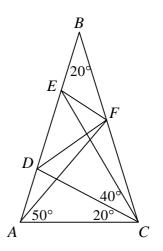
PRELIMINARY MATHEMATICS EXTENSION REVISION WORKSHEET #2

COURSE/LEVEL

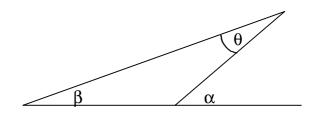

NSW Secondary High School Year 11 Preliminary Mathematics Extension.

- 1. If f(x) = x + 1 and g(x) = x 2, solve:
 - (a) f(x)g(x) = 0 (b) f(x)g(x) > 0

(c)
$$\frac{1}{f(x)g(x)} < 0$$

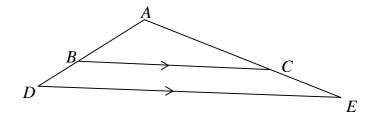
(d)
$$\sqrt{f(x)} > \frac{2}{g(x)+2}$$

2. In the diagram, $\triangle ABC$ is isosceles with BA = BC, $\angle ABC = 20^{\circ}$, $\angle CAF = 50^{\circ}$, $\angle ACD = 20^{\circ}$, $\angle DCE = 40^{\circ}$. Find $\angle CEF$.



3. A car at point A is travelling due North at 100 km/h. Towns B and C are at bearings of 330° T and 030° T respectively from A. 1 hour later the car is at point D and the towns are at bearings 300° T and 045° T respectively. Find the exact distance between the two towns.

4. By letting
$$t = \tan \frac{\theta}{2}$$
, solve the equation:


 $3\cos\theta + 4\sin\theta = 1$ where $0 \le \theta < 360^{\circ}$.

5. Find the exact value of $\tan \theta$ in the diagram if $\tan \alpha = 3$ and $\tan \beta = 2$.

8. Solve the equation $\left(x+\frac{1}{x}\right)^2 - 7\left(x+\frac{1}{x}\right) + 12 = 0$.

6. In the diagram, $BC \parallel DE$ and $DE = \frac{5}{3}BC$. If *A* has coordinates (1, 5) and *B* has coordinates (-1, 3), find the coordinates of *D*.

- 7. The *n*th term of a series is given by $T_n = \frac{1}{(2n-1)(2n+1)}$.
 - (i) Find an expression for T_{n+1} .
 - (ii) Assuming that the sum S_k of the first k terms of this series is given by $S_k = \frac{k}{2k+1}$, prove

that
$$S_{k+1} = \frac{k+1}{2k+3}$$
.
(iii) Prove that $S_k = \frac{k}{2k+1}$ is true for all k .

- 9. One extremity of a focal chord of the parabola $x^2 = 4ay$ has coordinates $(2ap, ap^2)$. Find the coordinates of the focal chord's other extremity.
- 10. (i) Sketch the graph of $y = \frac{3x^2 + x 2}{x^2 + x 2}$, showing x and y intercepts and the equations of any vertical or horizontal asymptotes.
 - (ii) Solve the equation $\frac{3x^2 + x 2}{x^2 + x 2} = 3.$

(iii) Hence use your sketch to write down the solution to the inequality $\frac{3x^2 + x - 2}{x^2 + x - 2} - 3 > 0$.

- **11.** If α , β , γ are roots of $2x^3 5x^2 + 3x + 2 = 0$, find:
 - (i) $\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2$ (ii) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
- 12. If $x^2 4$ is a factor of $x^3 + 3x^2 + ax + b$, find the values of a and b.
- 13. The probability that a man lives to the age of 75 is $\frac{3}{5}$ and the probability that his sister will live to 75 is $\frac{3}{4}$. Find the probability that:
 - (i) both will live to the age of 75.
 - (ii) only the man will live to 75.
 - (iii) at least on of them will live to 75.