CompLex Numbers - WORKSHEET \#2

Course/Level

NSW Secondary High School Year 12 HSC Mathematics Extension 2.
TOPIC
Complex Numbers: Geometric representation of complex numbers as points and vectors. (Syllabus Ref: 2.2, 3.3)

1. If $z=3+i$ and $w=2-i$ find
(i) $z \bar{w}+i z$
(ii) $\left|\frac{w}{\bar{z}}\right|$
(iii) $\arg (w-z)$ (to the nearest degree)
2. Find the modulus and argument of $\frac{1+i}{\sqrt{3}-i}$.
3. If $z=2+2 i$, write the following in modulus-argument form.
(i) \bar{z}
(ii) $z \bar{z}$
(iii) z^{2}
(iv) $\frac{1}{z}$
4. Express each of the following in the form $r(\cos \theta+i \sin \theta)$.
(i) $1+i$
(ii) $1-i$
(iii) $\sqrt{3}+i$
(iv) $\sqrt{3}-i$

Multiply each of these numbers by i and express the resulting complex numbers in the form $r(\cos \theta+i \sin \theta)$. What relation can you observe between $\arg z$ and $\arg i z$ in the above cases?
5. Let $z=a+i b$ where $a^{2}+b^{2} \neq 0$.
(i) Show that if $\operatorname{Im}(z)>0$ then $\operatorname{Im}\left(\frac{1}{z}\right)<0$.
(ii) Prove that $\left|\frac{1}{z}\right|=\frac{1}{|z|}$.
6. If a is any complex number and z is such that $|z|=1(z \neq a)$, show that $\left|\frac{z-a}{\bar{a} z-1}\right|=1$.
7. If $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, show both algebraically and geometrically, that $\arg z_{1}=\arg z_{2}$.
8. Show that $\left|z_{1}+z_{2}\right| \geq \| z_{1}\left|-\left|z_{2}\right|\right|$.
9. Show that for any two complex numbers z_{1} and z_{2},

$$
\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)
$$

Interpret this result geometrically. (Hint: Use $z \bar{z}=|z|^{2}$)
10. If z_{1} and z_{2} are complex numbers such that $\left|z_{1}-z_{2}\right| \leq \frac{1}{2}\left|z_{1}\right|$, prove that $\left|z_{2}\right| \geq \frac{1}{2}\left|z_{1}\right|$ and $\left|z_{1}+z_{2}\right| \geq \frac{3}{2}\left|z_{1}\right|$
11. If $|z-a|=r$, show that

$$
z \bar{z}-a \bar{z}-\bar{a} z+a \bar{a}-r^{2}=0
$$

12. Let z_{1} and z_{2} be two complex numbers, where

$$
\begin{aligned}
& z_{1}=-2+i, \text { and } \\
& \left|z_{2}\right|=3 \text { and } \arg z_{2}=\frac{\pi}{3}
\end{aligned}
$$

(i) On an Argand diagram plot the points A and B to represent the complex numbers z_{1} and z_{2}.
(ii) Plot the points C and D representing the complex numbers $z_{1}-z_{2}$ and $i z_{2}$, respectively. Indicate any geometric relationships between the four points A, B, C and D.
13. In the complex plane the points P_{1}, P_{2} and P_{3} represent the complex numbers z_{1}, z_{2} and z_{3} respectively. If $P_{1}^{\prime}, P_{2}^{\prime}$ and P_{3}^{\prime} represent the numbers $z_{2}+z_{3}, z_{3}+z_{1}$ and $z_{1}+z_{2}$ respectively, show that the triangles $P_{1} P_{2} P_{3}$ and $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$ are congruent.
14. The points A, B, C and D on an Argand diagram represent the complex numbers $2+2 i, 4$, $6+2 i$ and $4+4 i$ respectively. Prove that $A B C D$ is a square and find the complex number represented by the intersection of the diagonals.
15. The centre of a square is at the point $z_{1}=1+i$ and one of the vertices is at the point $z_{2}=1-i$. Find the complex numbers which correspond to the other vertices of the square.
16. $A B C D$ is a square in the Argand diagram (where the vertices are labelled anti-clockwise). $z_{1}=2+2 i$ is represented by the vertex A and $z_{2}=-1+i$ is represented by the vertex B. Find:
(i) the complex number which represents the vertex diagonally opposite vertex A.
(ii) the length of the square's diagonal.
17. The complex number $z=3-4 i$ has two square roots z_{1} and z_{2}. Find z_{1} and z_{2} in the form $a+i b$. Show that the three points representing z, z_{1} and z_{2} on an Argand diagram, are the vertices of a right angled triangle.
18. (a) $A B C D E F$ is a regular hexagon on an Argand diagram. The centre of the hexagon is at the origin O. The vertex A represents the complex number z. Find the complex number represented by B (where B is the nearest vertex to A in the anti-clockwise direction.)
(b) If the hexagon is now rotated about O in an anti-clockwise direction by 45°. Find the complex number represented by the new position of point B.

