COMPLEX NUMBERS – WORKSHEET #1

COURSE/LEVEL

NSW Secondary High School Year 12 HSC Mathematics Extension 2.

ΤΟΡΙΟ

Complex Numbers: Arithmetic of complex numbers and solving quadratic equations. (Syllabus Ref: 2.1)

1. Express each of the following in the form a + ib where a and b are real.

(i)
$$(1+i)^2$$
 (ii) $\frac{1}{1+i}$ (iii) $\frac{i}{(1+i)^2}$ (iv) $(\frac{1+i}{1-i})^2$

2. Given that z = 3 + 4i and w = 3 + i. find the following in the form x + iy.

(i)
$$z+w$$
 (ii) $z-w$ (iii) zw (iv) \overline{w} (v) $\frac{z}{w}$ (vi) $\frac{w}{z}$

- 3. If $z = 1 + i\sqrt{3}$, express each of the following complex numbers in the form a + ib where *a* and *b* are real numbers.
 - (i) \overline{z} (ii) $z\overline{z}$ (iii) z^2 (iv) $\frac{1}{z}$
- 4. Find the values of the real numbers *a* and *b* if $\frac{a}{1-i} + \frac{b}{2+i} = 1$.
- 5. Prove that $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2}$ for all values of z.
- 6. If two complex numbers are such that their sum and their product are both real, show that they are conjugate.
- 7. Find the square roots of the following numbers and express your answer in the form x + i y.
 - (i) -5 (ii) -5*i* (iii) \sqrt{i} (iv) $\frac{1+i}{1-i}$ (v) $1+\frac{2}{i}$ (vi) 5+2i
- 8. Show that $(1+3i)^2 = 6i 8$. Hence solve the equation $2z^2 (3+i)z + 2 = 0$.
- 8. Find all integers x and y such that $(x+iy)^2 = -3-4i$. Hence or otherwise solve the equation $z^2 7z + 13 + i = 0$.
- 10. Solve $2z^2 6iz 3 = 0$.
- 11. Solve $4z^2 + (3-4i)z (1-i) = 0$.
- 12. Solve the following equations for z. Express your answers in the form x + iy. (i) $z^2 + z + 1 = 0$ (ii) $\frac{2z}{2+i} + 3 - i = (2-i)z$