARKS

4

2

2

MARKS