Mathematics Preliminary Extension 1 Assessment Task Test 2

Course/Level

NSW Secondary High School Year 11 Preliminary Extension Mathematics.

Topics

- Basic Arithmetic (Syllabus Reference: 1.1, 1.2)
- Algebra and Surds (Syllabus Reference: 1.3)
- Equations (Syllabus Reference: 1.4, 1.4E)
- Geometry 1 (Syllabus Reference: 2.1, 2.2, 2.3, 2.4)
- Functions and Graphs (Syllabus Reference: 4.1, 4.2, 4.3, 4.4, 6.4, 8.1, 8.2)
- Straight Line Graphs (Syllabus Reference: 6.1, 6.2, 6.3, 6.5, 6.6E, 6.7, 6.7E, 6.8)

Total Time: 45 MINUTES

InSTRUCTIONS Attempt all questions
Show all necessary working
Approved calculators may be used.
Marks may be deducted for careless or poorly arranged work

QUESTION ONE

(a) Simplify $\sqrt{(x+2)^{2}+2 x+5}$.
(b) Solve $(2 x-1)(x+4)<0$ by first sketching a parabola.
(c) Express the following with a common denominator and simplify:

$$
\frac{2}{x^{2}-x}+\frac{2}{x^{2}-3 x+2}
$$

(d) Find the following limits:
(i) $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2}$.
(ii) $\lim _{x \rightarrow \infty} \frac{2 x+1}{3 x^{2}+x-1}$.
(e) If $f(x)=x^{2}+3 x-7$,
(i) find $f(-3)$,
(ii) find $f(k+1)$ in terms of k, expressed in its simplest form,
(iii) solve for x if $f(x)=3$.

QUESTION TWO

(a) Let $f(x)=\frac{(3-x)(3+x)}{x^{2}-1}$.
(i) Find the domain of this function.
(ii) Show that this is an even function. What does this tell you about the graph of this function?
(b) Sketch the graph of $y=\frac{x-2}{x-3}$ and clearly label all asymptotes and intercepts.
(c) Show that the line $3 x+4 y+5=0$ is a tangent to the circle with centre $(0,0)$ and a radius of 1 .
(d)

Shown above is a sketch of the function $y=\mathrm{f}(x)$. The domain is all real x and the line $y=1$ is an asymptote. The y-intercept is $y=4$.
Write down the range of the function
(e) The angle between the straight lines $2 x+y+3=0$ and $y=m x+b$ is equal to θ where $\tan \theta=\sqrt{5}$. Show that

$$
m=\frac{\sqrt{5}-2}{2 \sqrt{5}+1} \quad \text { or } \quad m=\frac{\sqrt{5}+2}{2 \sqrt{5}-1}
$$

QUESTION THREE

(a) Sketch the following on separate number planes:
(i) $\quad y=|x+1|$.
(ii) $|x+y|=1$.
(b) $A B C D$ is a parallelogram, $A C$ is produced to Y and $C A$ to X such that such that $A X=C Y$.

Prove that $X B Y D$ is a parallelogram.

In the diagram, $D X=C X=C B$ and $A B \| D C$. Several angles are labelled. Give reasons for your answer to the following.
(i) Explain why $\triangle A X B$ is isosceles.
(ii) Name two congruent triangles in the diagram.
(iii) Find a.
(iv) Find x.

