THE BINOMIAL THEOREM - WORKSHEET

Course/Level

NSW Secondary High School Year 12 HSC Extension Mathematics. Syllabus reference: 17.1-17.3

1. Expand $\left(2 x^{3}+y\right)^{4}$ using the binomial theorem.
2. (a) For the binomial expansion of $(a+b)^{n}$ write down the $(k+1)$ th term, T_{k+1}.
(b) Hence find the coefficient of x^{3} in the expansion of $\left(x^{2}-\frac{2}{x}\right)^{8}$.
3. (a) Factorise $1+x+x^{2}+x^{3}$.
(b) Hence, or otherwise, show that the coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{3}$ is 12 .
4. Show that the numerically greatest coefficient in the expansion of $(2+3 x)^{10}$ is 2449440 . Also show that the greatest term when $x=-2$ is ${ }^{10} \mathrm{C}_{8} 2^{2} 6^{8}$.
5. Using the expansion of $(1+x)^{n}$, show that $2^{n}=\sum_{k=0}^{n}\binom{n}{k}$.
6. Differentiate both sides of the identity

$$
(1+x)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} x^{k}
$$

and show that

$$
\sum_{k=0}^{2 n} k\binom{2 n}{k}=n 4^{n}
$$

7. By evaluating $\int_{0}^{2}(1-x)^{2 n+1} d x$ in two different ways, prove that the following identity holds for all odd values of m :
8. Using the expansion $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$ prove the following:
(i) $\quad 1-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\ldots+(-1)^{n}\binom{n}{n}=0$
(ii) $\quad 1-\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}-\ldots+\frac{(-1)^{n}}{n+1}\binom{n}{n}=\frac{1}{n+1}$.
