GRaphs - WORKSHEET \#4

Course/Level

NSW Secondary High School Year 12 HSC Mathematics Extension 2.

TOPIC

Graphs: General approach to curve sketching (Syllabus Ref: 1.8) Using graphs (Syllabus Ref: 1.9)

1. Sketch the graph of the curve defined by the equation $x^{2}+y^{2}+4 x y+3=0$, showing features including x - and y-intercepts and the coordinates of any stationary and critical points.
2. Sketch the graph of $x^{2}+y^{2}-x y=3$, showing x - and y - intercepts, critical points and stationary points.
3. Sketch the graph of $x^{2}+9 y^{2}=9$, showing x - and y - intercepts, critical points and stationary points.
4. Sketch the graph of $y=x^{x}$, showing x - and y - intercepts, critical points and stationary points. (Hint: use implicit differentiation to find the derivative of $\ln y$.)
5. Sketch the graph of $x^{2}+y^{2}-x^{2} y^{2}=0$.
6. Sketch the graph of $\sqrt{x-1}+\sqrt{y}=1$.
7. Use the graph of the function $y=\mathrm{f}(x)$ sketched below to write down the range of values of c for which the equation $f(x)+c-2=0$ has three distinct roots. The co-ordinates of the two turning points are given.

8. Sketch the graph of $y=x\left(x^{2}-4\right)$. Find the set of values of the real number c if the number of real roots of the equation $x\left(x^{2}-4\right)+c=0$ equals:
(i) 3
(ii) 2
(iii) 1
9. (i) Sketch the function $\mathrm{f}(x)=x^{3}+1$.
(ii) On the same set of axes, sketch the function $\mathrm{g}(x)=\frac{1}{x^{3}+1}$. Clearly indicate on your sketch the equations of the asymptotes and the co-ordinates of any stationary points or points of inflection of $y=\mathrm{g}(x)$.
(iii) Find the values of x for which $x^{3}+1<\frac{1}{x^{3}+1}$.
10. Consider the graph of $y=x^{3}-k x^{2}+k$, for $k>0$.
(i) Find the co-ordinates of the stationary points and determine their nature.
(ii) By examining the graph of $y=x^{3}-k x^{2}+k$ (for varying positive values of k), show that $x^{3}-k x^{2}+k=0$ has 3 distinct roots if $k>\frac{\sqrt{27}}{2}$.
11. Sketch the graph of $y=\frac{(x-1)^{3}}{x^{3}-1}$. Hence, or otherwise, determine the range of values of the real number c if the equation $(x-1)^{3}=c\left(x^{3}-1\right)$ has no real roots.
12. Sketch the graph of $y=x(x-1)(x-2)$. Find the set of values of the real number k if the number of real roots of the equation $x(x-1)(x-2)-k x=0$ equals:
(i) 2
(ii) 3
