PRELIMINARY MATHEMATICS EXTENSION REVISION WORKSHEET \#1

Course/Level

NSW Secondary High School Year 11 Preliminary Mathematics Extension.

1. Solve these inequations and graph their solutions on a numberline:
(a) $2 x^{2}-x-1<0$
(b) $\quad \frac{4}{x-3} \leq 1$
(c) $\frac{x+5}{x-5}>0$
(d) $\frac{x^{2}-4}{x-1}>0$
2. In the diagram, $D X=C X=C B$ and $A B \| D C$.

Several angles are labelled.
Give reasons for your answer to the following.
(i) Explain why $\triangle A X B$ is isosceles.
(ii) Name two congruent triangles in the diagram.
(iii) Find a.

(iv) Find x.
3. The elevation to the top of a high rise building at a place X due west of it is 78° and at a place Y due south of X the elevation is 58°. If the distance from X to Y is 200 metres. Find the height of the building.
4. Show that $\frac{\sin A}{\cos A+\sin A}+\frac{\sin A}{\cos A-\sin A}=\tan 2 A$. (HSC '93, Q.2a)
5. The angle between the lines $y=m x$ and $y=x$ is 30°. Find the exact value of m.
6. Find the coordinates of the point that divides externally the interval joining the points $A(7,2)$ and $B(6,3)$ in the ratio 4:5.
7. Prove, by mathematical induction, that

$$
\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\frac{1}{7 \times 10}+\cdots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}
$$

where n is any positive integer.
8. Solve the equation $|x+1|^{2}-4|x+1|-5=0$.
9. The point $P(x, y)$ moves on a path such that its distance from a point $S(3,5)$ is the same as its perpendicular distance from the line $y=-3$. Show that the equation of the path of P is $(x-3)^{2}=16(y-1)$.
10. Sketch the graph of $y=\frac{x-2}{x^{2}-9}$, showing all important features, including any x - or $y-$ intercepts and horizontal or vertical asymptotes.
11. (i) Sketch the graph of $y=\frac{5}{x(2 x-3)}$ showing any x or y intercepts and asymptotes.
(ii) Solve the equation $\frac{5}{x(2 x-3)}=1$.
(iii) Use your sketch to solve the inequality $\frac{5}{x(2 x-3)} \geq 1$.
12. If $(x+1)$ is a factor of the polynomial $P(x)=2 x^{4}-2 x^{2}-a$, find the value of a.
13. If $2 x^{2}-x+3 \equiv A(x+2)(x-2)+B(x+1)+C$, find the values of A, B and C.
14. If α, β, γ are the roots of $x^{3}-5 x^{2}-3 x+2=0$, find the values of
(i) $\alpha^{2}+\beta^{2}+\gamma^{2}$,
(ii) $\quad \alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$.
15. The three consonants H, S, C and the five vowels A, E, I, O, U are arranged around a circle.
(i) In how many ways may these letters be arranged?
(ii) How many arrangements are possible if the three consonants must be together?

