PRELIMINARY MATHEMATICS EXTENSION REVISION WORKSHEET #1

COURSE/LEVEL

NSW Secondary High School Year 11 Preliminary Mathematics Extension.

- 1. Solve these inequations and graph their solutions on a numberline:
 - (a) $2x^2 x 1 < 0$ (b) $\frac{4}{x 3} \le 1$

(c)
$$\frac{x+5}{x-5} > 0$$
 (d) $\frac{x^2-4}{x-1} > 0$

- In the diagram, DX = CX = CB and AB | | DC.
 Several angles are labelled.
 Give reasons for your answer to the following.
 - (i) Explain why $\triangle AXB$ is isosceles.
 - (ii) Name two congruent triangles in the diagram.
 - (iii) Find *a*.
 - (iv) Find *x*.

3. The elevation to the top of a high rise building at a place *X* due west of it is 78° and at a place *Y* due south of *X* the elevation is 58°. If the distance from *X* to *Y* is 200 metres. Find the height of the building.

4. Show that $\frac{\sin A}{\cos A + \sin A} + \frac{\sin A}{\cos A - \sin A} = \tan 2A$. (HSC '93, Q.2a)

- 5. The angle between the lines y = mx and y=x is 30°. Find the exact value of m.
- 6. Find the coordinates of the point that divides externally the interval joining the points A(7, 2) and B(6, 3) in the ratio 4:5.

7. Prove, by mathematical induction, that

$$\frac{1}{1\times 4} + \frac{1}{4\times 7} + \frac{1}{7\times 10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$$

where n is any positive integer.

- 8. Solve the equation $|x+1|^2 4|x+1| 5 = 0$.
- 9. The point P(x, y) moves on a path such that its distance from a point S(3, 5) is the same as its perpendicular distance from the line y = -3. Show that the equation of the path of P is $(x-3)^2 = 16(y-1)$.
- 10. Sketch the graph of $y = \frac{x-2}{x^2-9}$, showing all important features, including any *x* or *y*-intercepts and horizontal or vertical asymptotes.

11. (i) Sketch the graph of
$$y = \frac{5}{x(2x-3)}$$
 showing any x or y intercepts and asymptotes.

(ii) Solve the equation $\frac{5}{x(2x-3)} = 1$.

(iii) Use your sketch to solve the inequality $\frac{5}{x(2x-3)} \ge 1$.

- **12**. If (x + 1) is a factor of the polynomial $P(x) = 2x^4 2x^2 a$, find the value of *a*.
- 13. If $2x^2 x + 3 \equiv A(x+2)(x-2) + B(x+1) + C$, find the values of A, B and C.
- 14. If α , β , γ are the roots of $x^3 5x^2 3x + 2 = 0$, find the values of
 - (i) $\alpha^2 + \beta^2 + \gamma^2$, (ii) $\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2$.
- 15. The three consonants H, S, C and the five vowels A, E, I, O, U are arranged around a circle.
 - (i) In how many ways may these letters be arranged?
 - (ii) How many arrangements are possible if the three consonants must be together?