COMPLEX NUMBERS – WORKSHEET #2

COURSE/LEVEL

NSW Secondary High School Year 12 HSC Mathematics Extension 2.

ΤΟΡΙΟ

Complex Numbers: Geometric representation of complex numbers as points and vectors. (Syllabus Ref: 2.2, 3.3)

- 1. If z = 3 + i and w = 2 i find
 - (i) $z\overline{w}+iz$ (ii) $\left|\frac{w}{\overline{z}}\right|$ (iii) $\arg(w-z)$ (to the nearest degree)

2. Find the modulus and argument of $\frac{1+i}{\sqrt{3}-i}$.

3. If z = 2 + 2i, write the following in modulus-argument form.

- (i) \overline{z} (ii) $z\overline{z}$ (iii) z^2 (iv) $\frac{1}{z}$
- 4. Express each of the following in the form $r(\cos \theta + i \sin \theta)$.
 - (i) 1 + i (ii) 1 i (iii) $\sqrt{3} + i$ (iv) $\sqrt{3} i$

Multiply each of these numbers by *i* and express the resulting complex numbers in the form $r(\cos \theta + i \sin \theta)$. What relation can you observe between $\arg z$ and $\arg i z$ in the above cases?

5. Let
$$z = a + ib$$
 where $a^2 + b^2 \neq 0$.

- (i) Show that if $\operatorname{Im}(z) > 0$ then $\operatorname{Im}(\frac{1}{z}) < 0$. (ii) Prove that $\left|\frac{1}{z}\right| = \frac{1}{|z|}$.
- 6. If *a* is any complex number and *z* is such that |z| = 1 $(z \neq a)$, show that $\left|\frac{z-a}{\overline{a}z-1}\right| = 1$.
- 7. If $|z_1 + z_2| = |z_1| + |z_2|$, show both algebraically and geometrically, that $\arg z_1 = \arg z_2$.
- 8. Show that $|z_1 + z_2| \ge ||z_1| |z_2||$.
- 9. Show that for any two complex numbers z_1 and z_2 ,

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

Interpret this result geometrically. (Hint: Use $z\overline{z} = |z|^2$)

- 10. If z_1 and z_2 are complex numbers such that $|z_1 z_2| \le \frac{1}{2}|z_1|$, prove that $|z_2| \ge \frac{1}{2}|z_1|$ and $|z_1 + z_2| \ge \frac{3}{2}|z_1|$
- 11. If |z-a|=r, show that

$$z\overline{z} - a\overline{z} - \overline{a}z + a\overline{a} - r^2 = 0.$$

12. Let z_1 and z_2 be two complex numbers, where

$$z_1 = -2 + i$$
, and
 $|z_2| = 3$ and $\arg z_2 = \frac{\pi}{3}$

- (i) On an Argand diagram plot the points A and B to represent the complex numbers z_1 and z_2 .
- (ii) Plot the points *C* and *D* representing the complex numbers $z_1 z_2$ and $i z_2$, respectively. Indicate any geometric relationships between the four points *A*, *B*, *C* and *D*.
- 13. In the complex plane the points P_1 , P_2 and P_3 represent the complex numbers z_1 , z_2 and z_3 respectively. If P'_1 , P'_2 and P'_3 represent the numbers $z_2 + z_3$, $z_3 + z_1$ and $z_1 + z_2$ respectively, show that the triangles $P_1 P_2 P_3$ and $P'_1 P'_2 P'_3$ are congruent.
- 14. The points A, B, C and D on an Argand diagram represent the complex numbers 2+2i, 4, 6+2i and 4+4i respectively. Prove that *ABCD* is a square and find the complex number represented by the intersection of the diagonals.
- 15. The centre of a square is at the point $z_1 = 1 + i$ and one of the vertices is at the point $z_2 = 1 i$. Find the complex numbers which correspond to the other vertices of the square.
- 16. *ABCD* is a square in the Argand diagram (where the vertices are labelled anti-clockwise). $z_1 = 2 + 2i$ is represented by the vertex *A* and $z_2 = -1 + i$ is represented by the vertex *B*. Find:
 - (i) the complex number which represents the vertex diagonally opposite vertex A.
 - (ii) the length of the square's diagonal.
- 17. The complex number z = 3-4i has two square roots z_1 and z_2 . Find z_1 and z_2 in the form a + ib. Show that the three points representing z, z_1 and z_2 on an Argand diagram, are the vertices of a right angled triangle.
- 18. (a) ABCDEF is a regular hexagon on an Argand diagram. The centre of the hexagon is at the origin O. The vertex A represents the complex number z. Find the complex number represented by B (where B is the nearest vertex to A in the anti-clockwise direction.)
 - (b) If the hexagon is now rotated about O in an anti-clockwise direction by 45°. Find the complex number represented by the new position of point B.