PREPARATORY PRELIMINARY MATHEMATICS
 WORKSHEET \#5

Course/Level

NSW Secondary High School Year 11 Preliminary Mathematics.

1. Factorise:
(a) $x^{2}-\frac{1}{x^{2}}$
(b) $a^{4}-9$
(c) $\left(\frac{x}{y}\right)^{3}-\left(\frac{y}{x}\right)^{3}$
2. $2 x^{2}-9 x+14-\frac{9}{x}+\frac{2}{x^{2}}=0$ is an interesting equation with at least three solutions. By letting $t=x+\frac{1}{x}$, find an expression for t^{2}, and then replace all x terms in the equation to find a simpler equation in terms of t only. Solve for t first and then solve for x. Check that your solutions are correct.
3. A square with side b units is inscribed inside a circle. Find an expression for the circumference of the circle.
4. The smaller circle has half the radius of the larger circle and it also has the same area as the shaded annular sector. Find the size of angle $B A C$.
5. Simplify $\frac{1}{k}-\frac{2+k}{k^{2}}+\frac{3}{k^{3}}$.
6. Simplify $\left(\frac{a^{-1}}{b^{2}}\right)^{-1}\left(\frac{a}{b^{-2}}\right)^{-3}\left(\frac{b}{a^{4}}\right)^{0}$.
7. Rationalise the denominator: $\quad \frac{1}{\sqrt{y}-\sqrt{y-1}}$.
8. In the diagram, $A B C$ is a right angled triangle and points A and C lie on the circle which has its centre at the origin O and a radius of 1 unit. $\angle A O B=60^{\circ}$. Point A has coordinates (a, b).
(i) Find $\angle A C B$, giving reasons.
(ii) Show that $C A$ has gradient $\frac{1}{\sqrt{3}}$.
(iii) Hence show that $\frac{b^{2}}{(1+a)^{2}}=\frac{1}{3}$, and that $a=\frac{1}{2}$.

9. Find four consecutive odd integers whose sum is 128.
