GRaphs - WORKSHEET \#5

Course/Level

NSW Secondary High School Year 12 HSC Mathematics Extension 2.

TOPIC

Graphs

1.

For the function $y=\mathrm{f}(x)$ sketched above, draw separate sketches for the following.
(i) $\quad y=\mathrm{f}(x)-\frac{1}{2}$
(v) $y=\frac{1}{\mathrm{f}(x)}$
(ii) $\quad y=\mathrm{f}\left(x-\frac{1}{2}\right)$
(vi) $\quad y=\mathrm{f}(|x|)$
(iii) $y=\mathrm{f}(-x)$
(vii) $y^{2}=\mathrm{f}(x)$
(iv) $y=(\mathrm{f}(x))^{2}$
(viii) $y=2^{-\mathrm{f}(x)}$
2. Use the graphs of $y=|x+2|$ and $y=|x-1|$ to sketch the graph of $y=|x+2|+|x-1|$. Hence, or otherwise, solve the inequality $|x+2|+|x-1|>4$.
3. Draw neat separate sketches of the following sketches, without using calculus. Include features such as any x - and y-intercepts and the equations of any asymptotes.
(i) $y=x^{3}$
(ii) $y=\frac{1}{x^{3}}$
(iii) $y=\frac{x^{3}-1}{x^{3}}$
(iv) $y=\frac{x^{3}}{x^{3}-1}$
(v) $y=x^{3}-\frac{1}{x^{3}}$
4. Given that $\mathrm{f}(x)=x^{2}\left(x^{2}-1\right)(x+1)$, sketch the following functions. (It is not necessary to locate turning points).
(i) $y=\mathrm{f}(x)$
(ii) $y=\mathrm{f}(|x|)$
(iii) $y=|\mathrm{f}(x)|$
(iv) $y^{2}=\mathrm{f}(x)$
(v) $y \cdot \mathrm{f}(x)=1$
5. Suppose the curve $y=\mathrm{f}(x)$ has a stationary point at $x=a$. Show that $\mathrm{g}(x)=\frac{1}{\mathrm{f}(x)}$ also has a stationary point at $x=a$ provided $\mathrm{f}(a) \neq 0$.
6. Let $f(x)=x-2+\frac{3}{x+2}$.
(i) Find the points at which $f(x)=0$.
(ii) Find the turning points of $f(x)$, if any, and identify them.
(iii) Find the asymptotes.
(iv) Sketch the curve, marking all the features you have found in parts (i) - (iii) above.
7. Draw separate sketches of $y=\frac{x(x-1)}{x-2} \quad$ and $\quad y=\sqrt{\frac{x(x-1)}{x-2}}$. Include any x - or y-intercepts and asymptotes. (It is not necessary to find the co-ordinates of any stationary points.)
8. Let $\min (a, b)$ denote the minimum of the numbers a and b. Sketch the function $y=\min (2, x)$ over the interval $0 \leq x \leq 3$ and evaluate $\int_{0}^{3} \min (2, x) d x$.
9. If $\mathrm{f}(x)=(x-2)(x+1)$, sketch separate graphs of the following:
(i) $y=\mathrm{f}(x)$
(ii) $y=\frac{1}{|\mathrm{f}(x)|}$
(iii) $y=2^{-\mathrm{f}(x)}$

In each sketch, include the co-ordinates of any stationary or critical points.
10. If $f(x)=\frac{x+1}{x-2}$, sketch the following functions.
(i) $y=f(x)$
(ii) $y=\ln (f(x))$
(iii) $y=e^{f(x)}$
(iv) $y=\sin ^{-1}(f(x))$
11. Sketch the following:
(i) $y=e^{-1 / x}$
(ii) $y=e^{-\sin x}$
(iii) $y=\cos \left(x^{2}\right)$
(iv) $y=\cos \left(\sin ^{-1} x\right)$
12. Without calculus, sketch the curve which represents $y=\frac{1}{\sqrt{(x+1)(x+3)}}$.

