CompLex Numbers - WORKSHEET \#3

Course/Level

NSW Secondary High School Year 12 HSC Mathematics Extension 2.
TOPIC
Complex Numbers: Powers and roots of complex numbers. (Syllabus Ref: 2.4)

1. Prove by induction that $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$ for all integers $n \geq 1$.
2. (i) Express $\sqrt{3}+i$ in modulus-argument form.
(ii) Hence evaluate $(\sqrt{3}+i)^{6}$.
3. (i) Write $\omega=\frac{1+i \sqrt{3}}{2}$ in polar (that is, modulus-argument) form.
(ii) Use De Moivre's Theorem to show that $\omega^{3}=-1$.
(iii) Hence calculate ω^{10}.
4. Evaluate $(1+\sqrt{3} i)^{10}$ in the form $x+i y$.
5. (i) If $z=2\left(\sin \frac{\pi}{6}+i \cos \frac{\pi}{6}\right)$ evaluate z^{6}.
(ii) Plot, on an Argand diagram, all complex numbers that are solutions of $z^{6}=-64$.
6. Express each of the following numbers in the form $a+i b$ where a and b are real.
(i) $\frac{(1+2 i)^{2}-(1-i)^{3}}{(3+2 i)^{3}-(2+i)^{2}}$
(ii) $\frac{(1+i)^{9}}{(1-i)^{7}}$
(iii) $\sqrt[4]{2-i \sqrt{12}}$
(iv) $\left(a z^{2}+b z\right)\left(b z^{2}+a z\right)$, where $z=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$ and a and b are real.
7. Let θ be a real number and consider $(\cos \theta+i \sin \theta)^{3}$.
(a) Prove that $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$.
(b) Find a similar expression for $\sin 3 \theta$.
8. Factorise $z^{5}+1$ into real linear and quadratic factors. Hence or otherwise show that

$$
\begin{aligned}
& \cos \frac{\pi}{5} \cos \frac{2 \pi}{5}=\frac{1}{4} \\
& \sin \frac{\pi}{5} \sin \frac{2 \pi}{5}=\frac{\sqrt{5}}{4}
\end{aligned}
$$

9. If ω is a non-real root of the equation $x^{3}-1=0$ then
(i) Show that ω^{2} is also a root.
(ii) Deduce that $1+\omega+\omega^{2}=0$
10. (a) Solve the equation $z^{6}+1=0$, giving roots in the form $a+i b$. Show these roots on an Argand diagram.
(b) Factorise $z^{6}+1$ into real quadratic factors.
11. Prove that

$$
\sin \theta+\sin 2 \theta+\ldots+\sin n \theta=\frac{\sin \frac{n \theta}{2} \sin \frac{(n+1) \theta}{2}}{\sin \frac{\theta}{2}}
$$

and

$$
1+\cos \theta+\cos 2 \theta+\ldots+\cos n \theta=\frac{\cos \frac{n \theta}{2} \sin \frac{(n+1) \theta}{2}}{\sin \frac{\theta}{2}}
$$

12. (a) Write down the modulus-argument form of $(1+i)^{n}$.
(b) Expand $(1+i)^{n}$ using the binomial theorem
(c) Using parts (a) and (b) show that

$$
\begin{aligned}
& 1-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\cdots=2^{\frac{n}{2}} \cos \frac{n \pi}{2} \\
& \binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\binom{n}{7}+\cdots=2^{\frac{n}{2}} \sin \frac{n \pi}{2} .
\end{aligned}
$$

13. (a) If $z=r(\cos \theta+i \sin \theta)$ find an expression for $z^{n}+z^{-n}$.
(b) Expand $\left(z^{1}+z^{-1}\right)^{4}$ and using the above result express your answer in the form $A \cos 4 \theta+B \cos 2 \theta+C$.
(c) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta$.
14. (a) If ω is the complex root of $z^{5}-1=0$ with the smallest positive argument, show that ω^{2}, ω^{3} and ω^{4} are the other roots.
(b) Show that $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}=0$.
(c) The quadratic polynomial $z^{2}-(\alpha+\beta) z+\alpha \beta=0$ has roots α and β. Use this fact to find the quadratic equation whose roots are $\alpha=\omega+\omega^{4}$ and $\beta=\omega^{2}+\omega^{3}$.
